电子实验报告
模电实训实验报告(3篇)

第1篇一、实验目的1. 熟悉模拟电子技术的基本实验方法和步骤。
2. 掌握常用模拟电子器件的特性及应用。
3. 培养动手能力和分析问题、解决问题的能力。
4. 深入理解模拟电子技术的基本原理和电路分析方法。
二、实验原理模拟电子技术是研究模拟信号的产生、传输、处理和转换的电子技术。
本实验涉及的主要内容包括:1. 晶体管放大电路:包括共射、共集、共基放大电路,以及差分放大电路等。
2. 模拟信号产生电路:如正弦波振荡器、矩形波发生器等。
3. 模拟信号处理电路:如滤波器、整流电路等。
三、实验仪器与设备1. 模拟电子技术实验箱2. 数字多用表3. 函数信号发生器4. 示波器5. 电源6. 电阻、电容、晶体管等电子元件四、实验内容及步骤实验一:晶体管共射放大电路1. 实验目的:掌握共射放大电路的原理和调试方法。
2. 实验步骤:a. 按照电路图连接电路,检查无误后接入电源。
b. 使用函数信号发生器输入一个正弦波信号,频率为1kHz,幅度为1V。
c. 调整电路中的偏置电阻,使晶体管工作在放大状态。
d. 使用示波器观察输入信号和输出信号,并记录波形及幅度。
e. 改变输入信号的幅度和频率,观察输出信号的变化,分析电路的幅频特性和带宽。
实验二:正弦波振荡电路1. 实验目的:掌握正弦波振荡电路的原理和调试方法。
2. 实验步骤:a. 按照电路图连接电路,检查无误后接入电源。
b. 使用示波器观察输出信号,并记录波形及频率。
c. 调整电路中的元件参数,使振荡电路产生稳定的正弦波信号。
d. 测量输出信号的幅度和频率,分析电路的振荡频率和幅度。
实验三:滤波电路1. 实验目的:掌握滤波电路的原理和调试方法。
2. 实验步骤:a. 按照电路图连接电路,检查无误后接入电源。
b. 使用函数信号发生器输入一个含有多个频率成分的信号。
c. 使用示波器观察输出信号,并记录波形及幅度。
d. 调整电路中的元件参数,观察滤波效果,分析电路的通带和阻带。
五、实验结果与分析1. 共射放大电路:通过调整偏置电阻,使晶体管工作在放大状态,实现了信号的放大。
电子技术实验报告(数电部分)

电气与电子信息工程学院实验报告课程名称:电子技术实验(数电部分)专业名称:班级:学号:姓名:湖北理工学院电气与电子信息工程学院实验报告规范实验报告是检验学生对实验的掌握程度,以及评价学生实验课成绩的重要依据,同时也是实验教学的重要文件,撰写实验报告必须在科学实验的基础上进行。
真实的记载实验过程,有利于不断积累研究资料、总结研究实验结果,可以提高学生的观察能力、实践能力、创新能力以及分析问题和解决问题的综合能力,培养学生理论联系实际的学风和实事求是的科学态度。
为加强实验教学中学生实验报告的管理,特指定湖北理工学院电气与电子信息工程学院实验报告规范。
一、每门实验课程中的每一个实验项目均须提交一份实验报告。
二、实验报告内容一般应包含以下几项内容:1、实验项目名称:用最简练的语言反映实验内容,要求与实验课程安排表中一致;2、实验目的和要求:明确实验的内容和具体任务;3、实验内容和原理:简要说明本实验项目所涉及原理、公式及其应用条件;4、操作方法与实验步骤:写出实验操作的总体思路、操作规范和操作主要注意事项,准确无误地记录原始数据;5、实验结果与分析:明确地写出最后结果,并对实验得出的结果进行具体、定量的结果分析,说明其可靠性;6、问题与建议(或实验小结):提出需要解决问题,提出改进办法与建议,避免抽象地罗列、笼统地讨论。
(或对本次实验项目进行总结阐述。
)三、实验报告总体上要求字迹工整,文字简练,数据齐全,图标规范,计算正确,分析充分、具体、定量。
四、指导教师及时批改实验报告,并将批改后的报告返还学生学习改进。
五、实验室每学期收回学生的实验报告,并按照学校规章保存相应时间。
实验报告实验项目名称:逻辑门电路逻辑功能的测试同组人:实验时间:实验地点:指导教师:一、实验目的1、熟悉数字逻辑实验箱的结构、基本功能和使用方法。
2、掌握常用非门、与非门、或非门、异或门的逻辑功能及其测试方法。
二、实验主要仪器与设备三、实验预习要求做实验前必须认真复习数字逻辑实验箱、数字万用表、芯片CC4011、CC4030、CC4000的有关内容。
电子商城实验报告

电子商城实验报告本次实验我们实现了一个简单的电子商城系统。
该系统包含了登录、注册、用户信息管理、商品信息管理、购物车管理等功能。
以下将从系统设计、实现、测试和总结四个方面叙述本次实验的过程和结果。
一、系统设计在系统设计中,我们采用了前后端分离的设计思想,前端使用Vue.js框架,后端使用PHP语言和MySQL数据库进行开发。
前后端通过Ajax交互技术进行数据传输和响应。
考虑到用户的安全性和数据的完整性,我们加入了常见的数据校验和SQL注入攻击防范等功能。
在前端部分,我们实现了登录、注册、用户信息管理、商品信息管理、购物车管理等功能。
登录模块主要实现用户的登录和退出登录功能,校验用户的账号和密码是否匹配。
注册模块实现用户的注册功能,并进行了手机号、邮箱格式、密码强度的校验。
用户信息管理包括个人信息的展示、修改和密码的修改。
商品信息管理包括商品的添加、删除、修改和查询,可以按照商品名称或者类型进行搜索。
购物车管理包括购物车的添加、删除、修改和查询等功能,用户可以将商品加入购物车中,并进行数量的修改和删除等操作。
在后端部分,我们使用PHP语言和MySQL数据库进行开发。
PHP语言主要负责处理数据请求和响应,MySQL数据库则负责数据的持久化存储。
我们采用面向对象的编程方式,将整个系统分为控制器、模型和视图三个部分。
控制器负责接收前端的请求、验证数据和响应数据;模型则负责实现数据的增删改查等操作;视图则负责从用户的角度展现数据和界面。
二、系统实现在系统实现中,我们首先搭建了前端Vue.js框架和后端PHP语言的开发环境。
然后分别实现了前端UI界面和后端业务逻辑。
前端页面采用了Element UI库进行开发,具有良好的用户交互体验。
后端采用了PHP7和MySQL5进行数据存储和业务逻辑处理。
在前端部分,我们使用Vue.js框架创建了Login、Register、User、Goods和Cart五个组件。
Login组件用于用户的登录功能,包括账号和密码的验证,验证成功后跳转到User组件页面。
光电子学习实验报告

光电子学习实验报告光电子学学习实验报告光电子学是一门研究光与电子相互作用的学科,涉及到光的产生、传输、探测以及与电子的相互转换等多个方面。
本次实验旨在通过一系列的光电子学实验,深入了解光电子学的基本原理和应用。
以下将对实验内容、方法、结果以及结论进行详细叙述和分析。
实验内容1. 光电效应实验:通过激光器照射金属表面,观察光照射后产生电子释放的现象。
2. 光电导实验:利用半导体材料,结合外加电场,测量光照射后导电性的变化。
3. 光电探测实验:选取不同波长的激光光源,测量不同波长光线对半导体光电探测器的响应情况。
4. 光电放大实验:使用光电二极管和放大电路,观察光电信号的放大效果。
实验方法1. 光电效应实验:将金属样品放置于光源下,调整光源强度和波长,同时连接示波器测量产生的电子释放信号。
2. 光电导实验:将半导体样品放置于光源下,施加外电场,测量光照射后的电流变化。
3. 光电探测实验:选择不同波长的激光光源,照射于光电探测器表面,并测量输出光电流信号。
4. 光电放大实验:连接光电二极管和放大电路,照射光源,观察示波器显示的信号波形及放大倍数。
实验结果1. 光电效应实验结果显示,随着光源强度的增加,释放的电子数量逐渐增多,证明光电效应的确存在。
2. 光电导实验结果表明,光照射后半导体的导电性受外电场影响较大,与光源波长也有关系。
3. 光电探测实验发现,不同波长的光线对光电探测器的响应不同,部分波长光线的探测效果较好。
4. 光电放大实验结果显示,光电信号经过放大电路后,信号幅度得到显著提升,达到了实验预期的放大效果。
结论通过本次光电子学实验,我们对光电效应、光电导、光电探测以及光电放大等基本原理有了更深入的了解。
同时,实验结果也验证了这些原理在实际应用中的有效性和可行性。
通过对光电子学的学习实验,我们扩展了对光电子学领域的认识,为今后更深入的研究和应用奠定了基础。
总结起来,本次实验不仅是对光电子学知识的学习和实践,更是对光与电子相互作用的深入探讨。
电力电子实验报告

电力电子实验报告————————————————————————————————作者:————————————————————————————————日期:实验一SCR(单向和双向)特性与触发实验一、实验目的1、了解晶闸管的基本特性。
2、熟悉晶闸管的触发与吸收电路。
二、实验内容1、晶闸管的导通与关断条件的验证。
2、晶闸管的触发与吸收电路。
三、实验设备与仪器1、典型器件及驱动挂箱(DSE01)—DE01单元2、触发电路挂箱Ⅰ(DST01)—DT02单元3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代)4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元5、逆变变压器配件挂箱(DSM08)—电阻负载单元6、慢扫描双踪示波器、数字万用表等测试仪器四、实验电路的组成及实验操作图1-1 晶闸管及其驱动电路1、晶闸管的导通与关断条件的验证:晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。
打开系统总电源,将系统工作模式设置为“高级应用”。
将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。
电子电路实验四 实验报告

实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。
分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。
该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。
因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。
RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。
对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。
将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。
2.多谐振荡电路实验电路如图2所示。
深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。
再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。
该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。
根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。
设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。
矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。
3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。
设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。
模拟电子技术实验报告
一、实验目的1. 熟悉模拟电子技术实验的基本操作流程;2. 掌握模拟电子技术实验的基本测量方法;3. 理解模拟电子电路的基本原理,提高电路分析能力;4. 培养实验操作技能,提高动手实践能力。
二、实验内容1. 常用电子仪器的使用:示波器、万用表、信号发生器等;2. 晶体管共射极单管放大器实验;3. 射极跟随器实验;4. 差动放大器实验。
三、实验原理1. 常用电子仪器使用:示波器、万用表、信号发生器等是模拟电子技术实验中常用的测量工具,掌握这些仪器的使用方法对于进行实验至关重要。
2. 晶体管共射极单管放大器:晶体管共射极单管放大器是一种基本的模拟放大电路,其原理是利用晶体管的电流放大作用,将输入信号放大。
3. 射极跟随器:射极跟随器是一种具有高输入阻抗、低输出阻抗、电压放大倍数接近1的放大电路,常用于信号传输和阻抗匹配。
4. 差动放大器:差动放大器是一种能有效地抑制共模干扰的放大电路,广泛应用于测量、通信等领域。
四、实验步骤1. 常用电子仪器使用:熟悉示波器、万用表、信号发生器的操作方法,并进行基本测量。
2. 晶体管共射极单管放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
3. 射极跟随器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
4. 差动放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。
五、实验数据及分析1. 常用电子仪器使用:根据实验要求,使用示波器、万用表、信号发生器等仪器进行测量,并记录数据。
2. 晶体管共射极单管放大器实验:(1)输入信号频率为1kHz,幅值为1V;(2)输出信号频率为1kHz,幅值为5V;(3)放大倍数为5。
电力电子实验报告
实验一单结晶体管触发电路实验一、实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。
(2)掌握单结晶体管触发电路的调试步骤和方法。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK03-1 晶闸管触发电路该挂件包含“单结晶体管触发电路”等模块。
3 双踪示波器自备三、实验线路及原理单结晶体管触发电路的工作原理已在1-3节中作过介绍。
四、实验内容(1)单结晶体管触发电路的调试。
(2)单结晶体管触发电路各点电压波形的观察。
五、预习要求阅读本教材1-3节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。
六、思考题(1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?(2)单结晶体管触发电路的移相范围能否达到180°?七、实验方法(1)单结晶体管触发电路的观测将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。
如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。
在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“G、K”触发电压波形,其能否在30°~170°范围内移相?(2)单结晶体管触发电路各点波形的记录当α=30o、60o、90o、120o时,将单结晶体管触发电路的各观测点波形描绘下来,并与图1-9的各波形进行比较。
电子扫描显微镜实验报告
电子扫描显微镜实验报告一、实验目的本次实验的主要目的是熟悉电子扫描显微镜(SEM)的工作原理、操作方法,并通过实际观察样品,获取微观结构的图像和信息,为材料科学、生物学等领域的研究提供有力的支持。
二、实验原理电子扫描显微镜是利用聚焦的电子束在样品表面扫描,产生二次电子、背散射电子等信号,通过探测器收集这些信号并转化为图像。
其工作原理基于电子与物质的相互作用,电子束的能量和束斑大小决定了成像的分辨率和景深。
三、实验仪器与材料1、仪器:电子扫描显微镜(型号:_____)2、材料:金属样品(如铜、铝)、生物样品(如细胞切片)、半导体样品(如硅片)四、实验步骤1、样品制备金属样品:经过切割、研磨、抛光等处理,以获得平整光滑的表面。
生物样品:经过固定、脱水、切片、染色等处理,使其能够在电子束下保持结构稳定。
半导体样品:采用化学腐蚀或机械抛光的方法,去除表面损伤层。
2、仪器操作打开电子扫描显微镜的电源,等待仪器预热至稳定状态。
将制备好的样品放入样品室,使用样品台的调节装置,将样品准确地定位在电子束的照射区域。
选择合适的加速电压、工作距离、放大倍数等参数。
进行聚焦和像散校正,使图像清晰。
3、图像采集与处理启动图像采集系统,获取样品的扫描图像。
对采集到的图像进行亮度、对比度、色彩等方面的调整,以突出样品的特征。
五、实验结果与分析1、金属样品观察到金属表面的微观形貌,如晶粒大小、晶界分布等。
分析了表面的缺陷,如划痕、孔洞等。
2、生物样品清晰地看到细胞的结构,如细胞膜、细胞核、细胞器等。
能够观察到细胞之间的连接和相互作用。
3、半导体样品显示出半导体表面的晶格结构和缺陷。
对表面的杂质分布进行了初步分析。
六、实验注意事项1、样品制备过程中要避免引入污染和损伤,以保证观察结果的准确性。
2、操作电子扫描显微镜时,要严格按照操作规程进行,避免误操作导致仪器损坏。
3、在图像采集和处理过程中,要注意参数的选择和调整,避免过度处理导致图像失真。
电路电子实验报告总结与反思
电路电子实验报告总结与反思一、实验内容本次实验主要涉及电路电子领域的相关知识,包括电路的设计、实验仪器的使用和数据处理等。
具体实验内容如下:1. 了解并掌握基本电路元件的特性和工作原理;2. 设计并组装电路板,实现特定功能;3. 使用万用表和示波器测量电路参数;4. 记录实验数据并进行数据处理;5. 分析实验结果,总结实验思考。
二、实验过程在本次实验中,我选择了一个简单的放大电路作为实验对象。
首先,我仔细研究了相关的理论知识,包括放大电路的分类、基本原理和电路设计方法等。
然后,根据实验要求,我设计了一个适合放大特定信号的电路。
接下来,我按照设计要求组装了电路板,并连接上相应的电源和信号源。
在实验过程中,我使用了万用表测量了电路中各个元件的电压和电流,并使用示波器观察了电路中信号的波形变化。
在实验过程中,我还出现了一些问题。
例如,我没有正确设置示波器的刻度,导致观察到的信号波形不清晰。
此外,我还发现电路中的一个元件连接错误,导致电路无法正常工作。
幸运的是,经过反复检查和排除,我成功解决了这些问题,并取得了满意的实验效果。
三、实验结果与数据分析通过本次实验,我成功实现了一个放大电路,并观察到了输入信号和输出信号的波形变化。
通过测量和数据处理,我得到了一些实验结果。
首先,我测量了电路中各个元件的电压和电流。
根据测量结果,我发现电路中的元件工作正常,并且符合设计要求。
此外,我还观察到输入信号和输出信号的幅度比例,发现输出信号的幅度确实得到了一定程度的放大。
然后,我对实验数据进行了进一步的分析。
通过对比不同输入信号的输出波形,我发现输入信号的频率对于输出的影响较大。
当输入信号的频率较小时,输出信号的形态基本保持不变。
但当输入信号的频率增大时,输出信号的波形发生了明显的改变。
综上所述,通过本次实验,我掌握了电子电路实验的基本方法和技巧,并成功设计和实现了一个放大电路。
实验结果符合预期,进一步验证了电路设计的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子实验报告篇一:电子实验报告实验2 一阶电路的过渡过程实验2.1 电容器的充电和放电一、实验目的1.充电时电容器两端电压的变化为时间函数,画出充电电压曲线图。
2.放电时电容器两端电压的变化为时间函数,画出放电电压曲线图。
3.电容器充电电流的变化为时间函数,画出充电电流曲线图。
4.电容器放电电流的变化为时间函数,画出放电电流的曲线图。
5.测量RC电路的时间常数并比较测量值与计算值。
6.研究R和C的变化对RC电路时间常数的影响。
二、实验器材双踪示波器 1台信号发生器 1台0.1μF和0.2μF电容各1个1KΩ和2KΩ电阻各1个三、实验准备在图2-1和图2-2所示的RC电路中,时间常数τ可以用电阻R和电容C 的乘机来计算。
因此τ=R图2-1 电容器的充电电压和放电电压在电容器充电和放电的过程中电压和电流都会发生变化,只要在充电或放电曲线图上确定产生总量变化63 %所需要的时间,就能测出时间常数。
用电容器充电电压曲线图测量时间常数的另一种方法是,假定在整个充电期间电容器两端的电压以充电时的速率持续增加,当增大到充满电的电压值时,这个时间间隔就等于时间常数。
或者用电容器放电电压曲线图来测量,假定在整个放电期间电容器两端的电压以初放电时的速率持续减少,当减少到零时,这个时间间隔也等于时间常数。
在图2-2中流过电阻R的电流IR与流过电容器的电流IC相同,这个电流可用电阻两端的电压VR除以电阻R来计算。
因此IR=Ic=VR/R图2-2 电容器的充电电流和放电电流四、实验步骤1.实验图如下2.用曲线图测量RC电路的时间常数τ。
τ=121.6799μs3.根据图2-1所示的R,C元件值,计算RC电路的时间常数τ。
τ=RC=100.0μs4.在电子工作平台上建立如图2-2所示的实验电路,信号发生器和示波器按图设置。
单击仿真电源开关,激活实验电路,进行动态分析。
示波器屏幕上的红色曲线为信号发生器输出的方波。
方波电压在+5V和0V之间摆动,模拟直流电源电压为+5V与短路。
当信号电压为+5V时,电容器通过电阻R放电。
当信号电压为0V 对地短路时,电容器通过电阻R放电。
蓝色曲线表示电阻两端的电压与时间的函数关系,这个电压与电容电流成正比。
在下面的V-T坐标上画出电阻(电容电流)随时间变化的曲线图。
作图时注意区分电容的充电曲线和放电曲线。
5.根据R的电阻值和曲线图的电压读数,计算开始充电时的电容电流Ic.Ic=5.0/1000A=5mA6.根据R的电阻值和曲线图的电压读数,计算开始放电时的电容电流Ic.Ic=-5.0/1000A=-5mA7.用曲线图测量RC电路的时间常数τ。
τ=106.6052μs8.将R改为2KΩ。
单击仿真电源开关,激活电路进行动态分析。
用曲线图测量新的时间常数τ。
τ=198.4805μs9.根据新的电阻值R,计算图2-2所示的RC电路的新时间常数τ。
τ=200μs10.将C改为0.2μF,信号发生器的频率改为500HZ。
单击仿真电源开关,激活电路进行动态分析。
从曲线图测量新的时间常数τ。
τ=392.4393μs11.根据R和C的新值,计算图2-2所示的RC电路的新时间常数τ。
τ=RC=400μs五、思考与分析1.在步骤1中,当充满电后电容器两端的电压Vab有多大?与电源电压比较情况如何?放完电后电容器两端的电压Vab是多少?Vab=4.9765V与电源电压基本相等Vab=02.在步骤2,3追踪时间常数τ的测量值与计算值比较情况如何?两者值相差不大3.充满电后流过电容器的电流是多少?I=5mA4.步骤7中时间常数的测量值与步骤3中的计算值比较情况如何?两者值相差不大5.改变R的阻值对时间常数有什么影响?与R的阻值成正比6.改变C的容量对时间常数有什么影响?与C的容量成正比实验2.2 电感中的过渡过程一、实验目的1.当电感中的电流增大时确定电感电流随时间变化的曲线图。
2.当电感中的电流减小时确定电感电流随时间变化的曲线图。
3.当电感中的电流增大时确定电感两端的电压随时间变化的曲线图。
4.当电感中的电流减小时确定电感两端的电压随时间变化的曲线图。
5.测量RL电路的时间常数并比较测量值和计算值。
6.研究R和L元件值变化时对RL电路时间常数产生的影响。
二、实验器材双踪示波器1台信号发生器1台100mH,200mH电感各1个1KΩ,2KΩ电阻各1个三、实验准备在图2-3中电阻R中的电流iR与电感电流iL相同。
这个电流可用电阻两端的电压VR除以电阻R来计算,所以iL=iR=VR/R在电感中,感应电压VL与电感电流的变化率成正比。
因此VL=L(di/dt)在图2-3所示的电路中,当电感电流达到静态时,di/d=0,电感两端的感应电压VL=L(di/dt)=L(0)=0这就是说,电感电流处于静态时电感看上去好象短路一样,而电源电压将全部加到电阻R的两端。
因此,电感中的静态电流IL,可由下式求出V=ILR+VL=ILR+0=ILRIL=V/R其中,V=+10V。
在图2-4所示的RL电路中,当电感电流增加时di/dt为正,则电感两端的感应电压也为正;当电感电流减小时di/dt为负,则感应电压也为负。
当电感电流IL刚刚开始增大时电感两端的感应电压最大。
在这一时刻电流IL为0。
图2-3 电感中的暂态电流篇二:浙大电工电子实验报告实验十五集成定时器及其应用实验报告课程名称:电工电子学实验指导老师:实验名称:集成定时器及其应用一、实验目的1.了解集成定时器的功能和外引线排列。
2.掌握用集成定时器构成多谐振荡器、单稳态触发器和施密特触发器的方法和原理。
二、主要仪器设备1.MDZ-2型模拟电子技术实验箱;2.HY3003D-3型可调式直流稳压稳流电源;3.XJ4318型双踪示波器;4.XJ1631数字函数信号发生器;5.运放、时基电路实验板。
三、实验内容1.多谐振荡器图15-2按图15-2接好实验线路,UCC采用+5V电源,用双踪示波器观察并记录uC、u0的波形。
注意两波形的时间对应关系,并测出u0的幅度和t1、t2及周期T。
2.单稳态触发器图15-4按图15-4接好实验电路,UCC采用+5V电源,ui信号用幅度为5V的方波信号,适当调节方波频率(月500Hz)(方波可以由函数信号发生器提供,或由电子技术实验箱直接提供),观察并记录ui、u2、uC、u0的波形,标出uo的幅度和暂稳时间tW。
3.施密特触发器图15-6按图15-6接线,输入us采用正弦波信号(由函数信号发生器提供),UCC采用+5V电源。
接通电源、逐步加大us信号电压,用示波器观察ui波形,直到ui 的有效值等于5V左右。
观察并记录us、ui和u0波形。
四、实验总结1.用方格纸画好各波形图,并注明幅值、周期(脉宽)等有关参数。
注意正确反映各波形在时间上的对应关系。
2.整理实验数据,将理论估算结果与实验测试数值相比较,并加以分析讨论。
(注:上表中实验2、3的T理论值都为相应输入波形的T)结果分析: (1).多谐振荡器在数值方面,据上表可见,该实验中的各物理量的测量值和理论值相差都不大,最大相对偏差为13.8%,可知实验与理论总体上较为接近。
根据其相对偏差的特点,可以看出偏差并没有一致的规律,因此可推断有较多的随机误差存在,除此之外,可能存在的其他误差有:1.各元件属性并非完全符合实验设计,存在少许差异,属于系统误差;2.电路导线不能完全忽略电阻,再加上导线插头可能接触不良而产生的额外电阻,使得实际电路与设计略有不同,也属于系统误差,但因为接线有很大的随机性,对于不同的接线方法,可能结果会略有不同;3.测量仪器(万用表、示波器)有一定的误差;4.存在人为读数误差,比如在读取示波器上的刻度值时不可能做到非常精确。
在相位方面,从上文波形图可见,uC和u0的相位相关性较好,形状、大小等方面都与理论相符。
总体来说,实验结果还是比较理想的,较好地实现了多谐振荡器的功能。
(2).单稳态触发器在数值方面,从表中可看出,除u2 的UL(最小幅值)与理论值有很大差距外,其余实验数据都与理论较为相符,其中所有周期T的数据都与输入波形一致,这也与理论是一致的。
由此可以看出,实验误差对周期T的影响极小,而其他数据存在的少量偏差原因大致与(1)相同,这里不再赘述。
而对于u2 的UL,实验值与理论值相对偏差高达172%,从图中可以看出,实验值UL是负值,而理论值为正,经分析,可能是由于输入方波存在负值所致(实验册中采用的方波无负值),但由于情况复杂,无法进一步分析。
同时,通过波形图还可以发现,图形的个别细微处与理论图像不相符,比如u2在方波有负变正的一瞬间幅值突然变大之后快速将为原值;而u0在方波由正转负时图像上有一突起;除此之外还有uC在u2彻底恢复高电位时才停止增长,这与理论也是不相符的。
由于此电路情况复杂,难以分析,初步猜测可能是电路内部构造或由方波有负值所造成的,当然也不排除元件损坏与人为错误的可能。
在相位方面,各波形非常一致,各周期T都与输入波形相同,除了上述的uC增长停止位置与理论有出入外,其余图形对于时间轴几乎没有偏差。
总体来说,此实验的各波形形状基本正确,虽然仍存在一些难以找出原因的问题,但最终还是基本实现了单稳态触发器的功能。
(3).施密特触发器此实验中仅有tW的实验值与理论值有少许偏差,而其余两个周期T都与输入波形相同。
因此在相位和周期上都几乎没有偏差,而对于tW所存在的8.6%的偏差则很有可能是随机误差,当然也可能存在(1)中所述的其他可能。
比较us和ui的波形图可以看出,两波形的时间对应关系良好,很符合理论结果;而比较ui和u0则会发现,u0在ui上所对应的位置并不完全与理论的2/3UCC、1/3UCC相符,尤其是前者。
由于相对偏差并不明显,因此可能是由随机误差所致,但也可能是由于集成块内部电路并不完全符合2/3、1/3的关系,当然也不能排除其他元件偏差的可能性。
五、心得体会本次实验通过实际操作,使我们了解了集成定时器的功能,以及由其组成的多谐振荡器、单稳态触发器和施密特触发器的应用,使实践和理论较好地联系在了一起。
但在实验过程中,也发现了一些与理论有所出入之处,有些问题甚至难以分析原因,而另一些又可能是由各种误差的干扰所致。
由于此次实验理论内容较为繁杂,实际操作中的线路也较为复杂,很难做出准确分析,因此在实验中务必仔细检查元件的完好性,才能保证实验结果的准确性。
除此之外,通过实验我们再次练习了示波器和信号发生器的使用,使得此方面的技能更为熟练。
篇三:电子实验基础实训报告苏州市职业大学实习(实训)报告名称XX年 12月16日至 XX年12月 20日共1周院系电子信息工程学院班级 13电气自动化技术2 姓名xxxx院长系主任指导教师目录第一章绪论 (1)1.1实验目的................................................... 1 1.2.使用工具和器材...........................................1 1.3实验仪器和设备........................................... 1 1.3.电路工作原理图. (2)第二章元器件介绍 (3)2.1电阻器基础知识与检测方法 (3)2.1.1分类 (3)2.1.2色环颜色所代表的数字或意义························ 3 2.1.3在电路图中电阻器和电位器的单位标注规则 (4)2.2电容器 (4)2.2.1电容器种类........................................4 2.2.2主要性能指标.. (4)2.3电感器 (5)2.3.1电感器的命名 (5)2.3.2电感器参数 (5)2.4 NPN三极管 (6)2.4.1概述 (6)2.4.2工作原理..........................................6 2.4.3 NPN三极管放大电路解析. (7)2.4.4常用三极管........................................8 2.4.5实验方法 (9)2.4.6元件作用 (9)第三章晶体管单管放大电路的制作与测试 (10)3.1 电路原理图 (10)3.2实验步骤............................................10 3.3 EWB仿真实验.......................................12 3.3.1 EWB概述. (12)3.3.2晶体管单管放大电路的仿真调试....................13 第四章:实验总结(心得体会). (15)附录一;任务书···································附录二:参考文献·····································16 19第一章绪论1.1实验目的1.掌握电路元件的使用和电路连接2.熟悉电路板上元器件的焊接技能3.学会实验仪器设备的一般使用4.能正确获取测试数据,学会简单的数据分析1.2使用工具和器材25W内热电烙铁及焊接工具和器材通用电路板一块1/8碳膜电阻器4个(47kΩ,22kΩ,2.2kΩ,2kΩ) 25V 电解电容器3个(47μF,10μF×2) 3DG系列三极管1个(可选9014)连接线少许1.3实验仪器和设备万用表(指针式或数字式)交流毫伏表双踪示波器函数信号发生器直流稳压电源1.4电路工作原理图。