求实际问题中函数自变量取值范围之思路

合集下载

2024八年级数学下册第20章函数20.2函数2自变量的取值范围教学设计(新版)冀教版

2024八年级数学下册第20章函数20.2函数2自变量的取值范围教学设计(新版)冀教版
3. 能够应用所学知识解决实际问题。
教学内容与学生已有知识的联系:
学生在之前的学习中已经掌握了函数的基本概念和一次函数、二次函数的相关知识,对本节课的内容有一定的认知基础。通过对已有知识的巩固和拓展,学生能够更好地理解和掌握函数自变量取值范围的相关知识。
核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.讨论主题:学生将围绕“函数自变量取值范围在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与函数自变量取值范围相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示函数自变量取值范围的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
b. 请给出一个函数自变量取值范围的求解方法,并给出一个例子说明其应用。
3. 应用题:
a. 假设函数f(x) = 2x - 3,求解以下不等式:
i. f(x) ≥ 0
ii. f(x) < 0
b. 某商店进行打折活动,原价为100元的商品打8折后售价为80元。设原价为x元,求解以下方程:
i. 打8折后的售价等于原价
在教学方法上,我采用了讲解、演示、互动讨论、小组合作等多种教学手段,以适应不同学生的学习需求。我发现学生在解决实际问题时,能够积极思考和讨论,提出了许多有创意的想法。这也说明他们在理论知识的基础上,能够将所学知识应用到实际情境中。

定义域的解题思路

定义域的解题思路

定义域的解题思路
定义域是数学中一个非常重要的概念,它指的是函数自变量的取值范围。

在解决与函数相关的问题时,我们需要先确定函数的定义域,才能进行进一步的计算和推理。

求函数的定义域通常有以下几种方法:
1. 直接法:有些函数的定义非常明确,可以直接确定其定义域。

例如,一次函数f(x)=ax+b的定义域为R,即所有实数都是它的自变量。

2. 分母不为0法:对于分数形式的函数f(x)/g(x),如果要求其定义域,需要保证分母g(x)不为0。

因此,我们可以通过求解不等式或方程来确定函数的定义域。

3. 二次根式中的被开方数大于等于0法:对于形如√{a^2}的函数,其中a为任意实数,其定义域为[0,+\infty)。

因为对于任何实数x,都有a^2≥0成立,所以只有当a^2=0时等号成立。

4. 对数中的真数大于0法:对于形如log_a(x)的函数,其中a>0且a≠1,其定义域为(0,+\infty)。

因为对于任何小于等于0的实数x,都有log_a(x)无意义。

总之,在解决与函数相关的问题时,正确确定函数的定义域是非常重要的一步。

通过掌握不同的求定义域的方法和技巧,我们可以更加高效地解决各种数学问题。

函数自变量取值范围

函数自变量取值范围

函数自变量取值范围函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素,一直是中考的热点问题之一,下面举例谈谈这类问题的常见类型和解法供供同学们学习时参考。

一、教法点拨:1.在一般的函数关系式中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含偶次方根:被开方数≥0;(4)函数关系式含0指数或负整数指数:底数≠0.(5)解析式是上述几种形式组合而成时,应首先求出式子中各部分的取值范围,然后再求出它们的公共部分;2. 实际问题中自变量的取值范围:(1)注意自变量自身表示的意义;(2)问题中的限制条件,此时多用不等式或不等式组来确定自变量的取值范围。

3. 几何图形中函数自变量的取值范围:(1)使函数式有意义;(2)考虑几何图形的构成条件及运动范围。

注意记清各种情况,判断哪一类型,准确计算即可。

二、题型分类:题型一:函数关系式中自变量取值范围1.解析式是整式时, 函数自变量取值范围是全体实数。

(原创题)①y = x2-3 ;②y = 2x -1;③ y =-3x .2.解析式是分式时,自变量的取值范围是使分母不为0的实数。

①(2018哈尔滨)函数y= 中,自变量x的取值范围是_________。

②(2018武汉)若分式在实数范围内有意义,则实数x 的取值范围是()[来源:学科网ZXXK] A.x>-2B.x<-2C.x=-2D.x≠-2③(2017哈尔滨)函数Y= 中,自变量X取值范围是____________。

④(2018•宿迁)函数y= 中,自变量x的取值范围是()A.x≠0B.x<1C.x>1D.x≠13.解析式是偶次根式,自变量的取值范围是被开方数为非负数。

①(2018北京市)若在实数范围内有意义,则实数的取值范围是。

②(2018湖北十堰)函数的自变量x的取值范围是。

函数值及自变量的取值范围

函数值及自变量的取值范围
y 180 2x
y
x 等腰三角形两底角相等。
( 3 ) 如 图 , 等 腰 直 角 △ ABC 的 直 角 边 长 与 正 方 形 MNPQ的边长均为10 cm,AC与MN在同一直线上, 开始时A点与M点重合,让△ABC向右运动,最后A 点与N点重合.试写出重叠部分面积ycm2与MA长度x cm之间的函数关系式.
我们可以由自变量结合函数本身求出因变量,此时这个因变量的值称为该自变量
函数值 对应的
;同时,我们也可以由因变量结合函数本身求出自变量的值!
例1 求下列函数中自变量x的取值范围:
(1) y=3x-1; (2) y=2x2+7;
(3)
y=
x
1
2

(4) y= x 2 .
解:(1)中x取任意实数,3x-1都有意义 .
(2)中x 取任意实数, 2x2+7都有意义 .
(3)中,x≠-2时,函数有意义.
(4)中x≥2时,函数有意义.
试一试: 求下列函数自变量的取值范围
⑴ y= x2 x 1 ⑵ y= 3 x
⑶ y= 1
⑷ y= x 2
x2
x ⑸ y=(x1)0 ⑹ y=
说明:四种基本类型的函数自变量取值范围
x 1 29
1 整式-----一切实数
2 分式-----分母不为零
偶次根式 (被开方数≥0) 3 根式-----
奇次根式 (被开方数为一切实数 ) 4 零指数-----底数≠0
练习:一
P33习题中第4题 P31练习第3题
练习二:P32第2题
2.分别写出下列各问题中的函数关系式及自变 量的取值范围:
函数值及自变量的取值范围
1、理解函数值的概念,并会求 某个自变量所对应的函数值;

函数自变量的取值范围问题

函数自变量的取值范围问题

函数自变量的取值范围问题二、方法剖析与提炼例1.在下列函数关系式中,自变量x 的取值范围分别是什么? ⑴23-=x y ; ⑵121-=x y ; ⑶43-=x y ; ⑷xx y 32+=; ⑸0)3(-=x y【解答】⑴x 的取值范围为任意实数;⑵分母012≠-x ∴21≠x ∴x 的取值范围为21≠x ;⑶043≥-x ∴34≥x ∴x 的取值范围为34≥x ;⑷⎩⎨⎧≠≥+0302x x ∴2-≥x 且0≠x ∴x 的取值范围为:2-≥x 且0≠x ⑸x -3≠0 ∴x ≠3,x 的取值范围为x ≠3.【解析】⑴为整式形式:函数关系式是一个含有自变量的整式时,自变量的取值范围是全体实数.⑵分式型:当函数关系式是分式时,自变量的取值范围是使分母不为零的实数.⑶偶次根式:当函数关系式是偶次根式时,自变量取值范围是使被开方数为非负数的实数.含算术平方根:被开方数043≥-x . ⑷复合型:当函数关系式中,自变量同时含在分式、二次根式中时,函数自变量的取值范围是它们的公共解,即建立不等式组,取它们的公共解.⑸0指数型:当函数关系式中,自变量同时含在0指数下的底数中时,自变量取值范围是使底数为非零的实数.即底数x -3≠0 .【解法】解这类题目,首先搞清楚函数式属于“整式型”、“分式型”、“偶次根式”、“0指数型”、“复合型”当中哪一个类型,自变量的取值必须使含有自变量的代数式有意义即可.【解释】这种解题策略可以推广到其他问题,如: 求31+x 中x 的取值范围.解:右边的代数式属于奇次根式型,自变量的取值范围是全体实数. 例2.某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,每量汽车上至少有一名教师.甲、乙两车载客量和租金如下表:设租用甲种车x 辆,租车费用为y 元,求y 与x 的函数关系式,并写出自变量x 的取值范围.【解答】⑴由题设条件可知共需租车6辆,租用甲种车x 辆,则租用乙种车辆(6-x )辆.y =400x +280(6-x )=120x +1680∴y 与x 的函数关系式为:y =120x +1680⑵∵⎩⎨⎧≤+≥-+23001680120240)6(3045x x x , ∴⎩⎨⎧≤≥54x x , ∴自变量x 的取值范围是:4≤x ≤5【解析】(1)租车费用y =甲种车辆总费用+乙种车辆总费用.(2)函数关系式同时也表示实际问题时,自变量的取值范围要同时使实际问题有意义.自变量x 需满足以下两个条件: 一是,甲、乙两车的座位总数≥师生总数240名;二是,费用≤2300元,还要考虑到实际背景下的x 为整数.【解法】关注问题中所有的限制条件,多用不等式或不等式组来确定自变量的取值范围.【解释】做此题前首先要先从乘车人数的角度考虑应总共租多少辆汽车.因为题目已知总共6名教师,而且要求每辆车上至少有一名教师.所以,最多租用6辆车.同时,也不能少于6辆车否则座位数少于师生总数,不能接送所有的师生.由此可知共租用6辆车子. 例3.一个正方形的边长为5cm ,它的边长减少x cm 后得到的新正方形的周长为y cm ,写了y 与x 的关系式,并指出自变量的取值范围.【解答】解:由题意得,y 与x 的函数关系式为y =4(5-x )=20-4x ;自变量x 应满足⎩⎨⎧≥>-005x x 解得0≤x <5,所以自变量的取值范围是0≤x <5.【解析】正方形的周长=边长×4,即y =4(5-x );自变量的范围同时满足两个条件:一是,正方形的边长是正数;二是,边长减少的x 应取非负数.【解法】关注问题中所有的限制条件,多用不等式或不等式组来确定自变量的取值范围.【解释】函数关系式表示实际问题时,自变量的取值范围要同时使实图1际问题有意义.例4.若等腰三角形的周长为20cm ,请写出底边长y 与腰长x 的函数关系式,并求自变量x 的取值范围.【解答】y =20-2x∵⎪⎩⎪⎨⎧>+>≥y x x y x 00,∴⎪⎩⎪⎨⎧->>-≥x x x x 220202200,∴⎪⎩⎪⎨⎧><≥5100x x x ,∴自变量x 的取值范围是5<x <10.【解析】自变量的范围同时满足两个条件:一是,x 表示等腰三角形腰长,要求x ≥0;二是,等腰三角形底边长y >0;三是,三角形中“两边之和大于第三边”,即2x >y .最后综合自变量x 的取值范围.【解法】自变量x 的取值要满足多个条件,根据条件列出不等式得到不同情况和答案,之后取交集.【解释】别忘记解答的最后要写出各个情况的交集. 例5.如图1,在边长为2的正方形ABCD 的一边BC 上,一点P 从B 点运动到C 点,设BP =x ,四边形APCD 的面积为y .(1)写出y 与x 的函数关系式及x 的取值范围;(2)说明是否存在点P ,使四边形APCD 的面积为1.5.【解答】(1)x y -=4,x 的取值范围是40≤≤x .(2)令5.1=y ,得x -=45.1, ∴5.2=x∴存在点P 使四边形APCD 的面积为1.5.【解析】(1)ABP ABCD APCD S S S ∆-=正方形四边形,其中取值范围要考虑让P 从B 点运动到C 点过程中,x 由小变大.特别的,当P 在B 处,0=x .(2)求出的x 的值要符合x 的取值范围.【解法】几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.【解释】求实际问题中的自变量取值范围时,如果用运动观点研究,动点必须在一定的轨道上运动,而且要时刻兼顾到图形其它的部分的变化.三、能力训练与拓展1.函数y =15-x 21的自变量取值范围是 .2.函数34x y x -=-的自变量x 的取值范围是 . 3.在函数1-=x y 中,自变量x 的取值范围是( ).A 、x ≥-1B 、x ≠1C 、x ≥1D 、x ≤14.函数3y x =-中自变量x 的取值范围是( ) A .x ≥1- B .x ≠3 C .x ≥1-且x ≠3 D . 1x <-5.已知等腰三角形的面积为20cm 2,设它的底边长为x (cm ),则底边上的高y (cm )关于x 的函数关系式为 ,自变量的取值范围是: .6.汽车由北京驶往相距850千米的沈阳.它的平均速度为80千米/时.求汽车距沈阳的路程S (千米)与行驶时间t(小时)的函数关系式,写出自变量的取值范围.7.如图2,在矩形ABCD中,边CD上有一动点P(异于C、D),设DP=x,AD=a,AB=b,△APD和△QCP面积之和为y,写出y与x的函数关系式及自变量x的取值范围.8.如图3,OM⊥ON,AB=a,点A、B分别在ON、OM上滑动.设OB=x,△OAB面积为y,写出y与x的函数关系及x的取值范围.9.如图4,△ABC中,AC=4,AB=5,D是AC边上点,E是AB边上点,∠ADE=∠B,设AD=x,AE=y,写出y与x之间函数关系式及x的取值范围.10.用长6米铝合金条制成如图形状的矩形窗框, 问长和高各是多少米时,窗户的透光面积最大?最大面积是多少?1.全体实数【解析】由于15-x 21是整式,所以x 的取值范围是全体实数. 2.x ≠4【解析】43--x x 是分式,由分母x -4≠0得x ≠4,所以x 的取值范围是x ≠4. 3.C【解析】此函数关系式是二次根式,由被开方数为非负数可知,x -1≥0,所以x ≥1.故选C .4.C。

八年级数学下册第二十章函数20、2函数20、2、2自变量的取值范围授课新版冀教版

八年级数学下册第二十章函数20、2函数20、2、2自变量的取值范围授课新版冀教版
C.y=0.12x,0≤x≤500
D.y=60-0.12x,0≤x≤500
感悟新知
知2-练
4. 等腰三角形的周长是40 cm,底边长y(cm)是腰长 x(cm)的函数,此函数表达式和自变量取值范围正确 的是( C ) A.y=-2x+40(0<x<20) B.y=-0.5x+20(10<x<20) C.y=-2x+40(10<x<20) D.y=-0.5x+20(0<x<20)
x-2 0, 解:要使函数关系式有意义,需满足 x+3 0.
解得x≥2. 故自变量的取值范围是x≥2.
感悟新知
4. 【中考·赤峰】能使式子 2 x x 1 成立的
x的取值范围是( C )
A.x≥1
B.x≥2
C.1≤x≤2
D.x≤2
知1-练
感悟新知
5. 【中考·娄底】在函数y= x 中,自变量x的取 知1-练 x2
课时导入
探究新知 你坐过摩天轮吗?想一想,如果你坐在摩天轮上,
随着时间的变化,你离开地面的高度是如何变化的?
感悟新知
知1-讲
知识点 1 函数表达式的自变量的取值范围
1. 前面讲到的“欣欣报亭1月〜6月的每月纯收入S(元) 是月份T的函数”.其中自变量T可取哪些值?当T=1.5 或T=7时,原问题有意义吗?
为0; (3)当关系式是二次根式时,其自变量的取值范围须
使被开方数为非负实数;
知1-讲
感悟新知
归纳
知1-讲
(4)当关系式有零指数幂(或负整数指数幂)时,其自 变量应使相应的底数不为0;
(5)当关系式是实际问题的关系式时,其自变量必须 有实际意义;
(6)当关系式是复合形式时,则需列不等式组,使所 有式子同时有意义.

函数自变量的取值范围的确定

几何问题中的函数关系式,除使函数式有意 义外,还需考虑几何图形的构成条件及运 动范围.特别要注意的是在三角形中“两 边之和大于第三边”.
已知点A(6,0),点P(x,y)在第一象限,且x+y=8,设∆OPA的面积为S. (1)求S关于x的函数表达式; (2)求x的取值范围; (3)求S=12时,点P的坐标.
求下列函数的自变量x的取值范围:
y 1 (x≠0) x
y 1 (x≠-1) x 1
y x (x≥0) y 4x 5
(x为一切实数)
y x2
(x≥2)
y3 x2
(x为一切实数)
二、实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要 考虑两个因素:
⑴自变量自身表示的意义.如时间、用油量 等不能为负数.
老张讲数学
函数自变量的取值
一、函数关系式中自变量的取值范围
在一般的函数关系中自变量的取值范围主要考 虑以下四种情况:
⑴函数关系式为整式形式:自变量取值范围为 全体实数;
⑵函数关系式为分式形式:分母的全体不为零 ⑶函数关系式含算术平方根:被开方数的全体
为非负数; ⑷函数关系式含零指数的:底数的全体不,租用汽车接送234名学生和6名教 师集体外出活动,共租车6辆。甲、乙两车载客量和租金如下 表:
甲种车辆 乙种车辆
载客量(单位:人/辆) 45
30
租金(单位:元)
400
280
设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并 写出自变量x的取值范围.
三、几何图形中函数自变量的取值范围
⑵问题中的限制条件.此时多用不等式或不 等式组来确定自变量的取值范围.
例1.用总长为60m的篱笆围成长方形场地,求 长方形面积S(m2)与边长x(m)之间的函数关系 式,并指出式自变量的取值范围?

函数的自变量取值范围


怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值
3.偶次根式:取使“被开方数≥0”的值 4.奇次根式: 取全体实数
取使每一个式子有意义的值 5.对于混合式:
求出下列函数中自变量的取值范围
( 1)
(2)
-1 y=(x+6)
0 y=(x-3)
怎样求自变量的取值范围
1.整式: 取全体实数 2.分式: 取使分母不为0的值
解(1)y=x (0<x<2)
(2)当BE=1.75cm时 x=2-1.75 =0.25
A
xH
O
E
B
2
D
∴y=x=0.25
F
C

3、一辆汽车的油箱中现有汽油50升,如果不再加 油,那么油箱中的油量y(升)随行驶里程x(公 里)的增加而减少,平均耗油量为0.1升/公里。 (1)写出表示y与x的函数关系的式子。
图象法
用图象来表示两个变量之间的关系;
列表法
用表格的方法来表示两个变量之间的关系;
s=60t;
解析式法
用代数表达式来表示两个变量之间的关系等. (用解析法表示关系时,还要注意自变量的取值范围)
填写如图所示的加法表,然后把所有填 有10的格子涂黑,看看你能发现什么? 解 如图,能发现涂黑的格子成一条直线. 如果把这些涂黑的 格子横向的加数用 x表示,纵向的加 数用y 表示,试写 出y与x 的函数关 系式. 函数关系式:
1 2 y x 2
x Y x
1.在上面所出现的各个函数中,自变量的取 值有限制吗?如果有,写出它的取值范围。 探索 1
y 10 x
(x取1到9的
y
y 180 2 x

冀教版八年级数学下册《二十章 函数 20.2 函数 函数的自变量取值范围》教案_0

函数自变量的取值范围设计思路:《函数自变量的取值范围》是八年级数学下册20章第二节的内容。

函数是研究运动变化的重要数学模型,它源自生活,又服务于生活。

函数有着广泛的应用,初中阶段对函数的认识也是逐步加深的,因此,本节课的学习效果如何将直接影响学生的后续学习。

《函数自变量的取值范围》是本节课的重点内容之一,我把它单独安排一个课时来学习。

在教学设计上,我主要是以四个活动为载体:1.情境活动:使学生感到容易---我能学2.探究归纳:提出问题,引起学生求知欲---我要学利用导学案中的“填一填”提出“自变量的取值有限制吗?”这一问题,从而勾起学生求知的欲望-----我想学,调动学生的主动性。

3.实践应用:结合所学知识应用到实践中---我学会这一活动中我设计了两个例题,其中例1是针对单纯解析式中的函数自变量取值范围,例2是在实际应用中的自变量取值范围。

每个题目都让学生分组完成,尽量照顾到每位同学的态度,使每个人都参与其中,都能发表自己的见解。

4.交流反思:引导学生回顾在活动中的得失,以提高自己---我会学根据实践活动的应用,引导学生反省自己在活动中的得失,以弥补不足之处,同时锻炼归纳总结的能力,以便更好的形成知识体系。

在活动的设计上,我注重了活动的目的性、活动的层次性、活动的思维性以及活动的可操作性,和学生的所有交流都是在自然进行的。

在整个教学过程中,始终注重的是学生的参与意识;注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题,让学生主动暴露思维过程,及时得到信息的反馈。

我在课堂上,尽量留给学生更多的空间,让学生有更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,充分调动他们的非智力因素,特别是内在动机,让他们以强烈的求知欲和饱满的热情来学习新知识,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立起学好数学的信心。

教学目标1.知识与技能(1)能根据函数关系式直观得到自变量取值范围。

函数中自变量的取值范围的确定

函数中自变量的取值范围的确定
严小松
【期刊名称】《成才之路》
【年(卷),期】2012(000)024
【摘要】研究函数,确定自变量的取值范围是一个重要问题。

在新课标中,这也是中考内容的一个重要知识点。

然而,怎样确定自变量的取值范围呢?很多同学对此不很明确,常常因考虑不周而出现错误。

为了使同学们学习这部分知识时不出错或少出错,现将自己多年积累的经验归纳说明如下,供大家参考。

一、整式型例1求函数y=2x-3的自变量的取值范围。

分析:因为不论x取任意实数,2x-3都有意义,所以自变量x的取值范围是全体实数。

【总页数】1页(P43-43)
【作者】严小松
【作者单位】遵义县鸭溪镇中学
【正文语种】中文
【相关文献】
1.确定几何问题中函数自变量的取值范围
2.如何确定函数问题中自变量的取值范围
3.例谈函数自变量取值范围的确定
4.几何函数综合题自变量取值范围的确定
5.如何确定函数自变量的取值范围
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求实际问题中函数自变量取值范围之思路实际问题中函数的自变量取值范围是指函数在实际问题中合理的输入值的范围。

确定函数自变量的取值范围是解决实际问题的重要一步,它直接影响到问题的有效求解和结果的准确性。

下面将从几个不同的角度探讨确定函数自变量取值范围的思路。

一、问题的物理特性:
在物理问题中,函数的自变量往往与一些物理量有关。

我们可以通过对物理问题的分析,确定函数自变量的取值范围。

例如,考虑物体的位移函数,自变量可以是时间t,而时间t的取值范围可以根据实际问题中的时间限制来确定。

二、问题的约束条件:
在实际问题中,通常存在一些约束条件,这些约束条件对函数的自变量有一定的限制。

可以通过分析问题的约束条件来确定函数的自变量取值范围。

例如,在一个投资问题中,假设要投资x万元,且投资额必须大于等于100万元,小于等于500万元,那么函数的自变量取值范围就在100到500之间。

三、问题的实际意义:
在解决实际问题时,函数的自变量取值范围应当有一定的实际意义。

我们可以通过对实际问题的分析,确定函数自变量的取值范围。

例如,考虑一个数学模型,模型中的自变量表示一些物体的质量,那么自变量的取值范围就应当是非负数。

四、计算机模拟:
在一些情况下,我们可以通过计算机模拟来确定函数自变量的取值范围。

通过模拟大量的实际数据,可以发现函数自变量的取值范围。

例如,
在疫情模型中,可以通过模拟感染人数随时间的变化来确定感染率的范围。

总之,确定函数自变量取值范围是解决实际问题的关键一步。

我们可
以从问题的物理特性、约束条件、实际意义和计算机模拟等不同的角度出发,确定函数自变量的取值范围。

这样可以确保问题的有效求解和结果的
准确性。

相关文档
最新文档