(完整版)初中数学——最全:初中数学几何模型
初中数学对角互补模型(初中数学最新最全对角互补模型)

二、对角互补双90°模型(构造相似)
例4.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB 于点E,PN交BC于点F,当PE=2PF时,求AP
课堂练习
三、对角互补.60°、120°模型(构造全等)
例5.已知∠AOB=120°,OC平分∠AOB,点P是射线OC上一点. (1)如图1,过点P作PD⊥OA,PE⊥OB,说明PD与PE相等的理由;
(3)如图3所示,过C作CH⊥BD于H,BD=6,AD=3,求CH
(3)如图,过点C作CQ⊥CD交BD于点Q, ∵∠ACB=90°,QC⊥CD∴∠ACB=∠ADB=90°, ∴点A,点B,点C,点D四点共圆,∴∠CDQ=∠CAB=45°∵QC⊥CD ∴∠CQD=∠CDQ=45°∴CQ=CD,且∠QCD=90°∴△DCQ是等腰直角
(2)证明:过P作PE⊥BC,PF⊥CD, ∵P,C为正方形对角线AC上的点, ∴PC平分∠DCB,∠DCB=90°,∴PF=PE, ∴四边形PECF为正方形, ∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°, ∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.
课堂练习
练习1.如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正
方形OMNP绕O点旋转,这两个正方形重叠部分的面积为
.
练习2.如图,正方形ABCD的对角线AC与BD相交于点O,E,F分别是AB,BC上的 点,连接EF.若AE=4,CF=3,OE⊥OF,求EF的长.
练习3.如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点 在x轴上,对角线AC,BD交于点M,OM=3 ,求点B的坐标.
初中数学几何模型汇总

10⼿拉⼿相似旋转相似7外外模型A条件A ABC n A ADE条件BD cl平分BE L BCF B C 结论ACE on ABD E结论D900-ÌLA E FE C DB14⻆分平模型A E Bc A D条件ABN CD CE平分LA CDD B A结论⽔的等腰三⻆形C12 11对⻆互补模型119001512345模型ii j⼆450条件LA013DCE900LAOELBOC A Ai D 辅助线过作CMLAO丄130M E条件tanx tanks E 垂⾜为D E结论a t p EAF⼆450B F c 结论⼆CE OD to EEOC So ioi7Eo N B z I⼗I4A Din2125条件tarn tank I E 条件LA0131200LDCE600LAO EL BOCA c结论tanEA Fi B F C辅助线013上取点F使OF0C D3j t j i A10D 结论CDCE OD to En Sonia B a EO E F条件tana tank3F12⻆度相关模型结论tan LEAF43B C ⼩猪蹄模型A B16等积模型条件A1311C D E111等底等⾼拉窗帘A D结论43D E c D条件AM BC2铅笔头模型结论Sami SAD B c SAAB⼆名们B cA B条件A1311D E2等⾼结论B D14360AC D条件13C⼝共线3乌头模型结论5的BD SAADE B D CD B CE DA B条件A1311的结论D E B C D13等底A 4⻜镖模型A条件AE DE为A ABC ABCD边BC D辅助线延乱咬仍于E E D上的⾼结论5的Bc D BE A Ei D E B7c 结论D13⼗A B c E5内内模型A条件13只们平分LABC LA CB D结论D95⼗三ㄥA B C6内外模型A D条件13只CD平分ABC LACE结论幻⼆三LA BC E。
初中数学常见几何模型大全

初中数学常见几何模型大全
以下是一些常见的初中数学几何模型大全:
1. 点(Point):没有大小和形状,用一个大写字母表示。
2. 直线(Line):由无限多个点组成,没有宽度和厚度。
3. 线段(Line Segment):直线上的两个点及其之间的部分。
4. 射线(Ray):起始于一个点,延伸至无穷远的部分。
5. 角(Angle):由两条射线共享一个端点而形成的图形。
6. 三角形(Triangle):由三条线段组成的图形。
7. 直角三角形(Right Triangle):一个角为直角(90度)的三角形。
8. 等腰三角形(Isosceles Triangle):具有两边长度相等的三角形。
9. 等边三角形(Equilateral Triangle):三条边都相等的三角形。
10. 平行四边形(Parallelogram):具有两对平行边的四边形。
11. 矩形(Rectangle):具有四个直角的平行四边形。
12. 正方形(Square):具有四个相等边和四个直角的矩形。
13. 梯形(Trapezoid):具有一对平行边的四边形。
14. 圆(Circle):由所有与圆心距离相等的点组成的图形。
15. 圆环(Annulus):由两个同心圆之间的区域组成。
16. 椭圆(Ellipse):平面上所有到两个给定点距离之和等于常数的点的轨迹。
17. 弧(Arc):圆上的一段连续的部分。
18. 扇形(Sector):圆心角及其对应的弧所围成的区域。
这些是初中数学中常见的几何模型,它们在解题和证明过程中起着重要的作用。
九年级数学初中常见几何模型汇总(图片版)

九年级数学初中常见几何模型汇总(图片版)初中常见几何模型汇总全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最终模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
旋转最值(共线有最值)说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
剪拼模型三角形→四边形四边形→四边形说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。
矩形→正方形说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变正方形+等腰直角三角形→正方形面积等分旋转相似模型说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。
初中数学几何模型大全+经典题型(含答案)

初中数学几何模型大全+经典题型(含答案)之吉白夕凡创作全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等.两边进行边或者角的等量代换,产生联系.垂直也可以做为轴进行对称全等.说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等.半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要机关旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等.机关办法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容.通过“8”字模型可以证明.说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变更,另外是等腰直角三角形与正方形的混用.当遇到庞杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等.说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形.证明办法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证.对称最值(两点间线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离.说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值.三角形→四边形四边形→四边形说明:剪拼主要是通过中点的180度旋转及平移改动图形的形状.说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改动说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似.推广:两个任意相似三角形旋转成一定角度,成旋转相似.第三边所成夹角合适旋转“8”字的规律.说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来机关相似三角形的作用.说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多.(2)内外角平分线定理到射影定理的演变,注意之间的相同与不合之处.另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论.说明:相似证明中最经常使用的帮助线是做平行,按照题目的条件或者结论的比值来做相应的平行线.初中数学经典几何题(附答案)经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A1B1C1D1都是正方形,A2、B2、C2、D2辨别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二) A P CDB4、已知:如图,在四边形ABCD 中,AD =BC,M 中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN=∠F.经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点)于M .(1)求证:AH =2OM ;(2)若∠BAC=600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA⊥MN 于线,交圆于B 、C 及D 、E,直线EB 及CD 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内, 设MN 是圆O 的弦,过MN 的中点A EB 辨别交MN 于P 、Q .求证:AP =AQ .(初二) 4、如图,辨别以△ABC 的AC 和BC 为一边,ACDE 和正方形CBFG,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)1、如图,四边形ABCD 求证:CE =CF .(初二)2、如图,四边形ABCD 延长线于F .求证:AE =AF .(初二)3、设P 是正方形求证:PA =PF .4、如图,PC 切圆O 于直线PO 相交于B 、D 1、已知:△ABC =5.求:∠APB 的度数.2、设P 是平行四边形求证:∠PAB=∠PCB.(初二)3、设ABCD 为圆内接凸四边形,求证:AB·C D +AD·BC=AC·BD.(初三)4、平行四边形ABCD 中,设E 、F 辨别是BC 、AB 上的一点,AE 与CF相交于P,且AE =CF .求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC,求证:≤L<2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a,PC =3a,求正方形的边长. P A DCB CB DAF P DE CB A A PC B A PDA CB P D4、如图,△ABC 中,∠ABC=∠ACB=800,D 、E 辨别是AB 、AC 上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.经典难题(一)1.如下图做GH⊥AB,连接EO.由于GOFE∠OEG,即△GHF∽△OGE,可得EO GF =GO GH =CO CD ,又CO=EO,. 2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC 是正三角形3.如下图连接BC1和AB1辨别找其中点F,E.连接C2F 与A2E 并延长相交于Q 点,连接EB2并延长交C2Q 于H 点,连接FB2并延长交A2Q 于G 点, 由A2E=12A1B1=12B1C1= FB2 ,EB2=12AB=12BC=FC1 ,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ 又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形.4.如下图连接AC 并取其中点Q,连接QN 和QM,所以可得∠QMF=∠F,∠QNM=∠DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F.经典难题(二)1.(1)延长AD 到F 连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证.3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ.由于22ADAC CD FD FD AB AE BE BG BG ,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE.又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ.4.过E,C,F 点辨别作AB 所在直线的高EG,CI,FH.可得PQ=2EGFH .由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI. 从而可得PQ=2AI BI =2AB,从而得证.经典难题(三)1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350从而可得B,G,D 在一条直线上,可得△AGB≌△CGB. 推出AE=AG=AC=GC,可得△AGC 为等边三角形.∠AGB=300,既得∠EAC=300,从而可得∠A EC=750. 又∠EFC=∠DFA=450+300=750.可证:CE=CF.2.连接BD 作CH⊥DE,可得四边形CGDH 是正方形.由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF.3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X .tan∠BAP=tan∠EPF=XY =ZY X Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,得到PA=PF ,得证 .经典难题(四)1.顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形.可得△PQC是直角三角形.所以∠APB=1500 .2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圆(一边所对两角相等).可得∠BAP=∠BEP=∠BCP,得证.3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE BC =ADAC,即AD•BC=BE•AC, ①又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB AC =DE DC ,即AB•CD=DE•AC, ②由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证.4.过D 作AQ⊥AE ,AG⊥CF ,由ADE S=2ABCD S =DFC S ,可得: 2AE PQ=2AE PQ,由AE=FC.可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理).经典难题(五)1.(1)顺时针旋转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP++PE+EF 要使最小只要AP,PE,EF 在一条直线上,即如下图:可得最小L= ;(2)过P 点作BC 的平行线交AB,AC 与点D,F.由于∠APD>∠ATP=∠ADP,推出AD>AP ①又BP+DP>BP ②和PF+FC>PC ③又DF=AF ④由①②③④可得:最大L< 2 ;由(1)和(2)既得:≤L<2 .2.顺时针旋转△BPC 600 ,可得△PBE 为等边三角形.既得PA+PB+PC=AP+PE+EF 要使最小只要AP,PE,EF 在一条直线上, 即如下图:可得最小PA+PB+PC=AF.既得213(1)42 = 23= 4232 2(31)2 = 2(31)2 622 .3.顺时针旋转△ABP 900 ,可得如下图:既得正方形边长2222(2)()22a 522a.4.在AB 上找一点F,使∠BCF=600 ,连接EF,DG,既得△BGC 为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF , 得到BE=CF , FG=GE .推出 : △FGE 为等边三角形 ,可得∠AFE=800 ,既得:∠DFG=400①又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400②推得:DF=DG ,得到:△DFE≌△DGE ,从而推得:∠FED=∠BED=300 .时间:二O二一年七月二十九日。
(完整版)初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长)【例题1】(2014 深圳某模拟)【例题2】(2014 深圳)答案:1.32;2.D如图,若∠B=∠C=∠DEF=α(0<α≤90)则一定有△BDE与△CEF相似。
十分好证(外角和什么一大堆),并且也很实用。
经常在矩形里出题。
【例题1】(2009 太原)【例题2】(2006 河南)【例题3】(原创)答案:1. 2或3-24或25 2.(5453-,) 【3】巧造旋转模型在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。
巧造旋转往往要有一定的等量关系和特殊角度,如下题:通过观察可得∠ABC=∠C=45°,AB=AC 。
我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。
那么就有EB ⊥BC ,而在RT △AED 中,DE ²=2AD ²(等腰直角三角形) 所以BE ²+BD ²=DE ²,即BD ²+CD ²=2AD ²是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 武汉)【例题2】【例题3】(2014 菏泽改编)答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型这是一个很基础的模型——什么样的结构会生成等腰三角形首先:平行+角平分线,如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。
其次:垂直+角平分这个不难理解,因为等腰三角形三线合一。
这种模型很常用,常常需要做辅助线(延长之类)【例题1】(原创)AB‖CD【例题2】(原创)【例题3】(改编)1.112.33.延长CD交AB于M,利用中位线,证明略【5】倍长中线法常考,选填大证明都可能会用。
(完整版)初中数学经典几何模型
梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。
三角形中有中线,延长中线等中线。 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。
1 评论
分享 举报
初中数学里的几何证明问题有一个顺口溜是什么呀?
分享 举报 浏览 507 次
4 个回答
热点话题 付费时代,你会花钱买会员,还是等待 75 秒广告?
最佳答案
2012-06-01
youlan1712
人人都说几何难,难就难在辅助线。辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。
(完整word版)初中数学经典几何模型(2)
初中数学经典几何模型(模型即套路)几何问题初中几何常见模型解析>模型一:手拉手模型「全等蜻论: a忆■ M出D( 2 "加存砒; 2 (冷r im*盖件:山呦血陀。
均勿等轄肖利上佈理”熔跖辻AOffD,②SER -9『*③0E下井£J£DQjACUC-AOZfD, ^LAEB^LAOB,严圧节甘"加A模型二:手拉手模型-相似(1)一般情况>条件* CD//AH 9将AOCQ旋转至右图位買A结论z右帥K I MOCD SAO肋G AQ4C hOBD :②延长M乞加于点儿咫它厶BEC ■厶BOAa条件* CDHAH. LAOB・90。
.将AOCD转至右图位賈»结论*右昭屮a AOCD^OAB «> AO/fC ^OSD t②延c交M)于点卜•必百厶BEC ■厶BOA、邑.如•如■斷厶os、,、③"OC OA 1 ④ BD 丄 AC t⑤连接必有・4D *BC AB^ +CD ,計"皿如MT甸柚边形〉(2)特療情况A 模型三:对角互补模型乍垂色..S^pCDV/aACEV.②过点(lV cf 丄•加上图(右)•证明AODC ・ZW ・EC\ » ^LDCE 的•边交的延{线亍点〃时:A以上二牛结论* QXQ (T 不支八?)OE-OD =込OC *比结论»证明提示:证明方法与館一种情况町自行钦试.a 条件:①厶4OB=2Z2)CE J20°Y②OC 平分3OB、“+ Sy护■ —^oc2A 结论,①CD.CE,②OD^()E^(X\③(m如E 4 a证明提示】①可善考“金簣住・90"证法r②如图:^L OK tik 点八ft()1 =(fC. uh明AOC'/)茅边一伤形.A 姿厶DCE的一边交.40的运长线丁点D时(如I图右):禺<:①_____________________________________② __________________________________ :③ __________________________________ :可安舟匕述第②和方法进行证明.OC^.sinct • cosa&OC£t②CD - CE.o请思考初始条件的变化对模型的彩响・a 结论,①°C平分厶4OB、②OD + OE ■ 2OC• cosa :③^(MI *九⑷+ ” 半乙DCE的_边交*O的延长线丁点Z)时(如右I:图〉:尿结论变成'①_____________________________________ 3②____________________________________ :③____________________________________ :iHn第②种方法进BMh•tan cia对角互补模覇总结,①常见四边尬对WiH补X辻总两点:四点人圆及盘用二用形斜边中线:小必条件••角T分线• S “刈边柑咎・的区别:③两种京見的他妙线作法:"I E卜附F°C半分乙”5时・乙CQE ■乙CEQ・乙C5 ■乙CO祁等是如何狰导能?A模型四:角含半角模型9CT<1>角含半危樓盘90・1a条件:①正力形肋CD:②LEAF - 45c:a结论「I EF・DF*BE-“W的儿任为1!方电*〃CQj&长的一半:也可以这样:a i d•力形 4BCD、空 EF・DF*BEa 结论,LEAF - 45°(2)焙含半角模舉90・-2a他论?EF・DF・BEA舗助世如下田所示,<3)拾含半加帳型90・7a 乞件;①RTMRC、②Z/W.457a 结论:«O? 4- CE2 - DE2方厶OIE左怖対AJBC外祁时.结论BD'D轴助线:.IB//CD.有中点AACDMH K F\f . Mjit 代小〃JXAMF . 4U 也it蓦護AEVAT.从如現过构进8字仝寻线廉鉞童及位鼻关系,角的大•卜转化a模型六:相似三角形360・旋转模型(1)相似三箱影(等腰直角)360-緞转棋炉倍长中釵法址来"F列点G・ZFG-DF ■违M 1(;• M; . BD uL 明\HlXi为等用文**:WJ»A: i£« “UD.MCG(1)相似三角形(等8?豆角)360・锲转楔型补全法a条件,QMDE、MX旳为鸽世口角二角形*②EFYF; a 结论:Q DF • BF:② DF丄BFa条件半:行四边形人BCD;②AM = DM :④CE丄,4D. a 经论:厶 EMD■ 3Z.A/E-4a条件「MDE .MHC均为构it衿援直角MEG ■ Xl/rc辅射线忠路:将M与BF转化列CG与Eli» 条件:hOABs'ODC ; s LOAB^LODC^。
初中数学九大几何模型
D O
C
E
B
A C
O D
EB
.
.
对角互补模型总结:
①常见初始条件:四边形对角互补,注意两点:四点共圆有直角三角形斜边中
线;
②初始条件“角平分线”与“两边相等”的区别; A
③注意 OC 平分∠AOB 时,
C
∠CDE=∠CED=∠COA=∠COB 如何引导?
D
O
EB
四、模型四:角含半角模型 90°
(1)角含半角模型 90°---1
C
B
A
O
P
【条件】:①Rt△OBC,∠OBC=30°; ②OC=2;③OA=1;④点 P 为 BC 上动点(可与端点重合); ⑤△OBC 绕点 O 旋转 【结论】:PA 最大值为 OA+OB=1 2 3 ;PA 的最小值为 1 OB OA 3 1
2 如下图,圆的最小半径为 O 到 BC 垂线段长。
【结论】:①OC 平分∠AOB;②OD+OE=2OC·cosɑ;
E
FB
③ S△DCE S△OCD S△OCE OC2 sin α cos α
※当∠DCE 的一边交 AO 的延长线于 D 时(如右下图):
原结论变成:①
;
②
;
③
。
可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。
∴△AHE∽△ADC,∴△AHE 为等腰直角三角形
D H
F
G
E
C
模型五:倍长中线类模型
A
D
A
(1)倍长中线类模型---1
F
【条件】:①矩形 ABCD;②BD=BE;
③DF=EF; 【结论】:AF⊥CF
初中数学几何模型汇总
初中数学几何模型汇总前言几何是数学中的一个重要分支,它研究空间、形状和大小等数学对象的性质和关系。
初中阶段是数学知识的基础阶段,对于几何的学习也是初步了解和探索的阶段。
在初中数学教学中,几何模型是培养学生几何直观理解能力的重要工具。
本文将对初中数学中常用的几何模型进行汇总,以帮助学生更好地掌握几何知识。
平面几何模型直线、线段和射线直线是平面上的一条无限延伸的轨迹,没有起点和终点。
线段是直线上的一部分,有明确的起点和终点。
射线是直线上一个起点和一个方向。
角角是由两条射线共享一个起点形成的形状,可以用度数、弧度或两者来度量。
常见的角有锐角、直角、钝角和平角。
三角形三角形是由三条线段连接而成的闭合图形,其中每条线段称为三角形的边。
三角形的分类可以根据边长和角度来区分,如等边三角形、等腰三角形、直角三角形等。
四边形四边形是由四条线段连接而成的闭合图形,其中相邻两边之间的夹角都是直角的四边形称为矩形,具有相等边和相等夹角的矩形称为正方形。
圆圆是平面上一组离中心距离相等的点的集合。
圆由中心和半径确定,半径是中心到圆上任一点的距离。
空间几何模型空间直线和射线空间直线是三维空间中的一条无限延伸的轨迹,没有起点和终点。
空间射线是一条起点确定、方向唯一的直线。
空间角空间角是由两条射线共享一个起点构成的形状,可以用度数、弧度或两者来度量。
空间几何体空间几何体是由点、线、面组成的立体物体。
常见的空间几何体包括球体、长方体、正方体等。
数学建模中的几何模型几何模型在数学建模中也起着重要的作用。
通过建立几何模型,可以更好地描述和解决实际问题。
几何配置问题几何配置问题是指在几何模型中确定各个点、线、面的位置和相互关系的问题。
通过建立合适的几何模型,可以对各种几何配置问题进行分析和求解。
几何优化问题几何优化问题是指在满足一定几何约束条件的前提下,通过优化方法确定最优的几何配置。
几何优化问题在工程设计、产品设计等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最全:初中数学几何模型
几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~
全等变换
平移:平行等线段(平行四边形)
对称:角平分线或垂直或半角
旋转:相邻等线段绕公共顶点旋转
对称全等模型
说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型
说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型
半角:有一个角含1/2角及相邻线段
自旋转:有一对相邻等线段,需要构造旋转全等
共旋转:有两对相邻等线段,直接寻找旋转全等
中点旋转:倍长中点相关线段转换成旋转全等问题
旋转半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型
构造方法:
遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角
遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称
共旋转模型
说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形
说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型
对称最值(两点间线段最短)
对称最值(点到直线垂线段最短)
说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
旋转最值(共线有最值)
说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
剪拼模型
三角形→四边形
四边形→四边形
说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。
矩形→正方形
说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变
正方形+等腰直角三角形→正方形
面积等分
旋转相似模型
说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。
推广:两个任意相似三角形旋转成一定角度,成旋转相似。
第三边所成夹角符合旋转“8”字的规律。
相似模型
说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来构造相似三角形的作用。
说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多。
(2)内外角平分线定理到射影定理的演变,注意之间的相同与不同之处。
另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论。
说明:相似证明中最常用的辅助线是做平行,根据题目的条件或者结论的比值来做相应的平行线。
一、中点模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1、直接连接中点;
2、连对角线取中点再相连
【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE.(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;
(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;
(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.
二、角平分线模型
【模型1】构造轴对称
【模型2】角平分线遇平行构造等腰三角形
【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF 的长为.
三、手拉手模型
【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.
四、邻边相等的对角互补模型
【例】如图,矩形ABCD中,AB=6,AD=5,G为CD中点,DE=DG,FG⊥BE于F,则DF为.
五、半角模型
六、一线三角模型
七、弦图模型
八、最短路径模型
【两点之间线段最短】1、将军饮马
2、费马点
【垂线段最短】
【两边之差小于第三边】。