高二数学期末考试试题
江苏省2024届高二上数学期末统考试题含解析

江苏省2024届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,半焦距为c ,过点2F 作一条渐近线的垂线,垂足为P ,若12PF F △的面积为22c ,则该双曲线的离心率为()A.3B.2D.2.如图,样本A 和B 分别取自两个不同的总体,它们的平均数分别为A x 和B x ,标准差分别为A S 和B S ,则()A .A B A B x x S S >>B.,A B A Bx x S S <>C.A B A Bx x S S ><D.,A B A Bx x S S <<3.变量x ,y 满足约束条件10,1,1,x y y x -+⎧⎪⎨⎪-⎩则65z x y =+的最小值为()A.6- B.8-C.1- D.54.函数()210x y x x+=>的值域为()A.[1,)+∞ B.(1,)+∞C.[2,)+∞ D.(2,)+∞5.已知等差数列{}n a 的公差0d <,若3721a a =,2810a a +=,则该数列的前n 项和n S 的最大值为()A.30B.35C.40D.456.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为()A.120B.84C.56D.287.设x ∈R ,则x <3是0<x <3的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.某一电子集成块有三个元件a ,b ,c 并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为45,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A.1231 B.48125C.1625 D.161259.已知O 为坐标原点,(1,2,2),(2,1,4),(1,1,4)OA OB OC =-=-= ,点P 是OC 上一点,则当PA PB ⋅ 取得最小值时,点P 的坐标为()A.114,,333⎛⎫ ⎪⎝⎭ B.11,,222⎛⎫ ⎪⎝⎭C.11,,144⎛⎫ ⎪⎝⎭ D.()2,2,810.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合{1,2,3}中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1B.2C.3D.411.下面四个条件中,使a b >成立的充分而不必要的条件是A.1a b +> B.1a b ->C.22a b > D.33a b >12.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,1OO ,2OO ,3OO ,4OO 分别是大星中心点与四颗小星中心点的联结线,16α≈o ,则第三颗小星的一条边AB 所在直线的倾斜角约为()A.0B.1C.2D.3 二、填空题:本题共4小题,每小题5分,共20分。
高二数学期末试卷带答案

高二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知向量,满足,与的夹角为,则的值为( )A .1B .C .D .2.设为正数,,,,则三数( )A .至少有一个不大于B .都小于C .都大于D .至少有一个不小于3.如下图,在平行四边形ABCD 中,AD=2AB=2,∠BAC="90°." 将△ACD 沿AC 折起,使得BD=. 在三棱锥D-ABC 的四个面中,下列关于垂直关系的叙述错误的是( )A .面ABD ⊥面BCDB .面ABD ⊥面ACDC .面ABC ⊥面ACD D .面ABC ⊥面BCD4.利用独立性检验来考察两个分类变量X 和Y 是否有关系时,通过查阅下表来确定“X 与Y 有关系”的可信程度.如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为( ) A.25% B.75%C.2.5% D.97.5%5.A.{1,2,3,4} B.{1,2} C.{1,3} D.{2,4}6.已知函数,在下列区间中,包含零点的区间是()A. B. C. D.7.下列语句不是全称命题的是()A.任何一个实数乘以零都等于零B.自然数都是正整数C.高二(一)班绝大多数同学是团员D.每一个向量都有大小8.集合的子集的个数是()A.1 B.2 C.3 D.49.如图是函数的部分图象,则函数的零点所在的区间是()A. B. C. D.10.抛物线截直线所得的弦长等于A. B. C. D.1511.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0) B.(2, 0) C.(3, 0) D.(-1, 0)12.某五所大学进行自主招生,同时向一所重点中学的五位学习成绩优秀、并在某些方面有特长的学生发出提前录取通知单.若这五名学生都乐意进这五所大学中的任意一所就读,则仅有两名学生录取到同一所大学(其余三人在其他学校各选一所不同大学)的概率是()A. B. C. D.13.双曲线的渐近线方程是()A. B. C. D.14.已知抛物线的焦点弦AB的两端点为,则关系式的值一定等于()A. B. C. D.15.不等式的解集是()A. B. C. D.16.已知命题p:3≥3,q:3>4,则下列判断正确的是( )A.p q为真,p q为真,p为假B.p q为真,p q为假,p为真C.p q为假,p q为假,p为假D.p q为真,p q为假,p为假17.已知几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.18.设z=,,则下列命题中正确的是()A.的对应点在第一象限B.的对应点在第四象限C.不是纯虚数D.是虚数19.若集合,集合,则“”是“”成立的(▲)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件20.直线x=1的倾斜角和斜率是()A.45°,1B.,不存在C.135°, -1D.,不存在二、填空题21.已知复数满足等式(是虚数单位).则的最小值是__________.22.命题:“对任意实数m ,”的否定是23..已知极限存在,则实数的取值范围是____________.24.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 . 25.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.26.已知集合,且下列三个关系:•‚ƒ有且只有一个正确,则 .27.已知函数在区间上是减函数,则实数a 的取值范围是 . 28.若随机变量,且,,则当__________.(用数字作答)29.对任意的实数,若恒成立,则m 的取值范围为 .30.在报名的5名男生和4名女生中,选取5人参加志愿者服务,要求男生、女生都有,则不同的选取方法的种数为 (结果用数值表示).三、解答题31.如图:区域A 是正方形OABC (含边界),区域B 是三角形ABC (含边界)。
东北师范大学附属中学2023-2024学年高二上学期期末考试数学试题(解析版)

注意事项:1.答题前,考生须将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效.4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀. 一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项东北师范大学附属中学2023-2024学年高二上学期期末考试数学试题是符合题目要求的.1. 直线1:10l ax y ++=与直线()2:2320l x a y +−+=平行,则a 的值为( )A. 2−B. 1−C. 1D. 2【答案】D 【解析】【分析】先根据12l l //求解出a 的值,然后再进行检验是否重合,由此求解出a 的值.【详解】因为12l l //,所以()3120a a ×−−×=,解得1a =或2a =, 当1a =时,1:10l x y ++=,2:2220l x y ++=,此时12,l l 重合,舍去; 当2a =时,1:210l x y ++=,2:220l x y ++=,此时12l l //满足, 故选:D.2. 据典籍《周礼·春官》记载,“宫、商、角、徵、羽”这五音是中国古乐的基本音阶,成语“五音不全”就是指此五音.如果把这五个音阶全用上,排成一个五音阶音序,要求“宫”不为末音节,“羽”不为首音节,可以排成不同音序的种数是( ) A. 36 B. 60C. 72D. 78【答案】D 【解析】【分析】将“宫”看为特殊元素,分类讨论:“宫”为首音节、“宫”不为首音节,由此求解出总的排法数. 【详解】①若“宫”为首音节,可排成的音序有44A 24=种,②若“宫”不为首音节,从“宫”“羽”之外的三个音阶中选一个作为首音节有13C 种选法, 再安排“宫”音阶有13C 种排法,剩余三个音阶可以全排列有33A 种排法,所以②一共有113333C C A 54××=种排法, 由分类加法计数原理可知,一共有245478+=种排法, 故选:D.3. 已知点()5,0A ,点B 在圆22(1)4x y −+=上运动,则线段AB 的中点M 的轨迹方程是( ) A. 22680x y x +−+= B. 22650x y x +−+= C. 22680x y x +++= D. 22650x y x +++=【答案】A 【解析】【分析】设出,B M 的坐标,利用相关点法求解出M 的轨迹方程. 【详解】设()()00,,,B x y M x y ,由题意可知005202x x y y+ =+ = ,所以00252x x y y =− = , 又因为()220014x y −+=, 所以()()2225124x y −−+=, 化简可得22680x y x +−+=,所以M 的轨迹方程为22680x y x +−+=, 故选:A.4. 已知直线0ax y +=是双曲线2221(0)4x y a a −=>的一条渐近线,则该双曲线的半焦距为( )A.B.C.D.【答案】A【解析】【分析】根据双曲线的标准方程和渐近线方程求出a 值,求出半焦距,判断选项.【详解】由0ax y +=是双曲线22214x y a −=()0a >的一条渐近线,则2a a=,解得a =故222246c a b =+=+=,则c =故选:A5. 将4名志愿者分别安排到,,A B C 三个社区进行社会实践活动,要求每个社区至少安排一名志愿者,每名志愿者只能去一个社区,若志愿者甲必须安排到A 社区,不同的安排方法有( )种 A. 6 B. 9C. 12D. 36【答案】C 【解析】【分析】根据A 社区的志愿者人数进行分类讨论,然后由分类加法计数原理求解出结果. 【详解】①若A 社区仅有志愿者甲,则剩余3名志愿者需要分成2组并分配到,B C 社区,此时安排的方法数为:1232C A 6×=种; ②若A 社区还有另外一名志愿者,则先选出这名志愿者有13C 种方法, 再将剩余2名志愿者分配到,B C 社区有22A 种方法,根据分步乘法计数原理可知②的安排方法数为:1232C A 6×=种, 所以一共有6612+=种安排方法, 故选:C.6. 已知B 是椭圆2213x y +=的上顶点,点M 是椭圆上的任意一点,则MB 的最大值为( )A. 2B.C.D.92【答案】C 【解析】【分析】设出M 点坐标,利用坐标表示出MB 并进行化简,再根据椭圆的有界性结合二次函数的性质求解出MB 的最大值.【详解】设()00,M x y ,()0,1B ,且220013x y +=,所以MB =,又因为[]01,1y ∈−,所以当012y =−时取最大值,所以max MB = 故选:C.7. 一枚硬币掷三次,已知一次正面朝上,那么另外两次都是反面朝上的概率为( ) A.17B.37C.18D.38【答案】B 【解析】【分析】先分析试验的基本事件总数,然后考虑“有一次正面朝上”的基本事件数,再分析“另外两次都是反面朝上”的基本事件数,根据基本事件数的比值可求结果.(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反),共8个, 有正面朝上的基本事件有:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),共7个, 其中有两次都是反面朝上的基本事件有: (正反反),(反正反),(反反正),共3个, 故所求概率为37, 故选:B.8. 已知抛物线2:8E x y =,直线:360l ax y a +−−=,过抛物线的焦点F 作直线l 的垂线,垂足为P ,若点Q 是拋物线E 上的动点,则FQ PQ +的最小值为( )A. 3B. 4C.72D.172【答案】C 【解析】【分析】通过直线l 过定点A ()3,6,得到P 在以AF 为直径的圆上,将Q 到P 的距离转化为到圆心的距离,再结合抛物线的定义即可求出FQ PQ +的最小值.【详解】因为直线:360l ax y a +−−=,即()-360a x y +−=,过定点()3,6,记作点A , 因为FP l ⊥,垂足为P ,所以90FPA ∠=°,又()0,2F , 故点P 的轨迹为以FA 为直径的圆,半径1522rFA =,圆心为3,42,记作点B , 又因为Q 在抛物线2:8E x y =上,其准线为=2y −, 所以FQ 等于Q 到准线的距离,过点Q 做准线的垂线,垂足为R ,要使FQ PQ +取到最小,即RQ PQ +最小, 此时,,,P Q R 三点共线,且三点连线后直线PR 过圆心B ,如图所示,此时()min574222FQ PQBR r +=−=+−=. .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 3名男生和3名女生站成一排,则下列结论中正确的有( ) A. 3名男生必须相邻的排法有144种 B. 3名男生互不相邻的排法有72种 C. 甲在乙的左边的排法有360种 D. 甲、乙中间恰好有2人的排法有144种【答案】ACD 【解析】【分析】A :利用捆绑法分析;B :利用插空法分析;C :先考虑6人全排列,然后甲在乙的左边的排法数占一半,由此求解出结果;D :先选2人与甲乙捆绑在一起,然后再看成3个元素全排列. 【详解】对于A :将3名男生捆绑在一起看成一个元素,所以排法有3434A A 144×=种,故A 正确;对于B :将3名男生放入到3名女生形成的4个空位中,所以排法有3334A A 144×=种,故B 错误; 对于C :3名男生和3名女生全排列,排法有66A 720=种, 其中甲在乙的左边的排法占总数的12,所以有17203602×=种排法,故C 正确; 对于D :先选2人与甲乙一起看成一个元素,再将此一个元素与剩余2人全排列,所以有排法223423A A A 144××=种,故D 正确; 故选:ACD.10. 二项式61)x−的展开式中( ) A. 前三项的系数之和为22 B. 二项式系数最大的项是第4项 C. 常数项为15D. 所有项的系数之和为64 【答案】BC 【解析】【分析】首先写出二项式展开式的通项,选项A 中根据通项求前三项系数之和即可;选项B 中二项式系数6C k(0,1,2,,6)k =…中最大的是36C ;选项C ,常数项满足通项中x 的指数为0,可得2k =;选项D 中将1x =代入即可.【详解】二项式61)x−展开式的通项为:()()36321661C 1C 0,1,2,,6kk kk kkk T x k x −−+ =⋅−=−=…; 对于选项A ,前三项的系数之和为:()()()0120126661C 1C 1C 10−+−+−=,A 错误;对于选项B ,二项式系数6C k (0,1,2,,6)k =…中最大的是36C ,恰好是第4项,B 正确;对于选项C ,常数项时,通项公式中满足3302k −=,得2k =,即3T =()22061C 15x −=,C 正确; 对于选项D ,将1x =代入,可得所有项的系数之和,结果为0,D 错误; 故选:BC.11. 盒子中有12个乒乓球,其中8个白球4个黄球,白球中有6个正品2个次品,黄球中有3个正品1个次品.依次不放回取出两个球,记事件=i A “第i 次取球,取到白球”,事件i B =“第i 次取球,取到正品”,1,2i =.则下列结论正确的是( )A. ()1123P A B =B. ()212P B =C. ()2113P A B = D. ()2134P B A =【答案】AD 【解析】【分析】利用古典概型的概率公式及排列组合数,求出()1P B ,()11P A B ,()2P B ,()21P A B ,()1P A ,()12P A B ,再利用条件概率公式即可判断各个选项.【详解】对A ,()193==124P B ,()1161==122P A B ,所以()()()111112==3P A B P A B P B ,故A 正确; 对B ,事件2B =“第2次取球,取到正品”,()2119392212A A A 3A 4P B +==,故B 错误; 对C ,事件21A B =“第1次取球,取到正品且第2次取球,取到白球”,包括(正白,正白),(正白,次白),(正黄,正白),(正黄,次白),共有65+62+36+32=66××××种情况,()21212661=A 2P A B =,故C 错误; 对D ,事件12A B =“第1次取球,取到白球且第2次取球,取到正品”,包括(白正,白正),(白正,黄正),(白次,白正),(白次,黄正),共有65+63+26+23=66××××种情况,()12212661=A 2P A B =,又因为()182==123P A ,()()()122113==4P A B P B A P A ,故D 正确; 故选:AD.12. 设12,F F 分别是双曲线22214x y b−=的左右焦点,过2F 的直线与双曲线的右支交于,A B 两点,12AF F △的内心为I ,则下列结论正确的是( ) A. 若1ABFB. 若直线OA 交双曲线的左支于点D ,则1//F D ABC. 若1,F H AI H ⊥为垂足,则2OH =D. 12AF F △的内心I 一定在直线4x =上 【答案】ABC 【解析】【分析】A :利用等边三角形性质以及双曲线定义得到,a c 关系式,则离心率可知;B :利用双曲线的对称性以及三角形的全等关系进行证明;C :根据角平分线的性质结合双曲线的定义求解出OH ;D :利用切线性质以及双曲线的定义进行求解.【详解】对于A :若1ABF 为正三角形,则AB x ⊥轴,由22221x c x y ab = −= 得2x cb y a = =± ,所以222b AF BF a ==, 由等边三角形性质可知:21222b AF AF a==,所以2122b AF AF a a −==, 所以22222a b c a ==−,所以2223c e a==,所以e =A 正确; 对于B :由双曲线的对称性可知OA OD =,如下图,又因为1212,OF OF DOF AOF =∠=∠,所以1DOF 与2AOF △全等, 所以12ODF OAF ∠=∠,所以1//F D AB ,故B 正确; 对于C :延长1F H 交AB 延长线于G ,如下图所示,由角平分线的性质可知1F AH GAH ∠=∠,且190,AHF AHG AH AH °∠===,所以1AHF 与AHG H GH =,所以H 为1F G 中点, 又因为O 为12F F 中点,所以212212222AG AF AF AF OH GF a −−=====,故C 正确; 对于D :设三个切点为,,M N P ,连接,,MI NI PI ,如下图,由切线性质可知:1122,,AM AN F M F P F PF N ===, 设OP x =,因为12121224AF AF F M AM AN F N F P F P a −=+−−=−==,所以()4c x c x +−−=,所以2x =, 所以12AF F △的内心I 一定在直线2x =上,故D 错误; 故选:ABC.【点睛】关键点点睛:本题考查双曲线性质的综合运用,涉及离心率、双曲线的对称性、焦点三角形的内切圆相关问题,对学生的分析与计算能力要求较高,难度较大.其中CD 选项在分析时,不仅要考虑内切圆的性质,同时需要考虑双曲线的定义,二者结合解决问题.三、填空题:本题共4小题,每小题5分,共20分.13. 某人忘记了他在一个网络平台的账户密码,而平台只允许试错三次,如果三次都试错,则账户就会锁定,无法继续试验.假设该用户每次能试中的概率为0.1,记试验的次数为X ,则()3P X ==______.【答案】0.81##81100【解析】【分析】试验次数为3X =,表示该用户前两次均试错,再利用相互独立事件的概率公式进行求解即可.【详解】试验的次数为3X =,表示该用户前两次均试错,所以()30.90.9=0.81P X ==×.故答案为:0.81.14. 已知抛物线2:8E y x =,焦点为,F A 在抛物线上,B 在y 轴上,且2=FA AB ,则AF =______. 【答案】83【解析】【分析】根据抛物线方程可知焦点坐标,根据向量共线可求A x ,结合焦半径公式可求AF . 【详解】因为2:8E y x =,所以()2,0F ,因为2=FA AB ,所以()22A B A x x x −=−, 因为B 在y 轴上,所以0B x =,所以23A x =, 所以282233A p AF x =+=+=, 故答案为:83. 的15. 某商店成箱出售玻璃杯,每箱装有10只.假设在各箱中有0,1,2只残次品的概率依次为0.6,0.25,0.15,顾客随机取出一箱,并从中取出4只查看,若无残次品,则买下该箱玻璃杯,否则退回.则顾客买下该箱玻璃杯的概率为______. 【答案】45##0.8 【解析】【分析】顾客买下这箱玻璃杯有3种情况:该箱中无残次品、该箱中有1只残次品、该箱中有2只残次品,然后由互斥事件的概率公式和全概率公式求解出结果.【详解】记事件B 为顾客买下该箱玻璃杯,事件i A 为取出的该箱中有i 只残次品,0,1,2i =,所以()()()0123130.6,0.25,0.155420P A P A P A ======, 且()()()4498012441010C C 311,,C 5C 3P B A P B A P B A =====, 由全概率公式可得:()()()()()()()001122P B P A P B A P A P B A P A P B A =++31331415452035=×+×+×=, 故答案为:45.16. 已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左右焦点,B 为椭圆C 的下顶点,直线1BF 交椭圆C 于另一点P ,且260PF B °∠=,则椭圆C 的离心率为______.##【解析】【分析】利用余弦定理先求解出1PF ,然后再利用相似关系求解出P 点坐标,将坐标代入椭圆方程可求结果.【详解】设()10PF x x =>,由题意可知12BF BF a ==, 所以2,2PB a x PF a x =+=−, 在2PBF 中由余弦定理可知:22222222cos 60PB PF BF PF BF °+−××,化简可得252ax a =,所以25x a =, 过P 作PQ x ⊥轴交于Q 点,如下图,易知1PQF △∽1BOF ,所以111125PQ QF PF OBOF BF ===, 所以122,55PQ b QF c ==,所以72,55P c b−, 将P 代入椭圆方程可得222249412525c b a b +=, 所以22237c e a ==,所以e =,. 四、解答题:本题共6小题,共70分,解答应写出文字说明、解答过程或演算步骤.17. 已知(2)n x +展开式中的第三项和第四项的二项式系数相等,且2012(2)+=++++ n n n x a a x a x a x .(1)求01a a +的值;(2)求0123(1)1112482n n na a a a a −−+−++ 的值. 【答案】(1)112 (2)24332【解析】【分析】(1)先根据二项式系数的性质求出n ,进而可求出答案; (2)令12x =−,即可得解 【小问1详解】因为(2)n x +展开式中的第三项和第四项的二项式系数相等, 所以23C C n n =,所以5n =, 则5(2)(2)n x x +=+,所以05145501C 2C 2112a a =⋅+⋅=+; 【小问2详解】 令12x =−, 则()501235522(1)11124324823n a a a a a x −−+−+++== , 即0123(1)111243248232n n na a a a a −−+−++= . 18. ABC 的顶点()()1,0,2,0,A B ABC −△的垂心(三条高交点)为()1,1H . (1)求顶点C 的坐标; (2)求ABC 的外接圆方程. 【答案】(1)()1,2(2)22115222x y −+−=【解析】【分析】(1)设(),C m n ,根据,BC AH AC BH ⊥⊥,结合斜率公式即可得解;.(2)设ABC 的外接圆方程为()()()2220x a y b r r −+−=>,利用待定系数法求出2,,a b r 即可. 【小问1详解】 设(),C m n ,由题意得,BC AH AC BH ⊥⊥,1,12AH BH k k ==−, 所以112211BC AH AC BHn k k m n k k m=⋅=− − =−=− +,解得12m n = = ,所以顶点C 的坐标为()1,2; 【小问2详解】设ABC 的外接圆方程为()()()2220x a y b r r −+−=>,则()()()()()()2222222221212a b r a b r a b r −−+−=−+−=−+−=,解得2121252a b r= = =, 所以ABC 的外接圆方程为22115222x y −+−=. 19. 如图,在四棱锥P ABCD −中,PA ⊥平面ABCD ,四边形ABCD 是矩形,1,2AB AP AD ==E ,F 分别是,AP BC 的中点.(1)求证://EF 平面PCD ;(2)求平面CDE 与平面FDE 夹角的余弦值.【答案】(1)证明过程见详解; (2【解析】【分析】(1)取PB 的中点G ,由面面平行的判定定理证明平面//EFG 平面PCD ,再由面面平行的性质定理可得//EF 平面PCD ;(2)由,,AB AD AP 两两垂直建立空间直角坐标系,分别求出平面CDE 与平面FDE 的法向量,m n,设平面CDE 与平面FDE 夹角为θ,由公式cos cos ,m nm n m nθ⋅==⋅即可得出结果. 【小问1详解】取PB 的中点G ,连结,EG FG ,因为E ,F 分别是,AP BC 的中点,所以//EG AB ,//FG PC , 又因为//AB CD ,所以//EG CD ,又因为EG ⊄平面PCD ,CD ⊂平面PCD ,所以//EG 平面PCD ; 同理可得//FG 平面PCD ,又因为平,,EG FG G EG FG ∩=面EFG ,所以平面//EFG 平面PCD , 又因为EF ⊂平面EFG ,所以//EF 平面PCD .,【小问2详解】因为PA ⊥平面ABCD ,四边形ABCD 是矩形,所以,,AB AD AP 两两垂直, 以,,AB AD AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设4=AD ,()2,4,0C ,()0,4,0D ,()0,0,1E ,()2,2,0F , ()2,0,0CD =− ,()0,4,1DE=− ,()2,2,0DF=−设平面CDE 的法向量(),,m x y z = ,所以2040CD m x DE m y z ⋅=−= ⋅=−+=, 取0,1,4x y z ===,所以()0,1,4m =; 设平面FDE 的法向量(),,n a b c = ,所以22040DF n a b DE n b c ⋅− ⋅=−+=, 取1,1,4a b c ===,所以()1,1,4n =, 设平面CDE 与平面FDE 夹角为θ,cos cos ,m n m n m nθ⋅∴===⋅, 故平面CDE 与平面FDE20. 已知抛物线2:2(0)C y px p =>,点()1,1M −到焦点F直线l 与抛物线C 交于,A B 两点,设直线,MA MB 斜率分别为12,k k . (1)求p ;(2)若121k k +=−,证明直线l 过定点,并求出满足条件的定点坐标. 【答案】(1)2p =(2)证明见解析,定点坐标()1,0 【解析】【分析】(1)根据两点间距离公式表示出MF ,由此可求p 的值;(2)根据直线l 的斜率是否存在进行分类讨论,斜率存在时,通过联立直线与抛物线得到横坐标的韦达定理形式,然后化简条件等式,得到,k m 的关系式即可求解出所过定点坐标,斜率不存在时直接分析即可. 【小问1详解】 因为,02p F,()1,1M −,所以MF =,解得2p =;【小问2详解】当直线l 的斜率存在时,由题意可知直线l 的斜率不为0,设:l y kx m =+,()()1122,,,A x y B x y , 联立24y kx m y x =+ =可得()222240k x km x m +−+=, 且()2222440km k m ∆=−−>,即1km <,所以212122242,km m x x x x k k−+==, 所以1212121212111111111y y kx m kx m k k x x x x −−+−+−+=+=+=−++++, 所以1212121111211111kx k m k kx k m k m k m kk x x x x ++−−++−−−−−−+=++=−++++,所以()()()()()12122111120k x x m k x x ++++−−++=, 所以()()()()121212211120k x x x x m k x x +++++−−++=, 代入韦达定理化简可得:()()40m k m k −++=, 当0m k +=时,:l y kx k =−,即():1l y k x =−过定点()1,0, 当40m k −+=时,():14l y k x =+−过定点()1,4−−; 当直线l 的斜率不存在时,设:l x n =,由24x n y x == 得x n y = =±,所以121k k +=−,解得1n =,所以:1l x =,此时l 过点()1,0;综上,由l 的斜率存在和斜率不存在的两种情况可知,l 过定点()1,0.【点睛】方法点睛:圆锥曲线中过定点问题的两种求解方法:(1)若设直线方程为y kx m =+或x ky m =+,则只需要将已知条件通过坐标运算转化为,m k 之间的线性关系,再用m 替换k 或用k 替换m 代入直线方程,则定点坐标可求;(2)若不假设直线的方程,则需要将直线所对应线段的两个端点的坐标表示出来,然后选择合适的直线方程形式表示出直线方程,由此确定出定点坐标.21. 某商场为了促销规定顾客购买满500元商品即可抽奖,最多有3次抽奖机会,每次抽中,可依次获得10元,30元,50元奖金,若没有抽中,则停止抽奖.顾客每次轴中后,可以选择带走所有奖金,结束抽奖;也可选择继续抽奖,若没有抽中,结束抽奖.小李购买了500元商品并参与了抽奖活动,己知他每次抽中的概率依次为211,,323,如果第一次抽中选择继续抽奖的概率为23,第二次抽中选择继续抽奖的概率为14,且每次是否抽中互不影响. (1)求小李第一次抽中且所得奖金归零的概率;(2)设小李所得奖金总数为随机变量X ,求X 的分布列. 【答案】(1)727(2)答案见解析 【解析】【分析】(1)设出事件,分两种情况讨论:第一次抽中但第二次没抽中,前两次抽中但第三次没抽中,结合独立事件和互斥事件的概率计算公式求解出结果;(2)先分析X 的可能取值,然后计算出对应概率,由此可求X 的分布列. 【小问1详解】记小李第i 次抽中为事件()1,2,3i A i =,则有()()()123211,,323P A P A P A ===,且123,,A A A 两两互相独立,记小李第一次抽中但奖金归零为事件A , 则()()()12123221221117113323324327P A P A A P A A A =+=××−+××××−= ; 【小问2详解】由题意可知X 的可能取值为:0,10,40,90,()()21601327P X P A ==+−= ,()222101339P X ==×−= ,()2211140133246P X ==×××−= , ()221111903324354P X ==××××=, 所以X 的分布列为:22.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b −=>>()2,2.(1)求双曲线C 的标准方程;(2)圆224x y +=的切线l 与双曲线C 相交于,A B 两点. (ⅰ)证明:OA OB ⊥; (ⅱ)求OAB 面积的最小值.【答案】(1)22124x y −=(2)(ⅰ)证明过程见解析;(ⅱ)4 【解析】【分析】(1)待定系数法求解双曲线方程;(2)(ⅰ)考虑切线l 斜率为0和不为0两种情况,设出切线方程x my t =+,联立双曲线方程,得到两根之和,两根之积,求出0OA OB ⋅=得到垂直关系;(ⅱ)在(ⅰ)的基础上,求出当切线l 的斜率为0时的三角形面积,再得到切线l 的斜率不为0时OAB 面积表达式,求出其取值范围,得到面积的最小值. 【小问1详解】由题意得ca =()2,2代入双曲线中得22441a b−=, 又222c a b =+,解得222,4a b ==, 故双曲线C 的标准方程为22124x y −=;【小问2详解】(ⅰ)当切线l 的斜率为0时,方程为2y =±,不妨设2y =,此时222124x −=,解得2x =±,不妨设()()2,2,2,2A B −,则()()2,22,2440OA OB ⋅=−⋅=−+= ,所以OA OB ⊥;当切线斜率不为0时,设为x t =,2=,故2244t m =+,联立x my t =+与22124x y −=得,()222214240m y mty t −++−=, 则()()22222210Δ16424210m m t t m −≠=−−−> ,又2244t m =+,解得m ≠ 设()()1122,,,A x y B x y ,则2121222424,2121mt t y y y y m m −−+==−−, 故()()()2212121212x x my t my t m y y mt y y t =++=+++,故()()22121212121x x y y y O O m y m B t t A y y ⋅=+=++++的()222222222222222222442424421212121t m t t m t m m t m t t m t m m m −−+−−+−=+−+=−−− 22244021t m m −−=−, 故OA OB ⊥;(ⅱ)当切线l 斜率为0时,OAB的面积为11422OA OB =×=, 当切线斜率不为0时,AB=, 因为2244t m =+,点O 到切线AB 的距离为2,故122OAB S AB =×= 当2210m −>时,令2210m t −=>,则212t m +=,故OAB S = , 因为0t >,所以4OAB S => , 同理,当0t >时,4OAB S >,综上,OAB 面积的最小值为4. 的【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.。
高二数学期末试卷带答案

高二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.用数学归纳法证明(且)由到时,不等式左边应添加的项是( ) A .B .C .D .2.若,,则( )A .B .C .D .3.某产品的广告费用与销售额的统计数据如下表: 广告费用(万元) 4 2 3 5 销售额(万元)根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元是销售额为( )A.6.6万元B. 65.5万元C. 67.7万元D. 72.0万元 4.(2015秋•辽宁校级期末)给出下列命题:①若给定命题p :∃x ∈R ,使得x 2+x ﹣1<0,则¬p :∀x ∈R ,均有x 2+x ﹣1≥0;②若p ∧q 为假命题,则p ,q 均为假命题;③命题“若x 2﹣3x+2=0,则x=2”的否命题为“若 x 2﹣3x+2=0,则x≠2,其中正确的命题序号是()A.① B.①② C.①③ D.②③5.若命题“”为假,且“”为假,则()A.“”为假B.假C.真D.不能判断的真假6.下列说法中,正确的是()A.简单随机抽样每个个体被抽到的机会不一样,与先后有关B.由生物学知道生男生女的概率均为,一对夫妇生两个孩子,则一定为一男一女C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.老师在某班学号为1~50的50名学生中依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是系统抽样7.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2 B.3 C.6 D.88.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数是一个随机变量,其分布列为,则的值为()A. B. C. D.9.有如下几个结论:①相关指数越大,说明残差平方和越小,模型的拟合效果越好;②回归直线方程:一定过样本点的中心:(;③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适;④在独立性检验中,若公式中的的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有()个.A.1 B.3 C.2 D.410.已知是椭圆上一定点,是椭圆两个焦点,若,,则椭圆离心率为()A. B. C. D.11.设,“1,,16为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件12.如右图所示,正三棱锥(顶点在底面的射影是底面正三角形的中心)中,分别是的中点,为上任意一点,则直线与所成的角的大小是()A. B. C. D.随点的变化而变化。
2024学年山东省枣庄市第三中学高二上数学期末学业质量监测试题含解析

可得 a8 a16 16, a8a16 14 ,根据等比数列的性质,可得 a6a18 a4a20 a8a16 14
则 a6a18 a8
a4a20 a16
14 a8
14 a16
14(a8 a16 ) a8a16
16 .
故选:B.
10、B
【解题分析】根据正弦定理直接计算可得答案.
a2 b2
∴ x2 a2b2 c2 , a2 b2
可得 b2 ac , c2 ac a2 0 ,即 e2 e 1 0 ,又 e 1
解得 5 1 e 1. 2
故选:C. 8、B 【解题分析】运用不等式的性质及举反例的方法可求解.
详解】对于 A,如 a 5,b 10 ,满足条件,但 b2 a2 不成立,故 A 不正确;
A.54
B.71
C.81
D.80
4.焦点坐标为(1,0) 抛物线的标准方程是( )
A.y2=-4x
B.y2=4x
的 C.x2=-4y
D.x2=4y
5.已知 F1 ,F2 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且 PF1 PF2 ,线段 PF1 的垂直平分线过 F2 ,
若椭圆的离心率为 e1 ,双曲线的离心率为 e2 ,则
x y 4
15.若
x,
y
满足约束条件
x
y
2
,则
z
2x
y
的最小值为________.
y 3
16.已知函数 f(x)=ex-2x+a 有零点,则 a 的取值范围是___________ 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。
17.(12
分)已知椭圆 C :
安徽省合肥市2023-2024学年高二上学期期末考试数学试题含答案

2023-2024学年第一学期高二年级期末检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为150分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在数列{}n a 中,11111n n a a a +==+,,则4a =()A.2B.32 C.53D.85【答案】C 【解析】【分析】由数列的递推公式,依次求出234,,a a a 即可.【详解】数列{}n a 中,11111n na a a+==+,,则有21112a a =+=,321312a a =+=,431513a a =+=.故选:C.2.“26m <<”是“方程22126x y m m+=--表示的曲线为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】利用椭圆的标准方程结合充分、必要条件的定义计算即可.【详解】易知26m <<时,20,60m m ->->,但4m =时有262m m -=-=,此时方程表示圆,所以不满足充分性,若方程22126x ym m +=--表示的曲线为椭圆,则()()20602,44,626m m m m m->⎧⎪->⇒∈⋃⎨⎪-≠-⎩,显然26m <<成立,满足必要性,故“26m <<”是“方程22126x y m m+=--表示的曲线为椭圆”的必要不充分条件.故选:B3.已知直线60x ay -+=和直线()3230a x y a ++-=互相平行,则实数a 的值为()A.1-或2B.1-或2- C.2- D.1-【答案】D 【解析】【分析】根据平行关系列式求a 的值,并代入检验即可.【详解】由题意可得:()32a a -+=,解得1a =-或2a =-,若1a =-,则两直线分别为60,2230x y x y ++=++=,符合题意;若2a =-,则两直线均为260x y ++=,不符合题意;综上所述:1a =-.故选:D.4.已知等差数列{}n a 的前n 项和为n S ,且36430a S ==,,则4a =()A.2- B.2C.4D.6【答案】D 【解析】【分析】根据等差数列的性质和前n 项求和公式计算即可求解.【详解】由题意知,616346()3()302S a a a a =+=+=,又34a =,所以43106a a =-=.故选:D5.已知x a =是函数21()(1)ln 2f x x a x a x =-++的极大值点,则实数a 的取值范围是()A.(,1)-∞B.(1,)+∞ C.(01),D.(0,1]【答案】C 【解析】【分析】求导后,得导函数的零点,1a ,比较两数的大小,分别判断在x a =两边的导数符号,确定函数单调性,从而确定是否在x a =处取到极大值,即可求得a 的范围.【详解】21()(1)ln 2f x x a x a x =-++,则()()1()(1)x a x a f x x a x x--=-++=',0x >,当(0,1)a ∈时,令()0f x '>得0x a <<或1x >,令()0f x '<得1<<a x ,此时()f x 在区间(0,)a 上单调递增,(),1a 上单调递减,()1,+∞上单调递增,符合x a =是函数()f x 的极大值点;当1a =时,()21()0x f x x-'=≥恒成立,函数()f x 不存在极值点,不符合题意;当(1,)a ∞∈+时,令()0f x '>得01x <<或x a >,令()0f x '<得1x a <<,此时()f x 在区间(0,1)上单调递增,()1,a 上单调递减,(),a +∞上单调递增,符合x a =是函数()f x 的极小值点,不符合题意;综上,要使函数()f x 在x a =处取到极大值,则实数a 的取值范围是(01),.故选:C.6.从某个角度观察篮球(如图1)可以得到一个对称的平面图形(如图2),篮球的外轮廓为圆O ,将篮球的表面粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆O 的交点将圆的周长八等分,且||||||AB BC CD ==,则该双曲线的离心率为()A.43B.167C.7D.97【答案】C 【解析】【分析】设双曲线的标准方程为()222210,0x y a b a b-=>>,求出圆O 与双曲线在第一象限内的交点E 的坐标,将点E 的坐标代入双曲线的方程,可得出ba的值,再利用双曲线的离心率公式可求得该双曲线的离心率.【详解】设双曲线的标准方程为()222210,0x y a b a b-=>>,设圆O 与双曲线在第一象限内的交点为E ,连接DE 、OE ,则33==+==OE OD OC CD OC a,因为坐标轴和双曲线与圆O 的交点将圆O 的周长八等分,则1π2π84DOE ∠=⨯=,故点,22⎛⎫⎪ ⎪⎝⎭E ,将点E的坐标代入双曲线的方程可得2222221⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=a b ,所以2297b a =,所以,该双曲线的离心率为7ce a===.故选:C.7.如图,在三棱锥A BCD -中,1,AD CD AB BC AC =====,平面ACD ⊥平面ABC ,则三棱锥A BCD -外接球的表面积为()A.3πB.8π3C.7π3D.2π【答案】B 【解析】【分析】先确定底面ABC 的外接圆圆心,结合图形的特征,利用勾股定理及外接球的表面积公式计算即可.【详解】如图所示,取AC 中点E ,连接,DE BE ,在BE 上取F 点满足2EF FB =,由题意易知ABC 为正三角形,则F 点为ABC 的外接圆圆心,且,ED AC BE AC ⊥⊥,因为平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,所以DE ⊥底面ABC ,BE ⊥底面ADC ,过F 作//FO DE ,故三棱锥A BCD -外接球的球心O 在直线FO 上,作OG EF //交DE 于G 点,设OF h =,球半径为R ,根据1,AD CD AB BC AC =====易知,,2263BE AE DE EF BF =====,四边形OGEF 为矩形,由勾股定理可知:222222OB OF BF OD OG DG =+==+,即22222120,3263R h h h R ⎛⎛⎫=+=-+⇒== ⎪ ⎪⎝⎭⎝⎭,故其外接球表面积为28π4π3S R ==.故选:B8.已知0.98ln 0.98a =-,1b =, 1.02 1.02ln1.02c =-,则()A.a b c <<B.c b a <<C.b<c<aD.b a c<<【答案】B 【解析】【分析】利用()ln ,0f x x x x =->的单调性可判断a b >,利用()ln (0)g x x x x x =->的单调性可判断c b <,故可得三者之间的大小关系.【详解】设()ln ,0f x x x x =->,则有11()1x f x x x'-=-=,∴当01x <≤时,()()0,f x f x '≤在(]0,1上单调递减;(0.98)(1)1f f ∴>=,即有0.98ln 0.981->,a b ∴>;令()ln (1)g x x x x x =-≥,则()1(ln 1)ln g x x x '=-+=-,∴当1x ≥时,()0g x '≤,当且仅当1x =时等号成立,故()g x 在[)1,∞+上单调递减;(1.02)(1)1g g ∴<=,即有1.02 1.02ln1.021-<,c b ∴<,综上所述,则有c b a <<,故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线():20R l ax y a a ++-=∈与圆22:5C x y +=,则下列结论正确的是()A.直线l 必过定点B.l 与C 可能相离C.l 与C 可能相切D.当1a =时,l 被C 截得的弦长为【答案】ACD 【解析】【分析】利用直线方程确定过定点可判定A ,利用直线与圆的位置关系可判定BC ,利用弦长公式可确定D.【详解】由直线方程变形得()():120l a x y -++=,显然1x =时=2y -,即直线过定点()1,2-,故A 正确;易知()22125+-=,即点()1,2-在圆C 上,则直线l 不会与圆相离,但有可能相切,故B 错误,C 正确;当1a =时,此时直线:10l x y ++=,圆心为原点,半径为r =,则圆心到l 的距离为d =,所以l 被C 截得的弦长为=,故D 正确.故选:ACD10.定义:设()f x '是()f x 的导函数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()0x f x ,为函数()y f x =的“拐点”.经探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心.已知函数()321533f x x ax bx =+++的对称中心为()1,1,则下列说法中正确的有()A.1,0a b =-= B.函数()f x 既有极大值又有极小值C.函数()f x 有三个零点 D.对任意x ∈R ,都有()()11f x f x -+=【答案】AB 【解析】【分析】根据拐点定义二次求导可计算可求出函数解析式即可判定A ,根据导数研究其极值可判定B ,结合B 项结论及零点存在性定理可判定C ,利用函数解析式取特殊值可判定D.【详解】由题意可知()22f x x ax b '=++,()22f x x a ''=+,而()()151113301022f a b a b f a⎧==+++=-⎧⎪⇒⎨⎨=⎩⎪==+⎩'',故A 正确;此时()321533f x x x =-+,()()222f x x x x x '=-=-,显然2x >或0x <时,()0f x ¢>,则()f x 在()(),0,2,-∞+∞上单调递增,()0,2x ∈时,()0f x '<,即()f x 在()0,2上单调递减,所以()f x 在0x =时取得极大值,在2x =时取得极小值,故B 正确;易知()()()5100,250,2033f f f =>-=-<=>,结合B 结论及零点存在性定理可知()f x 在()2,0-存在一个零点,故C 错误;易知()()510113f f +=+≠,故D 错误.故选:AB11.如图,已知抛物线()220C y px p =>:的焦点为F ,抛物线C 的准线与x 轴交于点D ,过点F 的直线l (直线l 的倾斜角为锐角)与抛物线C 相交于A B ,两点(A 在x 轴的上方,B 在x 轴的下方),过点A 作抛物线C 的准线的垂线,垂足为M ,直线l 与抛物线C 的准线相交于点N ,则()A.当直线l 的斜率为1时,4AB p =B.若NF FM =,则直线l 的斜率为2C.存在直线l 使得AOB 90∠=D.若3AF FB =,则直线l 的倾斜角为60【答案】AD 【解析】【分析】根据抛物线的焦点弦的性质一一计算即可.【详解】易知,02p F ⎛⎫⎪⎝⎭,可设():02p AB y k x k ⎛⎫=-> ⎪⎝⎭,设()()1122,,,A x y B x y ,与抛物线方程联立得()22222220242p y k x k p k x k p p x y px⎧⎛⎫=-⎪ ⎪⇒-++=⎝⎭⎨⎪=⎩,则221212224k p p p x x x x k ++==,,对于A 项,当直线l 的斜率为1时,此时123x x p +=,由抛物线定义可知12422p pAF BF x x AB p +=+++==,故A 正确;易知AMN 是直角三角形,若NF FM =,则ANM FMN AMF FAM ∠=∠⇒∠=∠,又AF AM =,所以AMF 为等边三角形,即60AFx ∠= ,此时3k =B 错误;由上可知()()222212121212124pk p k x x y y k x x x x +=+-++()()2222222223104244p k p pk p k k p k +=+⨯-⨯+=-<,即0OA OB ×<uu r uu u r,故C 错误;若1212332322p p AF FB x x x p x ⎛⎫=⇒-=-⇒=- ⎪⎝⎭ ,又知212213,462p p px x x x =⇒==,所以1y =,则112y k p x ==-,即直线l 的倾斜角为60 ,故D 正确.故选:AD12.如图,在棱长为2的正方体1111ABCD A B C D -中,已知,,M N P 分别是棱111,,C D AA BC 的中点,Q 为平面PMN 上的动点,且直线1QB 与直线1DB 的夹角为30 ,则()A.1DB ⊥平面PMNB.平面PMN 截正方体所得的截面图形为正六边形C.点Q 的轨迹长度为πD.能放入由平面PMN分割该正方体所成的两个空间几何体内部(厚度忽略不计)的球的半径的最大值为32【答案】ABD 【解析】【分析】A 选项,建立空间直角坐标系,求出平面PMN 的法向量,得到线面垂直;B 选项,作出辅助线,找到平面截正方体所得的截面;C 选项,作出辅助线,得到点Q 的轨迹,并求出轨迹长度;D 选项,由对称性得到平面PMN 分割该正方体所成的两个空间几何体对称,由对称性可知,球心在1B D 上,设球心坐标建立方程,求出半径的最大值.【详解】A 选项,如图所示以D 为坐标原点,建立空间直角坐标系,则()()()()11,2,0,0,1,2,2,0,1,2,2,2P M N B ,故()()()12,2,2,1,1,2,1,2,1DB PM PN ==--=-.设平面PMN 的法向量为(),,m x y z = ,则2020m PM x y z m PN x y z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令11z x y =⇒==得()1,1,1m =,易知12DB m =,故1DB ⊥平面PMN ,即A正确;B 选项,取111,,AB CC AD 的中点,,F QE ,连接11,,,,,,,,NE NF ME MQ PQ PF A B EP D C ,结合题意可知11////,////NF A B EP EP CD MQ ,所以N F P E 、、、四点共面且M Q P E 、、、四点共面,两个平面都过点P ,所以M Q P E N F 、、、、、六点共面,易知EM MQ QP PF FN NE ======,所以平面PMN 截正方体所得的截面为正六边形ENFPQM ,B正确;C 选项,由上知1DB ⊥平面PMN ,设垂足为S ,以S 为圆心133B S 为半径在平面PMN 上作圆,由题意可知Q 轨迹即为该圆,结合B 的结论可知平面PMN 平分正方体,根据正方体的中心对称性可知S 平分1DB,故半径1111332B S DB =⨯=,故点Q 的轨迹长度为2π,C 错误;D 选项,由上知该两部分空间几何体相同,不妨求能放入含有顶点D 的这一空间几何体的球的半径最大值,结合A 项空间坐标系及正方体的对称性知该球球心O 在1DB 上,该球与平面PMN 切于点S ,与平面ABCD 、平面11A D DA 、平面11D C CD 都相切,设球心为()(),,01O a a a a <≤,则球半径为a ,易知()1,1,1S ,故()223312RS a a a a -=⇒-=⇒=,D 正确.故选:ABD 【点睛】思路点睛:关于立体几何中截面的处理思路有以下方法(1)直接连接法:有两点在几何体的同一个平面上,连接该两点即为几何体与截面的交线,找截面就是找交线的过程;(2)作平行线法:过直线与直线外一点作截面,若直线所在的平面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线;(3)作延长线找交点法:若直线相交但在立体几何中未体现,可通过作延长线的方法先找到交点,然后借助交点找到截面形成的交线;(4)辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅助平面.关于立体几何中求动点轨迹的问题注意利用几何特征,比如动直线与定直线夹角为定值,可以考虑结合圆锥体得出动点轨迹.第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A B 与1B C 所成的角的余弦值_________________.【答案】12##0.5【解析】【分析】利用正方体的特征构造平行线求异面直线夹角即可.【详解】如图所示连接1,A D BD ,根据正方体的特征易知11//B C A D ,且1A DB △为等边三角形,所以1DA B ∠即异面直线1A B 与1B C 所成的角,且160DA B ∠= ,11cos 2DA B ∠=.故答案为:1214.在正项等比数列{}n a 中,若234234111502a a a a a a ++=++=,,3a =_____________.【答案】5【解析】【分析】根据正项等比数列的定义与通项公式,计算即可【详解】正项等比数列{}n a 中,23450a a a ++=,234242334332224323234343323111502a a a a a a a a a a a a a a a a a a a a a a a ++++++++====,解得35a =±,舍去负值,所以35a =.故答案为:515.以两条直线1220350l x y l x y +=++=:,:的交点为圆心,并且与直线3490x y -+=相切的圆的方程是_____________________.【答案】()()221216x y -++=【解析】【分析】直接利用交点坐标和点到直线的距离公式求出圆心和半径,最后求出圆的方程.【详解】利用20350x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,则圆心坐标为()1,2-,设圆的方程为()()22212x y r -++=利用圆心()1,2-到直线3490x y -+=的距离d r =,整理得4r ==,故圆的方程为()()221216x y -++=.故答案为:()()221216x y -++=.16.关于x 的不等式()1e ln x a x x a x +--≥恒成立,则实数a 的最大值为_____________________.【答案】2e 2【解析】【分析】构造函数()()e 1ln ,xf x x xg x x=+-=,利用导数研究其单调性及最值,分离参数计算即可.【详解】设()()()e 1ln 0,xf x x x xg x x=+->=,易知()()()2e 11,x x x f x g x x x''--==,则当1x >时,()()0,0f x g x ''>>,即此时两函数均单调递增,当01x <<时,()()0,0f x g x ''<<,即此时两函数均单调递减,故()()()()12,1e f x f g x g ≥=≥=,对于不等式()()11ln e ln e 1ln x x x a x x a a x x x++---≥⇔≥+-,由上可知1ln 2u x x =+-≥,故1ln e 1ln x xa x x+-≤+-,又()()e 2u g u u u =≥单调递增,故()()2e 22g u g a ≥=≥.所以实数a 的最大值为2e 2.故答案为:2e 2.【点睛】关键点点睛:观察不等式结构可发现是指对同构式即原式等价于()1ln e 1ln x x a x x +-≥+-,构造函数()()e 1ln ,xf x x xg x x=+-=判定其单调性与最值分参计算即可.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足()111,211n n a a a n n n n +-==++.(1)证明数列{}n na 为等差数列,并求出数列{}n a 的通项公式;(2)设21n nb n a =,数列{}n b 的前n 项和为n S ,求20S .【答案】(1)证明见解析,1+=n n a n (2)202021S =【解析】【分析】(1)根据题中递推公式可得()111n n n a na ++-=,结合等差数列的定义和通项公式分析求解;(2)由(1)可得111n b n n =-+,利用裂项相消法运算求解.【小问1详解】因为()1111n n a a n n n n +-=++,则()111n n n a na ++-=,所以数列{}n na 是以首项112a ⨯=,公差1d =的等差数列,可得211n n na n =+-=+,所以1+=n n a n .【小问2详解】由(1)可得()2111111n n b n a n n n n ===-++,所以20111111201122320212121S =-+-+⋅⋅⋅+-=-=.18.设圆C 与两圆()()22221221,21C x y C x y ++=-+=::中的一个内切,另一个外切.(1)求圆心C 的轨迹E 的方程;(2)已知直线()00x y m m -+=>与轨迹E 交于不同的两点,A B ,且线段AB 的中点在圆2210x y +=上,求实数m 的值.【答案】(1)2213y x -=(2)2±【解析】【分析】(1)根据圆与圆的位置关系结合双曲线的定义分析求解;(2)联立方程结合韦达定理运算求解.【小问1详解】圆()22121C x y ++=:的圆心为()12,0C -,半径为1,圆()22221C x y -+=:的圆心为()22,0C ,半径为1,设圆C 的半径为r ,若圆C 与圆1C 内切,与圆2C 外切,则121,1CC r CC r =-=+,可得212CC CC -=;若圆C 与圆2C 内切,与圆1C 外切,则211,1CC r CC r =-=+,可得122CC CC -=;综上所述:122CC CC -=,可知:圆心C 的轨迹E 是以1C 、2C 为焦点的双曲线,且1,2a c ==,可得2223b c a =-=,所以圆心C 的轨迹E 的方程2213y x -=.【小问2详解】联立方程22130y x x y m ⎧-=⎪⎨⎪-+=⎩,消去y 得222230x mx m ---=,则()()222Δ4831220m m m =---=+>,可知直线与双曲线相交,设()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y,可得120003,222x x m m x y x m +===+=,即3,22m m M ⎛⎫ ⎪⎝⎭,且3,22m m M ⎛⎫ ⎪⎝⎭在圆2210x y +=上,则2231022m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得2m =±,所以实数m 的值为2±.19.如图所示,用平面11BCC B 表示圆柱的轴截面,BC 是圆柱底面的直径,O 为底面圆心,E 为母线1CC 的中点,已知1AA 为一条母线,且14AB AC AA ===.(1)求证:平面AEO ⊥平面1AB O ;(2)求平面1AEB 与平面OAE 夹角的余弦值.【答案】(1)证明见解析;(2)6.【解析】【分析】(1)根据图形特征结合勾股逆定理先证11,B O AO B O EO ⊥⊥,由线线垂直得线面垂直,根据线面垂直的性质可得面面垂直;(2)建立合适的空间直角坐标系,求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【小问1详解】依题意可知AB AC ⊥,则ABC 是等腰直角三角形,故AO BC ⊥,由圆柱的特征可知1BB ⊥平面ABC ,又AO ⊂平面ABC ,1BB AO ⊥,因为11,BB BC B BB BC =⊂ 、平面11BCC B ,则AO ⊥平面11BCC B ,而1B O ⊂平面11BCC B ,则AO ⊥1B O ,因为14AB AC AA ===,则2221124BC B O B B BO ==∴=+=,222222*********,36OE OC CE B E E C B C B O OE =+==+==+,所以1B O OE ⊥,因为1B O OE ⊥,AO ⊥1B O ,,AO OE O AO OE =⊂ 、平面AEO ,所以1B O ⊥平面AEO ,因为1B O ⊂平面1AB O ,所以平面AEO ⊥平面1AB O ;【小问2详解】由题意及(1)知易知1,,AA AB AC 两两垂直,如图所示建立空间直角坐标系则()()()14,0,4,0,4,2,2,2,0B E O ,所以()()()114,0,4,0,4,2,2,2,4AB AE B O ===-- ,由(1)知1B O 是平面AEO 的一个法向量,设(),,n x y z = 是平面1AB E 的一个法向量,则有1440420n AB x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取22,1z x y =-⇒==,所以()2,1,2n =- ,设平面1AEB 与平面OAE 的夹角为θ,所以111cos cos ,6n B O n B O n B Oθ⋅====⋅ .即平面1AEB 与平面OAE夹角的余弦值为6.20.已知函数()ln ,f x a x x a =-∈R .(1)设1x =是()f x 的极值点,求a 的值,并求()f x 的单调区间;(2)证明:当2a ≤时,()10f x x+<在()1,+∞上恒成立.【答案】(1)1a =,单调区间见解析(2)证明见解析【解析】【分析】(1)求导,根据极值的定义分析求解,进而可得单调区间;(2)根据题意分析可得()112ln f x x x x x +<-+,令()12ln ,1g x x x x x =-+>,利用单调性判断其单调性和符号,即可得结果.【小问1详解】因为()ln f x a x x =-的定义域为()0,∞+,则()1a f x x'=-,若1x =是()f x 的极值点,则()110f a -'==,解得1a =,当1a =,则()ln f x x x =-,()111x f x x x-=-=',令()0f x '>,解得01x <<;令()0f x '<,解得1x >;则()f x 在()0,1内单调递增,在()1,∞+内单调递减,可知1x =是()f x 的极大值点,即1a =符合题意,所以()f x 的单调递增区间为()0,1,单调递减区间为()1,∞+.【小问2详解】因为()1,x ∞∈+,则ln 0x >,且2a ≤,可得ln 2ln a x x ≤,即()112ln f x x x x x+≤-+,令()12ln ,1g x x x x x =-+>,则()()22212110x g x x x x-=--=-<'在()1,∞+内恒成立,可知()g x 在()1,∞+内单调递减,可得()()10g x g <=,即()112ln 0f x x x x x +≤-+<,所以当2a ≤时,()10f x x +<在()1,∞+上恒成立.21.对每个正整数(),,n n n n A x y 是抛物线24x y =上的点,过焦点F 的直线n FA 交抛物线于另一点(),n n n B s t .(1)证明:()41n n x s n =-≥;(2)取12n n x +=,并记n n n a A B =,求数列{}n a 的前n 项和.【答案】(1)证明见解析(2)11142134n n n +⎛⎫-+- ⎪⎝⎭【解析】【分析】(1)设直线:1n n n y A k B x =+,联立方程结合韦达定理分析证明;(2)根据抛物线的定义结合(1)可得1424n n n a =++,利用分组求和法结合等比数列求和公式运算求解.【小问1详解】由题意可知:抛物线24x y =的焦点()0,1F ,且直线n n A B 的斜率存在,设直线:1n n n y A k B x =+,联立方程214n y k x x y=+⎧⎨=⎩,消去y 得2440n x k x --=,可得216160n k ∆=+>,所以()41n n x s n =-≥.【小问2详解】因为12n n x +=,由(1)可得142242n n n n s x +=-=-=-,则22144144,44444n n n n nn n n x s y t +======,可得12424n n n n n n n a A B y t ==++=++,设数列{}n a 的前n 项和为n T ,则()21221114442444n n n n T a a a n ⎛⎫=++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅++ ⎪⎝⎭()1111414441124211143414n nn n n n +⎡⎤⎛⎫-⎢⎥ ⎪-⎝⎭⎢⎥⎛⎫⎣⎦=++=-+- ⎪-⎝⎭-,所以11142134n n n T n +⎛⎫=-+- ⎪⎝⎭.【点睛】关键点点睛:利用韦达定理证明关系,并根据抛物线的定义求n a .22.已知椭圆()222210+=>>x y C a b a b :的离心率32,点3⎛ ⎝⎭在椭圆上.(1)求椭圆C 的方程;(2)设点()()()()0,1,,0,4,02A M t N t t -≠,直线AM AN ,分别与椭圆C 交于点,(,S T S T 异于),A AH ST ⊥,垂足为H ,求OH 的最小值.【答案】(1)2214x y +=(221-【解析】【分析】(1)根据题意结合离心率列式求,,a b c ,进而可得方程;(2)联立方程求,S T 的坐标,根据向量平行可知直线ST 过定点()2,1Q ,进而分析可知点H 在以AQ 为直径的圆上,结合圆的性质分析求解.【小问1详解】由题意可得:2222213142a b c a b c e a ⎧⎪=+⎪⎪+=⎨⎪⎪==⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为2214x y +=.【小问2详解】由题意可得:直线:AM x ty t =-+,联立方程2214x ty t x y =-+⎧⎪⎨+=⎪⎩,消去x 可得()22224240t y t y t +-+-=,解得2244t y t -=+或1y =,可知点S 的纵坐标为2244t t -+,可得2224844t t x t t t t -=-⋅+=++,即22284,44t t S t t ⎛⎫- ⎪++⎝⎭,同理可得:()()()()2228444,4444t t T t t ⎛⎫--- ⎪ ⎪-+-+⎝⎭,即()22284812,820820t t t T t t t t ⎛⎫--+ ⎪-+-+⎝⎭,取()2,1Q ,则()222228,44t QS t t ⎛⎫- ⎪=-- ⎪++⎝⎭ ,()222228,820820t QT t t t t ⎛⎫- ⎪=-- ⎪-+-+⎝⎭,因为()()222222222288082044820t t t t t t t t ⎡⎤⎡⎤--⎛⎫⎛⎫-----=⎢⎥⎢⎥ ⎪ ⎪-+++-+⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,可知QS ∥QT ,即,,Q S T 三点共线,可知直线ST 过定点()2,1Q ,又因为AH ST ⊥,且()0,1A ,可知:点H 在以AQ 为直径的圆上,该圆的圆心为()1,1E ,半径112r AQ ==,所以OH的最小值为1OE r -=.。
上海市高二上学期期末考试数学试卷含答案(共3套)

高二第一学期期末考试试卷数学试题注意:1.答卷前,将姓名、班级、层次、学号填写清楚.答题时,书写规范、表达准确.2.本试卷共有21道试题,满分100分.考试时间90分钟.一、填空题(本大题满分36分)本大题共有12题,只要求将最终结果直接填写在答题纸相应的横线上,每个空格填对得3分,否则一律零分.1.若矩阵110A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,()121B =,则AB =__________.2.求行列式的值:111111124-=__________.3.经过点()2,1P -且与直线0l :20x y -=平行的直线l 的点法向式方程为__________.4.椭圆2214y x +=的焦距为__________.5.双曲线221916y x -=的渐近线方程是__________.6.平面上的动点P 到定点1F 、2F 距离之和等于12F F ,则点P 的轨迹是__________.7.已知圆()224x a y -+=被直线1x y +=截得的弦长为a 的值为_________.8.将参数方程222sin sin x y θθ⎧=+⎨=⎩(θ为参数)化为普通方程为__________. 9.若,x y 满足条件32x y y x+≤⎧⎨≤⎩,则34z x y =+的最大值为__________.10.设P 是抛物线22y x =上的一点,(),0A a (01a <<),则PA 的最小值是__________.11.过直线y x =上的一点作圆()()22512x y -+-=的两条切线1l ,2l ,当1l 与2l 关于直线y x =对称时,它们之间的夹角为__________.12.已知点(),P x y 是线段220x y +-=(,0x y ≥)上的点,则1x yx ++的取值范围是______. 二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得3分,不选、选错或者选出的代号超过一个,一律零分. 13.直线3450x y ++=的倾斜角是( )(A )3arctan 4- (B )3arctan4π+ (C )3arctan 4π⎛⎫+-⎪⎝⎭(D )3arctan 24π+14.若点M 在曲线sin 2cos sin x y θθθ=⎧⎨=+⎩(θ为参数)上,则点M 的坐标可能是 ( )(A )1,2⎛ ⎝(B )31,42⎛⎫- ⎪⎝⎭(C )((D )(15.若直线2y kx =+与双曲线226x y -=的右支交于不同的两点,则实数k 的取值范围是 ( )(A ),33⎛-⎝⎭ (B )0,3⎛⎫⎪ ⎪⎝⎭ (C )3⎛⎫- ⎪ ⎪⎝⎭(D )13⎛⎫-- ⎪ ⎪⎝⎭16.关于曲线C :441x y +=,则下列四个命题中,假命题...是( )(A )曲线C 关于原点对称(B )曲线C 关于直线y x =-对称(C )曲线C 围成的面积小于π (D )在第一象限中y 随x 的增大而减小三、解答题(本大题共5题,满分52分)每题均需写出详细的解答过程.17.(本题8分)已知两条直线1l :5560x my ++=,2l :()21520m x y m -++=. (1)当m 为何值时,1l 与2l 相交; (2)当m 为何值时,1l 与2l 平行.18.(本题8分)已知动点(),A x y 到点()2,0F 和直线2x =-的距离相等. (1)求动点A 的轨迹方程;(2)记点()2,0K -,若AK AF =,求AFK △的面积.19.(本题10分)已知点()2,2P ,()0,4Q ,动点M 满足0PM QM ⋅=,O 为坐标原点. (1)求M 的轨迹方程;(2)当OP OM =时,求POM △的面积.20.(本题12分)设椭圆221925x y +=的两焦点为1F 、2F .(1)若点P 在椭圆上,且123F PF π∠=,求12F PF △的面积;(2)若AB 是经过椭圆中心的一条弦,求1F AB △面积的最大值.21.(本题14分)抛物线22y x =的准线与x 轴交于点M ,过点M 作直线l 交抛物线于A 、B 两点. (1)求直线l 的斜率的取值范围;(2)若线段AB 的垂直平分线交x 轴于()0,0N x ,求证:032x >; (3)若直线l 的斜率依次为1111,,,,,2482n ,线段AB 的垂直平分线与x 轴的交点依次为123,,,,,n N N N N ,求12231111n nN N N N N N -+++.参考答案一、填空题1.121121000⎛⎫ ⎪--- ⎪ ⎪⎝⎭2.6-3.()()2210x y --+=4.5.34y x =± 6.线段12F F 7.3或1- 8.2y x =-,[]2,3x ∈9.11 10.a 11.3π 12.1,22⎡⎤⎢⎥⎣⎦二、选择题 13.C14.B15.D16.C三、解答题 17.【解】()()55553215mD m m m ==--+-,()()651033215x mD m m m -==+--,()564322y D m m m-==-+--.当5m =时,两直线平行;当5m ≠且3m ≠-时,两直线相交.18.【解】(1)点A 的轨迹是以点F 为焦点,直线2x =-为准线的抛物线,所以28y x =.(2)过点A 作直线2x =-的垂线,垂足为H ,则AH AF =,所以AK =,所以三角形AHK是等腰直角三角形,所以AF KF ⊥,所以三角形AFK 的面积8S =. 19.【解】(1)M 的轨迹是以线段PQ 为直径的圆,所以点M 的轨迹方程为()()()2420x x y y -+--=,即()()22132x y -+-=.(2)设圆心为C .因为OP OM =,所以()1,3OC =垂直于直线MP ,所以直线MP 的方程为()()2320x y -+-=,即380x y +-=.圆心到直线MP的距离5d =,故弦长5MP =,点O 到直线MP的距离5h =,所以三角形POM的面积1162555S =⋅⋅=.20.【解】(1)设1P F m =,2PF n =,在三角形12PF F 中,由余弦定理,()()2221212122cos 21cos F F m n mn F PF m n mn F PF =+-∠=+-+∠,解得12mn =,所以三角形12F PF的面积121sin 2S mn F PF =∠= (2)因为直线AB 斜率存在,所以设其方程为y kx =,则点1F 到直线AB的距离d =.设()11,A x y ,()22,B x y ,联立直线与椭圆的方程:221925y kxx y =⎧⎪⎨+=⎪⎩x ⇒=.则21AB x x ==-=所以三角形1F AB的面积12S AB d =⋅⋅=,当且仅当0k =时,取得最大值12. 21.【解】(1)1,02M ⎛⎫- ⎪⎝⎭,设l :12y k x ⎛⎫=+ ⎪⎝⎭,联立直线与抛物线的方程:2122y k x y x⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩()2222204k k x k x ⇒+-+=(*).因为l 交抛物线于两点,所以0k ≠且二次方程(*)根的判别式0∆>,解得()()1,00,1k ∈-⋃.(2)设()11,A x y ,()22,B x y ,由韦达定理,21222k x x k-+=-,()121221y y k x x k +=++=,所以AB 中点的坐标为2221,2k kk ⎛⎫-- ⎪⎝⎭,所以AB 中垂线方程为221122k y x k k k ⎛⎫--=-+ ⎪⎝⎭,所以0211322x k =+>. (3)设(),0m m N x ,则142m m x =+,所以1114434m m m m m N N ---=-=⋅,所以11223111111194n n n N N N N N N --⎡⎤⎛⎫+++=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.高二年级第一学期数学期末考试卷(考试时间:120分钟 满分:150分 )一.填空题(1--6每小题4分,7--12每小题5分,共54分) 1.已知复数ii z +=2(i 为虚数单位),则=||z .2.若)1,2(=是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 3.抛物线24y x =的焦点坐标为 .4.62x ⎛- ⎝的展开式中的常数项的值是 .5.已知实数x 、y 满足不等式组52600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则34z x y =+的最大值是 .6.已知虚数ααsin cos i z += 是方程0232=+-a x x 的一个根,则实数=a .7.已知21,F F 为双曲线C :122=-y x 的左右焦点,点P 在双曲线C 上,1260F PF ∠=︒,则=⋅||||21PF PF .8.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 .9. 设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l的点的个数为____________. 10.已知抛物线y x 32=上的两点A 、B 的横坐标恰是关于x 的方程02=++q px x (,p q 是常数)的两个实根,则直线AB 的方程是 .11.在ABC ∆中,AB 边上的中线2CO =,若动点P 满足221sin cos 2AP AB AC θθ=⋅+⋅()R θ∈,则()PA PB PC +⋅的最小值是 .12.已知椭圆C :)0(12222>>=+b a b y a x 的左右焦点分别为21,F F ,P 为椭圆C 上任一点,M=||||||||2121PF PF PF PF ⋅+-。
职业高中高二上学期期末数学试题卷(含答案)

职业高中高二上学期期末考试数学试题卷一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的)1.已知B(-2,5),且()3,3=,则点A 的坐标为 ( ) A.(-5,2) B.(5,2-) C.(1,8) D.(1,2)2.已知||=5,()3,-=k ,则k 的值是 ( ) A.4- B.4 C. 4± D.2-3.已知BC AD 31=,则四边形是 ( )A.平行四边形B.矩形C.梯形D.对边不平行的四边形4.在边长为2的等边△ABC 中,∙= ( ) A.4 B.-4 C.2 D.2-5.已知+=0的 ( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分又不必要条件6.直线0133=-+y x 的倾斜角是 ( )A.030B.0150C.060D.01207.直线0643=+-y x 与圆()()43222=-+-y x 的位置关系是 ( )A.过圆心 B.相切 C.相离 D.相交且不过圆心8.正方体棱长为a ,则其对角线长为 ( ) A.a 3 B.a 3 C.a 2 D.2a9.空间中垂直于同一直线的两条直线的位置关系是 ( ) A.平行 B.相交 C.异面 D.以上均有可能10. 如果二面角的一个面上的点到棱的距离是它到另一个面的距离的3倍,那么这个二面角的平面角θ应该满足 ( )A .030=θB . 060=θ C . 33sin =θ D . 33cos =θ 二、填空题(每小题3分,共24分)1.已知向量与反向==6,则= 2.在菱形ABCD 中,()()=-∙+ 3.已知=(2,1),=(3,m ),且∥,则实数m =4.若直线的斜率为2,且过点()2,1-,则直线的方程为5.已知点A ()5,2-和B ()5,6-,以AB 为直径的圆的标准方程为6. 直线4=+y ax 与014=-+ay x 互相垂直,则=a7.如果直线m ⊥n ,且m ⊥平面α,则n 与平面α的关系为 8.将正方形ABCD 沿AC 折成直二面角后=∠DAB 三、计算题(每小题6分,共24分)1.已知()m ,5=,()1,3-=,且-3与+互相垂直,求m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页/共7页
14年高二数学期末考试试题
距离期末考试还有不到一个月的时间了,在这段时间内突击做一
些试题是非常用帮助的,小编整理了14年高二数学期末考试试题,
希望对大家有所帮助!查字典数学网预祝大家取得好成绩!
14年高二数学期末考试试题
一、选择题(本大题共12小题,每小题5分,共6 0分.在每小题给出
的四个选项中,只有一项是符合题目要求的).
1. 双曲线 的焦点坐标是 ( )
A. 、 B. 、
C. 、 D. 、
2.一个家庭有两个小孩,则基本事件空间 是 ( )
A. {(男,男),(女,女)} B. {(男,男),(男,女),(女,男),(女,女)}
C. {(男,女),(女,男)} D. {(男,男),(男,女),(女,女)}
3.已知双曲线C: 的左、右焦点分别为F1、F2,P为双曲线C的右
支上一点,且|PF2|=|F1F2 |,则PF1F2的面积等于 ( )
A.24 B.36 C.48 D.96
4.在一次随机试验中,彼此互斥的事件A、B、C、D的概率分别是
0.2、0.2、0.3、0.3,则下列说法正确的是 ()
A.A+B与C是互斥事件,也是对立事件
B.B+C与D是互斥事件,也是对立事件
C.A+C与B+D是互斥事件,但不是对立事件
D.A与B+C+D是互斥事件, 也是对立事件
第2页/共7页
5、如果右边程序执行后输出的结果是990,那么
在程序until后面的条件应为( )
A.i 10 B. i 8 C. i =9 D.i9
6.已知 为不重合的两个平面,直线 那么 是 的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
7、如右图所示,使电路接通,开关不同的开闭方式有( )
A. 11种 B. 20种 C. 21种 D. 12种
8.设F为抛物线 的焦点,A、B、C为该抛物线上三点,当
FA+FB+FC= ,
且|FA|+|FB|+|FC |=3时,此抛物线的方程为 ( )
A. B. C. D.
9. 如图,已知直线 、 是异面直线, , ,且 , ,则直线 与 的
夹角大小为( )
A. B . C. D.
10.项式 的展开式中的常数项为 ( )
(A) (B) (C) (D)
11.已知双曲 线 的离心率 .双曲线的两条渐近线构成的角中,以实轴
为角平分线的角记为 ,则 的取值范围是 ( )
A. B. C. D.
12.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面
ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦
第3页/共7页
值等于 ()
A.13 B. C. D.23
第Ⅱ卷(共90分)
二.填空题(本大题共有4小题,每小题5分,共20分.把答案填在答
题卡上).
13.将二进制数1010 101(2) 化为十进制结果为 ;
14有下列命题
①命题 xR,使得 的否定是 xR,都有
②设p、q为简单命题,若q为假命题,则 p q为真命题
③2是5的充分不必要条件;
④若函数 为偶函数,则 ;
其中所有正确的说法序号是 .
15.底面是正方形的四棱锥A-BCDE中,AE底面BCDE,且AE=CD= ,
G、H分别是BE、ED的中点,则GH到平面ABD的距离是________.
16.线段 是椭圆 过 的一动弦,且直线 与直线 交于点 ,则
三.解答题(本大题共6小题,共70分.解答应写出文字说明、证明过
程或演算步骤).
17.(本小题满分10分)
若将函数 表示为 ,
其中 为实数,求 的值
18.(本小题满分12分)
已知直线 经过抛物线 的焦点F,且与抛物线相交于A、B两点.
第4页/共7页
(1)若 ,求点A的坐标;
(2)若直线 的倾斜角为 ,求线段AB的长.
19.(本小题满分12分)
如图,直三 棱柱 中, , 是棱 的中点, 。
(Ⅰ )证明:
(Ⅱ)求二面角 的大小。
20.(本小题满分12分)某工厂对200个电子元件的使用寿命进行检查,
按照使用寿命(单位:h),
可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组
(300,400],第四组(400,500],
第五组(500,600],第六组(600,700].由于工作中不慎将部分数据丢失,
现有以下部分图表:
分组 [100,200] (200,300] (300,400] (400,500] (500,600] (600,700]
频数 B 30 E F 20 H
频率 C D 0.2 0.4 G I
(1)求图2中的A及表格中的B,C,D,E,F,G,H,I的值;
(2)求图2中阴影部分的面积;
(3)若电子元件的使用时间超过300h为合格产品,求这批电子元件合
格的概率.
21.(本小题满分12分)如图,在底面是正方形的四棱锥P-ABCD中,
PA面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:BD
第5页/共7页
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(3)当二面角B-PC-D的大小为 时,求PC与底面ABCD所成角的正
切值.
22.(本小题满分12分)已知椭圆 ,过点 作直线 与椭圆交于 、 两点.
(1) 若点 平分线段 ,试求直线 的方程;
(2) 设与满足(1)中条件的直线 平行的直线与椭圆交于 、 两点, 与
椭圆交于点 , 与椭圆交于点 ,求证: //
其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后
会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学
科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作
技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死
记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会
在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,
积少成多,从而收到水滴石穿,绳锯木断的功效。
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私
塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或
敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出
现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何
为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生
坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”
之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,
第6页/共7页
“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”
为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与
人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老
师之意基本一致。做好高二数学期末考试试题可以辅助你在考试中取
的高分,小编预祝您在每次考试中都能取得好成绩!
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计
划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不
可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,
一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,
大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,
看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿
学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观
察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓
住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问
幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子
说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电
时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住
时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎
样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌
握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编
的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”
这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的
第7页/共7页
词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿
联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中
发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手
术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观
察对象。