5.2 一阶逻辑的前束范式
离散数学第2章一阶逻辑

2.1 一 阶 逻 辑 基 本 概 念
综上,有如下结论: (1)谓词中个体词的顺序不能随意变更。 (2)一元谓词用以描述一个个体的某种特性, 而n元谓词则用以描述n个个体之间的关系。 (3)0元谓词就是一般命题。 (4)具体命题的谓词表示形式和n元谓词是不同的, 前者是有真值的,而后者不是命题,它的 真值是不确定的。 (5)一个n元谓词不是一个命题,但将n元谓词中的 个体变项都用个体域中某个具体的个体取代后, 就成为一个命题。而且,个体变项在不同的个体域 中取不同的值对是否成为命题及命题的真值有很大 的影响。
26
2.2.1 一阶逻辑公式的语言翻译 2.1 一 阶 逻 辑 基 本 概 念
例2.2.1 用一阶逻辑符号化下述语句. (1)天下乌鸦一般黑。 (2)没有人登上过木星。 (3)在美国留学的学生未必都是亚洲人。 (4)每个实数都存在比它大的另外的实数。 (5)尽管有人很聪明,但未必一切人都聪明 (6)对任意给定的ε >0,必存在着δ >0,使 得对任意的x,只要|x-a|<δ ,就有 |f(x)-f(a)|<ε 成立。
27
2.1 一 阶 逻 辑 基 本 概 念
解: (1)设F(x):x是乌鸦;G(x,y):x与y一般黑 (x)(y)(F(x)F(y)G(x,y)) 或者 (x)(y)(F(x)F(y)G(x,y)) (2)设H(x):x是人;M(x):x登上过木星。 (x)(H(x)M(x)) 或 (x)(H(x) M(x)) (3)设H(x):是亚洲人;A(x):是在美国留学的学生。 (x)(A(x) H(x)); 或者: (x)(A(x) H(x)) (4)设R(x):x是实数;L(x,y):x小于y (x)(R(x) (y)(R(y) L(x,y))); (5)设M(x):x是人;C(x):x很聪明 (x)(M(x)C(x)) (x)((M(x) C(x)); (6)对任意给定的ε >0,必存在着δ >0,使得对任意的x,只 要|x-a|<δ ,就有|f(x)-f(a)|<ε 成立。 (ε )((ε >0)(δ )((δ >0) (x)(( |x-a|<δ (|f(x)-f(a)|<ε )))) 28
一阶逻辑等值式

例
(4) ┐xy(F(x)∧G(y)∧L(x,y))
xy(F(x)∧G(y)→┐L(x,y)) x ┐(y(F(x)∧G(y)∧L(x,y)))
┐xy(F(x)∧G(y)∧L(x,y)) xy┐(F(x)∧G(y)∧L(x,y))
xy(┐(F(x)∧G(y))∨┐L(x,y))
说明
一阶逻辑中的置换规则与命题逻辑中的置换 规则形式上完全相同,只是在这里A,B是一 阶逻辑公式。
例1 将下面公式化成与之等值的公式,使其没有既是约束出 现又是自由出现的个体变项。
(1)xF(x,y,z)→yG(x,y,z)
(2)x(F(x,y)→ yG(x,y,z))
解答 (1)xF(x,y,z)→ yG(x,y,z)
不是前束范式的例子:
x(F(x)→y(G(y)∧H(x,y))) x(F(x)∧y(G(y)→H(x,y)))
前束范式存在定理
定理 一阶逻辑中的任何公式都存在与之等值的前束范式。
(1)利用量词转化公式,把否定深入到指导变元的后面。 ┐xA(x) x┐A(x) ┐xA(x) x┐A(x)
在解释I下求下列各式的值:
(1)x(F(x)∧G(x,a)) (2)x(F(f(x))∧G(x,f(x)) (3)xyL(x,y) (4)yxL(x,y)
(1) x(F(x)∧G(x,a)) (F(2)∧G(2,2)) ∧ (F(3)∧G(3,2)) (0∧1) ∧ (1∧1) 0 x(F(x,t)→y源自(x,y,z))(代替规则)
或x(F(x,y)→yG(x,y,z))
x(F(x,y)→tG(x,t,z)) (换名规则)
例2 证明 (1) x(A(x)∨B(x)) <≠> xA(x)∨xB(x) (2) x(A(x)∧B(x)) <≠> xA(x)∧xB(x) 其中A(x),B(x)为含x自由出现的公式。
离散数学第四章-一阶逻辑基本概念

记作F(x1,x2… … xn) 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间的关系 例如, L(x,y):x与 y 有关系 L,L(x,y):xy,…
0元谓词——不含个体变项的谓词.实际上就是一般的命题
第四章 一阶逻辑基本概念 一阶逻辑命题符号化 一阶逻辑公式及其解释 第五章 一阶逻辑等值演算与推理 一阶逻辑等值式与基本的等值式 置换规则、换名规则、代替规则 前束范式
自然推理系统NL及其推理规则
2021/4/6
3
第四章 一阶逻辑基本概念
主要内容
一阶逻辑命题符号化
个体词、谓词、量词 一阶逻辑命题符号化
x : 个体域中有一个个体x xF(x)表示个体域中有一个个体x具有性质F
2021/4/6
11
量词
全称量词: 表示所有的.
存在量词: 表示存在, 有一个.
xF(x)表示个体域中所有的x具有性质F xF(x)表示个体域中有一个个体x具有性质F xyG(x,y) 表示个体域中所有的个体x和y有关系G xyG(x,y) 表示个体域中存在个体x和y有关系G xyG(x,y) 表示对个体域中每一个x都存在一个y使得
x(F(x)y(G(y)L(x,y))) 或者 xy(F(x)G(y)L(x,y))
(2) 令F(x):x是无理数,G(y):y是有理数,L(x,y):x>y
x(F(x)y(G(y)L(x,y))) 或者 xy(F(x)G(y)L(x,y))
2021/4/6
一阶逻辑公式及其解释
一阶语言 合式公式 合式公式的解释 永真式、矛盾式、可满足式
第二章一阶逻辑

练习2 在一阶逻辑中将下列命题符号化。 ⑴ 兔子比乌龟跑得快。 ⑵ 每个人都有自己喜欢的职业。 ⑶ 不存在同样高的两个人。 ⑷ 存在最小的自然数。 解 ⑴兔子比乌龟跑得快。 令F(x):x是兔子, G(x):x是乌龟, H(x,y):x比y跑得快。 本命题符号化为 x(F(x)→ y(G(y)→H(x,y))), 或 x y(F(x)∧G(y)→H(x,y))。
⑷ 存在着偶素数。
⑸ 在北京工作的人未必都是北京人。
解 ⑴有的有理数是整数。
令Q(x):x是有理数。 P(x):x是整数。 本命题符号化为 x (Q(x)∧P(x))。
⑵每个计算机系的学生都学离散数学。
令P(x):x是计算机系的学生。
R(x):x学离散数学。
本命题符号化为x (P(x)→R(x))。
⑶ 每个人都会犯错误。
令 R(x):x是人。 P(x):x会犯错误。 本命题符号化为 x (R(x)→P(x))。
⑷ 存在着偶素数。
令E(x):x是偶数。
P(x):x是素数。
本命题符号化为 x(E(x)∧P(x))。
⑸在北京工作的人未必都是北京人。
令W(x):x在北京工作。
B(x):x是北京人。
母a, b, c, d 等表示常元。
个体变项(也称个体变元,简称变元):泛指
个体域中个体的符号。一般用小写英文字母x, y,
z 等表示变元。
例
2是有理数。 这是一个简单命题。 “2”是个体词 “…是有理数”是谓词,它表示个体的性 质。 个体词:是表示个体的符号。 谓词:用来刻画个体的性质或个体之间的关 系。一般用大写英文字母表示谓词。 例 张三比李四高。 有两个个体词:张三,李四 “…比…高”是谓词,表示两个体之间的关 系。
《离散数学》第二章 一阶逻辑 讲稿分析

2.1 一阶逻辑基本概念一、本节主要内容基本概念——个体词、谓词、量词命题符号化二、教学内容个体词(个体): 所研究对象中可以独立存在的具体或抽象的客体,它可以是一个具体的事物,也可以是一个抽象的概念. 表示主语的词(名词或代词):苏格拉底,2,黑板,自然数,思想,定理.个体常项:具体的或特定的个体词,用a, b, c表示个体变项:抽象的或泛指的个体词,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成基本概念谓词: 表示个体词的性质或相互之间关系的词谓词常项:表示具体性质或关系的谓词F: …是人,F(a):a是人G:…是自然数,F(2):2是自然数谓词变项:表示抽象的或泛指的谓词F: …具有性质F,F(x):x具有性质F元数:谓词中所包含的个体词数一元谓词: 表示事物的性质多元谓词(n元谓词, n 2): 表示个体词之间的关系如L(x,y):x与y有关系L,L(x,y):x比y高2厘米注意:多元谓词中,个体变项的顺序不能随意改动个体变项和谓词的联合体,F(x),L(x,y),也称为谓词n元谓词L(x1, x2,…, xn)可看作一个函数,定义域为个体变项的个体域,值域为{0,1}n元谓词L(x1, x2,…, xn)的真值不确定,不是命题, 如:L(x,y)如果L(x,y)表示“x小于y”,谓词部分已经是常项,但还不是命题.考虑L(2,3)和L(3,2)L(x1, x2,…, xn)是命题:只有当L是常项,x1, x2,…, xn是个体常项0元谓词: 不含个体变项的谓词, 如L(a, b)如L的意义明确,则0元谓词都是命题一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p: 墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例1(续)(2) 是无理数仅当是有理数在命题逻辑中, 设p:是无理数,q:是有理数.符号化为p → q, 这是假命题在一阶逻辑中, 设F(x): x是无理数, G(x): x是有理数符号化为(3) 如果2>3,则3<4在命题逻辑中, 设p:2>3,q:3<4.符号化为p→q, 这是真命题在一阶逻辑中, 设F(x,y):x>y,G(x,y):x<y,符号化为F(2,3)→G(3,4)(4)如果张明比李民高,李民比赵亮高,则张明比赵亮高.在命题逻辑中, 设p:张明比李民高,q:李民比赵亮高, r:张明比赵亮高.符号化为:p ∧ q → r在一阶逻辑中, 设F(x,y):x比y高a:张明,b:李民,c:赵亮符号化为:F(a, b) ∧ F(b, c) → F(a, c)基本概念(续)量词: 表示数量的词例如(1)所有的人都要死的;(2)有的人活一百岁以上;全称量词∀: 表示任意的, 所有的, 一切的等∀x 表示对个体域中所有的个体,∀x F(x)表示个体域中所有的个体都有性质F.∀x F(x),其中F(x):x是要死的,个体域为人类集合存在量词∃: 表示存在着, 有的, 有一个,至少有一个等∃x 表示存在个体域中的个体,∃x F(x)表示存在着个体域中的个体具有有性质F ∃x G(x),其中G (x):x活一百岁以上,个体域为人类集合如果个体域D为全总个体域,则∀x F(x),其中F(x):x是要死的,表示宇宙间的一切事物都要死的.∃x G(x),其中G (x):x活一百岁以上,表示宇宙间的一切事物中存在活一百岁以上的. 特性谓词:M(x): x是人符号化为:(1)∀x (M(x) → F(x))(2)∃x (M(x) ∧ G(x))考虑:(1)∀x (M(x) ∧ F(x))(2)∃x (M(x) → G(x))一阶逻辑中命题符号化(续)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分别取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为∀x G(x)(2) 设G(x):x用左手写字, 符号化为∃x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) ∀x (F(x)→G(x))(2) ∃ x (F(x)∧G(x))这是两个基本公式, 注意这两个基本公式的使用.一阶逻辑中命题符号化(续)例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y∀x(F(x)→∀y(G(y)→L(x,y))) 或∀x∀y(F(x)∧G(y)→L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>y∃x(F(x)∧∃y(G(y)∧L(x,y)))或∃x∃y(F(x)∧G(y)∧L(x,y)) 两者等值一阶逻辑中命题符号化(续)几点注意:1元谓词与多元谓词的区分无特别要求,用全总个体域量词顺序一般不要随便颠倒例:对任意x,存在着y,使得x+y=5. 个体域为实数集.符号化为:∀x ∃y H(x,y), 其中H(x,y):x+y=5考虑∃y ∀x H(x,y) 否定式的使用例:在一界逻辑中命题符号化①没有不呼吸的人②不是所有的人都喜欢吃糖③不是所有的火车都比所有的汽车快①⌝∃x( F(x)∧⌝G(x))其中F(x):x是人,G(x):x呼吸或者:∀x( F(x) →G(x))②⌝∀x( F(x) →G(x))其中F(x):x是人,G(x):x喜欢吃糖或者:∃x( F(x)∧⌝G(x))③⌝∀x( F(x) →∀y (G(y) →H(x,y)) )或者:∃x( F(x)∧∃y (G(y) ∧⌝ H(x,y)) )例:在一界逻辑中命题符号化①一切人都不一样高②每个自然数都有后继数③有的自然数无先驱数①∀x ∀y( F(x) ∧F(y) ∧ G(x,y) →⌝H(x,y))其中F(x):x是人,G(x,y) :x和y不是同一个人,H(x,y):x和y一样高或者:⌝∃x ∃y( F(x) ∧F(y) ∧ G(x,y) ∧H(x,y))②∀x( F(x) →∃y(G(y) ∧ H(x,y))其中F(x):x是自然数,H(x,y) :y是x的后继数或者:∀x( F(x) →L(x)) ,L(x) :x有后继数③∃x( F(x) ∧∀y(G(y) →⌝ H(x,y))或者:∃x( F(x)∧⌝L(x) ) ,L(x) :x有先驱数2.2 一阶逻辑公式及解释一、本节主要内容字母表合式公式(简称公式)个体变项的自由出现和约束出现解释永真式(逻辑有效式)矛盾式(永假式)可满足式二、教学内容字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, ai, bi, ci, …, i ≥1(2) 个体变项:x, y, z, …, xi, yi, zi, …, i ≥1(3) 函数符号:f, g, h, …, fi, gi, hi, …, i ≥1(4) 谓词符号:F, G, H, …, Fi, Gi, Hi, …, i ≥1(5) 量词符号:∀, ∃(6) 联结词符号:⌝, ∧, ∨, →, ↔(7) 括号与逗号:( , ), ,项定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若ϕ(x1, x2, …, xn)是任意的n元函数,t1,t2,…,tn是任意的n个项,则ϕ(t1, t2, …, tn) 是项.(3) 所有的项都是有限次使用(1), (2) 得到的.例:a,b,x,y,f(x,y)=x+y,g(x,y)=x-y都是项f(a, g(x,y))=a+ (x-y)是项其实, 个体常项、变项是项,由它们构成的n元函数和复合函数还是项原子公式定义设R(x1, x2, …, xn)是任意的n元谓词,t1,t2,…, tn是任意的n个项,则称R(t1, t2, …, tn)是原子公式.其实,原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式合式公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(⌝A)也是合式公式(3) 若A, B是合式公式,则(A∧B), (A∨B), (A→B),(A↔B)也是合式公式(4) 若A是合式公式,则∀xA, ∃xA也是合式公式(5) 只有有限次地应用(1)~(4)形成的符号串才是合式公式(谓词公式).个体变项的自由出现与约束出现定义在公式∀xA和∃xA中,称x为指导变元,A为相应量词的辖域. 在∀x和∃x的辖域中,x的所有出现都称为约束出现,A中不是约束出现的其他变项均称为是自由出现的.例如, 在公式∀x(F(x,y)→G(x,z)) 中,A=(F(x,y)→G(x,z))为∀x的辖域,x为指导变项, A中x的两次出现均为约束出现,y与z均为自由出现.闭式: 不含自由出现的个体变项的公式.例1:∀x(F(x)→∃y H(x,y) )∃y H(x,y)中,y为指导变项,∃的辖域为H(x,y),其中y为约束出现的,x为自由出现的. 在整个合式公式中,x为指导变项,∀的辖域为(F(x)→∃y H(x,y) ),其中x与y都是约束出现的,x约束出现2次,y约束出现1次.例2:∀x ∀y(R(x,y) ∨L(y,z) ) ∧∃x H(x,y)∀x ∀y(R(x,y) ∨L(y,z) )中,x,y都是指导变项,辖域为(R(x,y) ∨L(y,z) ),x与y都是约束出现的,z为自由出现的.∃x H(x,y)中,x为指导变项,∃的辖域为H(x,y),其中x为约束出现的,y为自由出现的在此公式中,x为约束出现的,y为约束出现的,又为自由出现的. z为自由出现的.换名规则将量词辖域中出现的某个约束出现的个体变项及对应的指导变项,改成另一个辖域中未出现过的个体变项符号,公式中的其余部分不变。
离散数学-03-一阶逻辑

3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化
离散第三章
6
6
3.1一阶逻辑基本概念
▪ 个体词 ▪ 谓词 ▪ 量词 ▪ 一阶逻辑中命题符号化
7
77
基本概念——个体词、谓词、量词
个体词(个体): 所研究对象中可以独立存在的具 体或抽象的客体
个体常项:具体的事物,用a, b, c表示 个体变项:抽象的事物,用x, y, z表示 个体域: 个体变项的取值范围
∀x(F(x)→G(x)) ∧ F(a) → G(a)
设前件为真,即∀x(F(x)→G(x))与F(a)都为真. 由于∀x(F(x)→G(x))为真,故F(a)→G(a)为真. 由F(a) 与F(a)→G(a)为真,根据假言推理得证G(a)为真.
22
2222
一阶逻辑的命题符号化
注意:
1) 分析命题中表示性质和关系的谓词,分别符号化为一元 和n元谓词。
有限个体域,如{a, b, c}, {1, 2} 无限个体域,如N, Z, R, … 全总个体域: 宇宙间一切事物组成
8
88
基本概念 (续)
谓词: 表示个体词性质或相互之间关系的词 谓词常项:具体的。如:F(a):a是人 谓词变项:抽象、泛指的,如:F(x):x具有性质F 一元谓词: 表示事物的性质 多元谓词(n元谓词, n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词, 即命题常项或命 题变项 如 L(x, y):x与y有关系L,L(x, y):xy,…
2) 如果5大于4,则4大于6。
设2元谓词 G(x, y): x大于y. a:4. b:5. c:6
G(b,a) →G(a,c)
由于G(b,a) 为真,而G(a,c) 为假,所以该公式为假。
12
12
基本概念
一阶逻辑的命题符号化-小总结
一阶谓词原理
14:08
14
D.举例
1.设个体域为D={0,1,2,……,10},将下列命题符号化: (1)D中所有元素都是整数;
∀xF(x), 其中F(x):x是整数 (2)D中有的元素是偶数; ∃xG(x), 其中G(x):x是偶数 (3)D中所有的偶数都能被2整除;
∀x(G(x) H(x)), 其中G(x):x是偶数; H(x):x能被2整除 (4)D中有的偶数是4的倍数。
(5)数量词:表示全体概念的数量词,如“每个”、“任何”、“所 有”等译为全称量词,表示部分概念的数量词,如“有”、“存 在”、“若干”、“有些”等,译为存在量词;
(6)副词和前置词与其它词类合并,不再进行单独分析;
(7)连词一般译为逻辑联结词。
14:08
19
2.谓词合式公式
A.原子公式 定义:不出现命题联结词和量词的谓词命名式
(1)非空个体域D;
(2)D中一些特定元素的集合 {a1, a2 ,..., ai ,...}
个体变项的取值范围为个 体域,个体域可以是有穷 集合,也可以是无穷集合。
全总个体域:由宇宙间一切事物组成的域为全总个体域。
14:08
4
一、谓词和个体
B. 谓词
a.小陈是大学生 b.小张生于苏州 c. 8=3*2
x是大学生
小陈-----个体;是大学生-----谓词: 是大学生刻划了x 的性质
x生于y x=y*z
14:08
7
•例如
S(x):表示x是大学生。
一元谓词
G(x,y):表示 x>y。
二元谓词
B(x,y,z):表示x在y与z之间。三元谓词
一般地
P(x1,x2,…,xn)
是n元谓词。
一阶逻辑的语言
∀x∀y(¬((x ≈ y → Sx ≈ Sy) → ¬(Sx ≈ Sy → x ≈ y))))。
3. 给定任意公式 φ(v1),数学归纳原理可以表示为以下公式: (φ(0) ∧ ∀x(φ(x) → φ(Sx))) → ∀x(φ(x))。
4. x 是素数。 首先,这个命题可以理解为:
x > 1 并且 x 没有除自身和 1 之外的因子。 这样我们得到如下公式:
注意到其中 ∅ 不是我们语言 Set 中的常数符号,我们要利用它的定义来替换它。具体 做法是将第一行换成:
其余不变。
∀X(∀z(∀x(x ̸∈ z) → (X ̸= z ∧ z ̸∈ X)) →
最后再举两个代数中的例子: 群论语言 g = {e, +}
群的公理可以表达如下: 1. 群的运算满足结合律。
(2) 如果 α 和 β 是合式公式,则 (¬α) 和 (α → β) 也是;
(3) 如果 α 是合式公式,则 ∀vi α 也是。
注:
(1) 我们引进符号 ∨,∧ 和 ↔ 分别作为 ((¬α) → β),(¬(α → (¬β))),和 ((α → β)∧(β → α)) 的简写。
(2) 我们用 ∃xα 作为 (¬∀x(¬α)) 的简写,并称 ∃ 为存在量词。
(6) 我们通常会用大写的英文字母,如 P ,Q, R 等等表示谓词符号;小写字母,如 x, y, z 表示变元;用 f, g, h 表示函数符号;a, b, c 表示常数符号;t 表示项;小写希腊字母, 如 α,β,φ,σ,τ 等等表示公式;用大写希腊字母,如 Γ,∆,Σ 表示公式集。虽 然我们做不到完全没有例外,但把记号固定下来是一个好的习惯。
3
第 1 节 一阶逻辑的语言的定义和例子
第2章 一阶逻辑
第2章 一阶逻辑 章
例如,x,a,f(x,a),f(g(x,a,b),h (x))均是项,其中h、f和g分别是一元、二元和三元 运算符。而h(a,b)不是项,因为h是一元运算符, 但h(a,b)中h的后面跟了两个项,同样g(x)也不 是项(理由请读者自己考虑)。
第2章 一阶逻辑 章
定义2.2.2 若F是n元谓词,t1,t2,…,tn是项,则 F(t1,t2,…,tn)是原子公式。 由定义可知,原子命题是不含量词和联结词的谓 词公式。同命题逻辑中的情况相似,这里也可以用联 结词将原子公式复合成分子公式。(事实上我们已经 这样做了。)
第2章 一阶逻辑 章
(3)本命题的意思是:存在着这样的x和y,x是病 人,y是医生,x不相信y。因此,本命题符号化为:
∃ x ∃ y(F(x)∧G(y)∧ H(x,y))
或
∃ (x(F(x)∧∃ y(G(y)∧
H(x,y)))
(4)本命题的意思是:对于每个x,如果x是病人, 就存在着医生y,使得x相信y。因此,本命题符号化为:
(2)令F(x,y):x是y的学生;a:小王;b:李 老师。则原句形式化为: F(a,b)。 (3)令F(x,y):x≤y;G(x,y):x=y。式化 为: (F(x,y)∧F(y,x))→G(x,y)。
第2章 一阶逻辑 章
前两句均是命题,第三句因为含有变元所以是命 题函数。但实际上我们知道,只要将x、y限制在数的 范围内,第三句是定理,是永真的。这就涉及到了个 体域。在简单命题中,常有一些表示数量关系的词语, 诸如"所有的"、"有一些"等等,用来表示论域中的全 体或部分个体,在谓词逻辑中,我们用量词把它们形 式化。
第2章 一阶逻辑 章
我们称由谓词符和变元符组成的符号串为命题函 数。之所以称为命题函数,是因为命题函数不是命题, 只有谓词为常元并将其中的变元代以具体的个体后, 才能构成命题。例如:"G(x,y):x整除y。"并不是 命题,但若取a:2,b:6,则G(a,a),G(a,b) 以及G(b,a)均是命题,前两个是真命题,第三个是 假命题。G(a,a)、G(a,b)等称为0元谓词,它 们不含个体变元,0元谓词即命题。