离散数学26 前束范式

合集下载

6-前束范式推理

6-前束范式推理

§2.5 推理理论(1)
约定: A(x)表示x是A中的自由变元,
»例题1-2 »例题2 »例题3
A(y)表示用y取代A中自由变元x所有出现所得的结果. 例:设A(x):xP(x)Q(x)R(x,y),则A(y)为xP(x)Q(y)R(y,y)
与量词有关的规则:
这些规则只能对前束范式使用! 全称指定规则US: xA( x ) , 个体词y不在A(x)约束出现(pp.50例)
x(A(x)∧B(x))xA(x)∧xB(x)
x(A(x)∨B(x))xA(x)∨xB(x) xA(x)∨xB(x)x(A(x)∨B(x)) x(A(x)∧B(x))xA(x)∧x B(x)
-吴扬扬-
(对∧可分配)
(对∨可分配)
13
6
§2.5 推理理论(2)
例1: 证明苏格拉底论证:x(M(x)→D(x)), M(a)D(a) 证明: (1) M(a) (2) x(M(x)→D(x)) (3) M(a)→D(a) 前提 前提 (2)US
»
(4) D(a) (1)(3)假言推论 例2: 证明 x(P(x)Q(x))xP(x)→xQ(x). x P(x) 附加前提 证明: (1) (2) P(c) (1)ES (3) x(P(x)Q(x)) 前提 (4) P(c)Q(c) (3)US (5) Q(c) (2)(4)析取三段论 (6) xQ(x) (5)EG (7) xP(x)→xQ(x) CP
主要内容:
范式
前束范式 Skolem范式
推理理论
与量词有关的规则
-吴扬扬-
1
§2.4 范式(1)
前束范式: 前束词 母式 形为Q1x1…QrxrB(r≥0)的公式,其中:Qi为量词,B不含量词的公式 * 所有量词均非否定地出现在公式开头且量词的辖域均延伸到 整个公式的末尾。 例1: xyz(P(x,y)Q(y,z))

离散数学部分概念和公式总结

离散数学部分概念和公式总结

离散数学部分概念和公式总结命题:称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。

给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。

若指定的一组值使A的值为真,则称成真赋值。

真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。

将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。

命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。

(3)若A至少存在一组赋值是成真赋值,则A是可满足式。

主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。

主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。

命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。

约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。

一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。

前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。

集合的基本运算:并、交、差、相对补和对称差运算。

笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。

二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。

前束范式推理

前束范式推理
主要内容:
范式 前束范式 Skolem范式 推理理论 与量词有关的规则
-吴扬扬-
1
§2.4 范式(1)
前束范式: 前束词 母式 形为Q1x1…QrxrB(r≥0)的公式,其中:Qi为量词,B不含量词的公式 例1: ∀x∃y∀z(P(x,y)→Q(y,z)) R(x,y)? (∀x)P(x)∧(∃y)Q(y) ? * 所有量词均非否定地出现在公式开头且量词的辖域均延伸到整个 公式的末尾。 前束析取范式 前束合取范式 设A为合式公式,B为前束范式,若A
∀xA ( x ) ,个体词y不在A(x)约束出现(pp.50例) 全称指定规则US: ∴ A ( y)
存在指定规则ES:∃ xA ( x ) , c不在A(x)或其前推导中出现的个 ∴ A ( c ) 体符号,且A(x)中无其他自由变元 全称推广规则UG:
A ( y) ,若A(y)对任意的y均成立(例2.5.5) ∴ ∀xA ( x )
»
(4) D(a) (1)(3)假言推论 例2: 证明 ∀x(P(x)∨Q(x))⇒∃x¬P(x)→∃xQ(x). ∃x ¬P(x) 附加前提 证明: (1) (2) ¬P(c) (1)ES (3) ∀x(P(x)∨Q(x)) 前提 (4) P(c)∨Q(c) (3)US (5) Q(c) (2)(4)析取三段论 (6) ∃xQ(x) (5)EG (7) ∃x¬P(x)→∃xQ(x) CP
10
第一篇小结
知识点 命题逻辑 谓词逻辑 命题常元、命题变元 个体常元变元、个体域、函数 命题符号化 联接词 谓词符号、量词、联接词 公式的真值 公式间的关系 公式 标准化 合式公式、公式的解 释、公式分类 (永真永假可满足) 等价、永真蕴含、 对偶原理 合取、析取范式 主合取、析取范式 项、原子公式、合式公式 约束变元、自由变元、 公式的解释、公式的分类 等价、永真蕴含、含有 量词的基本恒等蕴含式 前束范式、斯柯莱范式

离散数学26 前束范式

离散数学26 前束范式
2
一、前束范式
例:化下列公式为前束范式
1)x F(x) xG(x) 2) xF(x) xG(x) 解:(1) x F(x) xG(x) x F(x) xG(x) x (F(x) G(x)) (2) x F(x) xG(x) x F(x) x G(x) x F(x) y G(y) x (F(x) y G(y)) x y (F(x) G(y))
4
一、前束范式
例:化为前束范式
x (y A (x, y) x y (B(x, y) y (A(y, x) B(x, y))))
解:原式
x(y A(x, y) x y (B(x, y) y (A(y, x) B(x, y))))
x (yA(x, y) x y (B(x, y) y (A(y, x) B(x, y)))) x (yA(x, y) u r (B(u, r) z (A(z, u) B(u, z)))) x y u rz(A(x, y) (B(u, r) (A(z, u) B(u, z))))
8
三、前束析取范式
定义2-6.3:如果一个谓词公式wff A具有如下形式,
则称其为一个前束析取范式。 (□v1)(□v2)…(□vn)[(A11 A12 … A1l1) (A21 A22 … A2l2) … (Am1 Am2 … Amlm)]

其中□ 可为或,vi(i=1,2,……n)是客体变元,Aij 是 原子公式或其否定。
1
一、前束范式
例如 x y(F(x, y) G(x, y)) , xyz(F(x, y, z) G(x, y, t)) 等都是前束范式。 而 x F(x) x G(x, y) x (F(x) y (G(y) H(x))) 等不是前束范式。 定理2.-6.1:任何一个谓词公式均等价于某个前束范式。 在一阶逻辑中,任何合式公式都存在前束范式。 具体做法:总是利用德摩根律及量词与否定间关系把 否定符号放在谓词之前,有必要时进行换名或代替, 再利用量词作用域扩张的等值式,求出前束范式。一 般前束范式并不唯一。

离散数学23.前束范式

离散数学23.前束范式
1.定义:如果一个谓词公式符合下面条件,它就是前束范式:所有量词都在公式的开头;所有量词的辖域都延伸到公式的末尾.
例如(y)(x)(z)(A(x)→(B(x,y)∨C(x,y,z))) ,
(x)(A(x)→B(x)),就是前束范式.
而(x)A(x)∧(y)B(y),
(x)(y)(A(x)→(B(x,y)∧(z)C(z))),
学情分析
学生已经学习了变元的约束,能够利用谓词演算的等价公式进行演算。
教学评价
师生互动,启发式教学引导学生思考并进而解决问题;深入分析,用例题加深学生对知识点的理解。
课程资源
参考书目,网上教学视频,网络微课。
教学过程:
与命题公式的范式类似,谓词公式也有规范形式。这里主要介绍前束范式--所有量词都在公式前边约束变元.
(x)(P(x)∨R(x))∨((y)P(y)∧Q(z)) (换变元)
(x)(P(x)∨R(x))∨(y)(P(y)∧Q(z)) (扩量词辖域)
(x)(y)((P(x)∨R(x))∨(P(y)∧Q(z))) (扩量词辖域)
定义2.6.2一个谓词公式A,如果具有形式:
(v1)(v2)…(vn)((A11A12…A1l1)(A21A22…A2l2)…(Am1Am2…Amlm))
将一个谓词公式化为前束合取范式或前束析取范式时,只需在前面求前束范式的(1)~(4)四个步骤基础上再增加一个步骤:
(5)利用分配律将公式化为前束合取范式或前束析取范式.
补充说明
4)用量词辖域扩张公式提取量词,使之成为前束范式形式.
例1. (x)A(x)→(x)B(x)
(x)A(x)∨(x)B(x)
(x)A(x)∨(x)B(x)
(x)A(x)∨(y)B(y) (换元)

离散数学知识点

离散数学知识点

说明:定义:红色表示。

定理性质:橙色表示。

公式:蓝色表示。

算法:绿色表示页码:灰色表示数理逻辑:1.命题公式:命题,联结词(,,,,),合式公式,子公式2.公式的真值:赋值,求值函数,真值表,等值式,重言式,矛盾式3.范式:析取范式,极小项,主析取范式,合取范式,极大项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与非,或非,联结词完备集5.推理理论:重言蕴含式,有效结论,P规则,T规则,CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原子公式,合式公式,自由变元,约束变元,辖域,换名,代入8.公式语义:解释,赋值,有效的,可满足的,不可满足的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,-规则(US),+规则(UG),-规则(ES),+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, , , , 空集, 全集, 幂集, 文氏图, 交, 并, 差, 补,对称差2.关系: 序偶, 笛卡尔积, 关系, domR, ranR, 关系图, 空关系, 全域关系, 恒等关系3.关系性质与闭包:自反的, 反自反的, 对称的, 反对称的, 传递的,自反闭包r(R),对称闭包s(R), 传递闭包t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序, 哈斯图, 全序(线序), 极大元/极小元, 最大元/最小元, 上界/下界6.函数: 函数, 常函数, 恒等函数, 满射,入射,双射,反函数, 复合函数7.集合基数:基数, 等势, 有限集/无限集, 可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,幺元,零元,逆元2.代数系统:代数系统,子代数,积代数,同态,同构。

3.群与子群:半群,子半群,元素的幂,独异点,群,群的阶数,子群,平凡子群,陪集,拉格朗日(Lagrange)定理4.阿贝尔群和循环群:阿贝尔群(交换群),循环群,生成元5.环与域:环,交换环,含幺环,整环,域6.格与布尔代数:格,对偶原理,子格,分配格,有界格,有补格,布尔代数,有限布尔代数的表示定理图论:1.图的基本概念:无向图、有向图、关联与相邻、简单图、完全图、正则图、子图、补图,握手定理,图的同构2.图的连通性:通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈),点连通,连通图,点割集,割点,边割集,割边,点连通度,边连通度,弱连通图,单向连通图,强连通图,二部图(二分图) 3. 图的矩阵表示:关联矩阵,邻接矩阵,可达矩阵4. 欧拉图与哈密顿图:欧拉通路、欧拉回路、欧拉图、半欧拉图,哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图5. 无向树与根树:无向树,生成树,最小生成树,Kruskal ,根树,m 叉树,最优二叉树,Huffman 算法6. 平面图:平面图,面,欧拉公式,Kuratoski 定理数理逻辑:命题:具有确定真值的陈述句。

离散数学-2-6_前束范式

离散数学-2-6_前束范式
9
三、前束析取范式
定义2-6.3:如果一个谓词公式wff A具有如下形式,
则称其为一个前束析取范式。 (□v1)(□v2)…(□vn)[(A11 A12 … A1l1) (A21 A22 … A2l2) … (Am1 Am2 … Amlm)]

其中□ 可为或,vi(i=1,2,……n)是客体变元,Aij 是 原子公式或其否定。
6
二、前束合取范式
定义2-6.2:如果一个谓词公式wff A具有 如下形式,则称其为一个前束合取范式。 (□v1)(□v2)…(□vn)[(A11 A12 … A1l1) (A21 A22 … A2l2) … (Am1 Am2 … Amlm)] 其中□ 可为或,vi(i=1,2,……n)是客体 变元,Aij 是原子公式或其否定。
第二章谓词逻辑
2-6 前束范式 授课人:李朔 Email:chn.nj.ls@
1
一、前束范式
与命题逻辑类似,在谓词逻辑中也希望研 究其合式公式,即谓词公式的规范形式, 这就是前束范式。 定义2-6.1 设A为一个谓词公式,若A有形 式:Q1x1Q2x2QkxkB,则称A为前束范式, 其中Qi(1≤i≤k)为或,B为不含量词的谓 词公式。
3
一、前束范式
例:化下列公式为前束范式
1)x F(x) xG(x) 2) xF(x) xG(x) 解:(1) x F(x) xG(x) x F(x) xG(x) x (F(x) G(x)) (2) x F(x) xG(x) x F(x) x G(x) x F(x) y G(y) x (F(x) y G(y)) x y (F(x) G(y))

离散数学部分概念和公式总结(精简版)

离散数学部分概念和公式总结(精简版)

第一章命题逻辑一、等价公式(真值表)1)常用联结词:┐否定∨析取∧合取→:条件∆:双条件当且仅当Q 取值为F 时P →Q 为F ,否则为T ★等价公式表(等值公式表)常用的其它真值表┐┐P<=>P 双重否定P ∨P<=>P P ∧P<=>P幂等律(P ∧Q)∧R<=>P ∧(Q ∧R)(P ∨Q)∨R<=>P ∨(Q ∨R)结合律P ∧Q<=>Q ∧P P ∨Q<=>Q ∨P交换律P ∧(Q ∨R)<=>(P ∧Q)∨(P ∧R)P ∨(Q ∧R)<=>(P ∨Q)∧(P ∨R)分配律P ∨(P ∧Q)<=>P P ∧(P ∨Q)<=>P 吸收┐(P ∧Q)<=>┐P ∨┐Q ┐(P ∨Q)<=>┐P ∧┐Q 德摩根P ∨F<=>P P ∧T<=>P 同一律P ∨T<=>T P ∧F<=>F 零律P ∨┐P<=>T P ∧┐P<=>F否定律常用的其它真值表P ┐P T F FTP Q P ∨Q T T T T F T F T T FFFP Q P ∧Q T T T T F F F T F F FFP Q P →Q (┐P ∨Q)T T T T F F F T T FFTP→Q<=>┐P ∨Q P ∆Q<=>(P→Q)∧(Q→P)P ∆Q<=>Q ∆PP ∆Q<=>(P ∧Q)∨(┐P ∧┐Q)┐(P ∆Q)<=>P ∆┐Q R ∨(P ∨┐P)<=>T R ∧(P ∧┐P)<=>F P→Q<=>┐Q→┐P ┐(P→Q)<=>P ∧┐Q (P→Q)∧(P→┐Q)<=>┐P P→(Q→R)<=>(P ∧Q)→R (P ∆Q)∆R<=>P ∆(Q ∆R)命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
二、前束合取范式
第二步,约束变量换名: D (x)[P(x)(z)Q(z,y)(w)R(x,w)] 第三步,消去条件联结词: D (x)[(P(x)(z)Q(z,y)) (w)R(x,w)] 第四步,将深入: D (x)[(P(x) (z)Q(z,y))(w)R(x,w)] (x)[(P(x)(z)Q(z,y))(w)R(x,w)] 第五步,将量词提前: D (x)(z)(w)[(P(x)Q(z,y)) R(x,w)] (x)(z)(w) [(P(x)R(x,w))(Q(z,y) R(x,w) ) ]

3
一、前束范式
例:化下列公式为前束范式

1)x F(x) x G(x) 2)x F(x) x G(x) 解:(1)x F(x) x G(x) x F(x) x G(x) x F(x) x G(x) x (F(x) G(x)) (2)x F(x) x G(x) x F(x) x G(x) x F(x) x G(x) x F(x) y G(y) x (F(x) y G(y)) x y (F(x) G(y))
定理2-6.3:任何一个谓词公式都可以转化为与其
等价的前束析取范式。 任一个wff A转化成前束析取范式步骤与例4类同
9
本课小结
1.前束范式 2.前束析取范式 3.前束合取范式
10
作业
P75 (2)
11
8
三、前束析取范式
定义2-6.3:如果一个谓词公式wff A具有如下形式,
则称其为一个前束析取范式。 (□v1)(□v2)…(□vn)[(A11 A12 … A1l1) (A21 A22 … A2l2) … (Am1 Am2 … Amlm)]

其中□ 可为或,vi(i=1,2,……n)是客体变元,Aij 是 原子公式或其否定。

例: (x)(z)(y){[P(x≠a)(z=b)][Q(y)(a=b)]} 就是一个前束合取范式。
6

二、前束合取范式
定理2-6.2:任何一个谓词公式都可以转化为与 其等价的前束合取范式。 用一个例子说明定理 例4. 将谓词公式wff D: (x)[(y)P(x)(z)Q(z,y)(y)R(x,y)] 化为与之等价的前束合取范式。 解: 第一步,取消多余量词: D (x)[P(x)(z)Q(z,y)(y)R(x,y)] 第二步,约束变量换名: D (x)[P(x)(z)Q(z,y)(w)R(x,w)]
4
一、前束范式
例:化为前束范式
x (y A (x, y) x y (B(x, y) y (A(y, x) B(x, y))))
解:原式
x(y A(x, y) x y (B(x, y) y (A(y, x) B(x, y))))
x (yA(x, y) x y (B(x, y) y (A(y, x) B(x, y)))) x (yA(x, y) u r (B(u, r) z (A(z, u) B(u, z)))) x y u rz(A(x, y) (B(u, r) (A(z, u) B(u, z))))
2
一、前束范式
例:化下列公式为前束范式
1)x F(x) xG(x) 2) xF(x) xG(x) 解:(1) x F(x) xG(x) x F(x) xG(x) x (F(x) G(x)) (2) x F(x) xG(x) x F(x) x G(x) x F(x) y G(y) x (F(x) y G(y)) x y (F(x) G(y))
1
一、前束范式
例如 x y(F(x, y) G(x, y)) , xyz(F(x, y, z) G(x, y, t)) 等都是前束范式。 而 x F(x) x G(x, y) x (F(x) y (G(y) H(x))) 等不是前束范式。 定理2.-6.1:任何一个谓词公式均等价于某个前束范式。 在一阶逻辑中,任何合式公式都存在前束范式。 具体做法:总是利用德摩根律及量词与否定间关系把 否定符号放在谓词之前,有必要时进行换名或代替, 再利用量词作用域扩张的等值式,求出前束范式。一 般前束范式并不唯一。
5
二、前束合取范式
定义2-6.2:如果一个谓词公式wff A具有 如下形式,则称其为一个前束合取范式。 (□v1)(□v2)…(□vn)[(A11 A12 … A1l1) (A21 A22 … A2l2) … (Am1 Am2 … Amlm)] 其中□ 可为或,vi(i=1,2,……n)是客体 变元,Aij 是原子公式或其否定。
一、前束范式
与命题逻辑类似,在谓词逻辑中也希望研 究其合式公式,即谓词公式的规范形式, 这就是前束范式。 定义2-6.1 设A为一个谓词公式,若A有形 式:Q1x1Q2x2QkxkB,则称A为前束范式, 其中Qi(1≤i≤k)为或,B为不含量词的谓 词公式。

前束范式的量词均在全式的开头,其作用域延 伸到整个公式的未尾
相关文档
最新文档