控制图设计的原理及应用
什么是控制图

什么是控制图控制图是根据假设检验的原理构造一种图,用于监测生产过程是否处于控制状态。
它是统计质量管理的一种重要手段和工具。
在生产过程中,产品质量由于受随机因素和系统因素的影响而产生变差;前者由大量微小的偶然因素叠加而成,后者则是由可辨识的、作用明显的原因所引起,经采取适当措施可以发现和排除。
当一生产过程仅受随机因素的影响,从而产品的质量特征的平均值和变差都基本保持稳定时,称之为处于控制状态。
此时,产品的质量特征是服从确定概率分布的随机变量,它的分布(或其中的未知参数)可依据较长时期在稳定状态下取得的观测数据用统计方法进行估计。
分布确定以后,质量特征的数学模型随之确定。
为检验其后的生产过程是否也处于控制状态,就需要检验上述质量特征是否符合这种数学模型。
为此,每隔一定时间,在生产线上抽取一个大小固定的样本,计算其质量特征,若其数值符合这种数学模型,就认为生产过程正常,否则,就认为生产中出现某种系统性变化,或者说过程失去控制。
这时,就需要考虑采取包括停产检查在内的各种措施,以期查明原因并将其排除,以恢复正常生产,不使失控状态延续而发展下去。
通常应用最广的控制图是W.A.休哈特在1925年提出的,一般称之为休哈特控制图。
它的基本结构是在直角坐标系中画三条平行于横轴的直线,中间一条实线为中线,上、下两条虚线分别为上、下控制界限。
横轴表示按一定时间间隔抽取样本的次序,纵轴表示根据样本计算的、表达某种质量特征的统计量的数值,由相继取得的样本算出的结果,在图上标为一连串的点子,它们可以用线段连接起来。
除了上述的休哈特控制图外,近年来出现了某些新形式的控制图,其基本思想与休哈特图相似,但作图根据的原理则各有不同。
其中较重要的是累积和控制图,这种控制图的对象,即标在图上的每一点,是在该点以前所有样本统计量的总和。
累积和图的提出,是考虑到在休哈特控制图中,判定过程是否处于控制状态全靠最新的一个或几个样本点,而忽略了较早的样本值中所包含的信息。
第二节-控制图原理

第二节-控制图原理什么是控制图控制图是一种用于监测和控制工程过程的可视化工具。
通常用于监测质量控制过程的统计数据,以便及时识别潜在问题并采取适当措施。
控制图也可以用于监测设备可靠性、生产进度等方面。
控制图的分类控制图可分为过程控制图和直方图。
过程控制图过程控制图是一种监测过程稳定性并指导改进的可视化工具。
它可以帮助我们在过程中及时发现不正常现象,以便采取适当措施,确保过程在稳定状态下运行。
过程控制图通常包括三种类型:一种是X-控制图,一种是S-控制图,另一种是R-控制图。
1.X控制图X控制图是一种数据类型控制图,用于监测均值是否稳定。
X控制图在原理上是比较简单的,是通过标准上下限范围内连续数据点的变化情况来判断过程是否稳定的。
2.S控制图S控制图用于监测数据分布的散布状况,通过这个散布情况来判断过程的稳定性。
如果散布过于广泛,则表明过程不稳定。
3.R控制图R控制图是一种可视的数据类型控制图,用于监测组内差异的大小和组间差异的大小。
如果组内差异很大,则表明过程不稳定。
直方图直方图是一种用于描述数据分布情况的图表。
它将数据进行分段,然后把每个分段的数据条数用柱状图表示出来,以便看出数据的分布规律。
直方图通常可以用于评估数据的分布形状,以便在研究中进行比较,并检测极端值/离群值。
如何制作控制图制作控制图的步骤如下:1.收集数据并进行分析首先我们需要收集数据,可以使用过程采样或过程监控系统,或手工记录过程数据。
然后对数据进行分析,计算出均值、标准差、极差等基本统计量。
2.设定控制限根据数据的均值、标准差和其他基本统计量,我们可以计算出控制限。
控制限是用来指导控制图的范围。
一般我们会选用3倍标准差作为上下控制限,即所谓的3σ控制图。
3.绘制控制图一旦确定了控制限,我们就可以开始绘制控制图了。
绘制控制图可以手动绘制,也可以使用计算机软件自动生成。
控制图的应用控制图的应用非常广泛,特别是在工业制造中。
经常使用控制图来监控生产过程,以及检测过程中的变化。
控制图PPT

03 控制图的结构
04 控制图的功能
05 控制图的作用
二、什么是控制图?
二、什么是控制图?
二、什么是控制图?
• 2.3控制图结构
中间一条实线为中心线; 上、下两条虚线分别为 上控制界限和下控制界限; 并有按时间先后排列的 统计数值的描点序列。
控制界限不能驾驭过程,仅仅反应当前过程的状态。
2.92
2.65
2.82
151107
2.83
2.88
2.78
2.73
六、控制图的制作示例
x
xR
计量控制图常数 表
xR
x
当n=4时,A2=0.729;D4=2.282;D3=0
R
R
R
R
控制限 UCL CL LCL
极差UCL 极差CL 极差LCL
计算值 2.818 2.541 2.265 0.865 0.379
7
四、控制图的判稳与判异
①1个点落在A区外
②连续9点落在中心线同一侧
③连续6点递增或递减
④连续14点中相邻点交替上下
⑤连续3点中有2点落在中心线 同一侧的B区以外
⑥连续5点中有4点落在中心线 同一侧的C区以外
⑦连续15点落在中心线两侧C区 内
⑧连续8点落在中心线两侧且无 一在C区内
四、控制图的判稳与判异
二、什么是控制图?
二、什么是控制图?
三、控制图的分类
Contents
01 按数值质量特性分类
02 按控制图用途分类
三、控制图的分类
三、控制图的分类
x x ~x
三、控制图的分类
• 3.2按控制图的用途分类:
分析用控制图
控制用控制图
控制图的作法及使用(教材)

二:管制图原理
μ- kσ
μ
μ+kσ
二:管制图原理
当一分配经证实为一常态分配时,则算出此常
态分配之标准差σ及平均值μ后,其特性可用 下列图表说明:
μ±kσ μ±0.67σ 在内机率 50.00% 在外机率 50.00%
μ±1σ μ±1.96σ μ±2σ μ±2.58σ
μ±3σ
68.26% 95.00% 95.45% 99.00%
1.3 非机遇原因 又称为:可避免之原因、人为原因、
特殊原因、异常原因、 局部原因等等。 例如: Δ 未遵照操作标准而操作,所发生之变异。 Δ 虽然遵照操作标准,但操作标准不完善,以致 发 生之变异。 Δ 机器设备之变动,发生之变异。 Δ 操作人员之更动,造成之变异。 Δ 原材料之不同,发生之变异。 Δ 量具不准确,造成之变异 。
二 .管制图原理 二:管制图原理
2.何谓变异性
在生产中变异永远存在.例如:同种原料内的变
化,机械的振动,当这些变化量极小时,制程仍 可被接受.这些称为机遇原因(chance cause) 或一般原因(common cause),称其在管制中 (in control)。
二 .管制图原理 二:管制图原理
一:管制图的概论
1. 所谓管制图:管制图上均包含有中心线
(Central line (CL)) 及上下两条管制界线 [Uppe r and Lowe r Control Lim i ts, (UCL)(LCL)],用以测知制程是否在正常状态 。 2. 管制图系于 1924 年由美国品管大师 W. A . S h e w h a r t 博士发明。
7.c控制图(缺陷数控制图) 用于控制一部机器,一个部件,一定长度,
控制图原理介绍

控制图原理介绍1. 引言控制图是质量管理和过程改进中常用的工具之一,通过统计分析和监控过程中的变化,帮助我们判断过程是否受到特殊因素的影响。
本文将介绍控制图的原理及其基本概念。
2. 控制图的定义及作用控制图是一种统计工具,用于监测和控制过程中的变化。
通过将过程数据绘制在控制图上,我们可以更直观地了解过程的变化趋势、异常情况以及过程的稳定性。
控制图可以帮助我们做出判断,确定是否需要采取措施来改进过程,以达到稳定和可控的状态。
3. 控制图的原理控制图基于统计学的基本原理,主要应用了过程能力分析和统计过程控制两个方面的方法。
3.1 过程能力分析过程能力分析是通过收集和分析数据来评估过程的稳定性和可控性。
它用一些指标来衡量过程的能力,如均值、方差等。
控制图中的中心线代表过程的平均值,而控制限代表过程的变异范围。
如果过程的数据点落在控制限之内,则说明过程是稳定的,否则可能存在特殊因素的影响。
3.2 统计过程控制统计过程控制是一种通过统计方法来监控过程的变化,并及时采取控制措施以避免过程产生不良品或错误结果的方法。
控制图中的控制限可以帮助我们判断过程是否处于可控状态。
如果数据点超出了控制限,就意味着过程发生了异常情况,需要进一步分析并采取相应的纠正措施。
4. 控制图的基本概念4.1 中心线控制图中的中心线代表过程的平均值。
它通常通过计算一组数据的平均值来确定。
4.2 控制限控制图中的控制限用于判断过程是否处于可控状态。
控制限分为上限和下限两个值。
上限代表过程的上界,下限代表过程的下界。
如果数据点超出了控制限,就意味着过程发生了异常情况。
4.3 标准差标准差是衡量数据的离散程度的指标。
在控制图中,标准差用于计算控制限。
较大的标准差意味着过程的变异性较大,而较小的标准差意味着过程的稳定性较高。
4.4 规格限规格限是工程师或客户规定的过程上下界限。
如果数据点超出了规格限,就意味着产品或过程不符合规格要求,需要进行调整或改进。
SPC中控制图的原理 制作和分析方法

8
控制图的作用是及时告警 只在控制图上描 点;当然是不可能起到预防作用的 必须强 调要求现场第一线工程技术人员来推行SPC; 把它作为日常工作的一部分;而质量管理人 员则应该起到组织 协调 鉴定与当好领导 参谋的作用
14
程调整到稳态后;才能延长控制图的控制 限作为控制用控制图;这就是控制用控制图 阶段 故日本有句名言:始于控制图;终于 控制图 所谓始于控制图是指对过程的分析 从应用控制图对过程进行分析开始;所谓 终于控制图是指对过程的分析结束;最终建 立控制用控制图 分析用控制图
15
分析用控制图主要分析以下两个方面 ⑴分析过程是否处于统计控制状态 ⑵该过程的过程能力指数是否满足要求 维尔
41
K=
ε T/2
则过程能力指数可修正为:
Cpk=1KT/6б0≤K≤1;过程当μ=m即分布中心 与规范中心重合无偏移时;K=0;Cpk=Cp而 当 μ=Tu或μ=TL时 K=1;Cpk=0;实际上这 时合格率仍为50%
42
四 Cp和Cpk的比较 无偏移情况的Cp表示过程加工的一致性;即
质量能力;Cp越大质量能力越强;而有偏移 情况的Cpk表示过程中心μ与规范中心m偏 移情况下的过程能力指数;Cpk越大;则二者 偏离越小;是过程质量能力与管理能力二者 综合的结果 故Cp与Cpk二者的重点不同;需 要同时加以考虑
UCLX=X+A2R=1 843+0 577×0 019=1 852 CLX=X=1 843
LCLX=XA2R=1 8430 577×0 019=1 832 作极差控制图;作均值控制图见下超级链
32
数据表
控制图的原理与绘制
控制图的原理与绘制1. 引言控制图是一种用于监控过程稳定性和异常情况的工具。
它可以帮助我们了解一个过程是否处于控制状态,以及是否存在任何特殊原因造成了异常情况的发生。
控制图通常由上下限线和一系列的数据点组成,我们可以通过分析这些数据点的模式和分布来判断过程的稳定性和品质。
2. 控制图的原理控制图的原理基于统计学和过程控制的概念。
它使用统计方法来衡量过程的变异性,并将这些统计量与事先设定的控制线进行比较。
控制线一般由上限线(UCL)和下限线(LCL)组成,代表了过程的变异范围,在这个范围内的数据点被认为是正常的,而超出这个范围的数据点则可能表明过程存在异常情况。
控制图的主要原理是基于正态分布假设,也就是我们假设过程的数据是服从正态分布的。
基于这个假设,我们可以利用统计学的知识计算出各种控制统计量,比如平均值、标准差、极差等。
通过计算这些统计量,我们可以确定过程的中心线和控制线,并通过绘制数据点和控制线来进行过程的监控。
3. 控制图的绘制步骤3.1 数据收集和准备控制图的绘制首先需要收集一组数据,这些数据一般是从过程中抽样得到的。
在收集数据之前,需要确定抽样的方法、频率和样本量,并确保数据的准确性和可靠性。
3.2 计算统计量在绘制控制图之前,我们需要计算一些统计量,比如均值、标准差和极差。
这些统计量可以帮助我们了解数据的分布和变异性,并用于确定控制线的位置。
3.3 绘制控制图绘制控制图通常使用一些专门的软件工具,比如Excel或统计软件,也可以使用编程语言如Python来编写程序进行绘制。
在绘制控制图时,需要确定控制线的位置和数据点的标记方式,通常使用不同的颜色或标记来表示正常和异常的数据点。
3.4 分析结果绘制完成后,我们需要对控制图进行分析和解读。
可以观察数据点的分布模式和位置关系,判断过程的稳定性和异常情况。
如果数据点超出控制线的范围,我们需要进行进一步的调查和改进,以确定是否存在特殊原因和采取相应的措施。
控制图
控制图控制图(Control Chart )又称管理图、休哈特图,是一种将显著性统计原理应用于控制生产过程的图形方法。
控制图是区分过程中正常波动和一场波动,并判断过程是否处于控制状态的一种工具。
正常波动是由普通原因(偶然因素、随机因素)造成的,这些因素在生产过程中大量存在,对产品质量经常发生影响,但它造成的质量波动往往比较小,在生产过程中是允许存在的,如材料成分的微小变化、设备的轻微震动、刃具的正常磨损、夹具的弹性变型等;一场波动是由特殊原因(异常因素、系统因素造成的。
这些因素在生产过程中并不大量存在,对产品质量也不经常发生影响,一旦存在,它对产品质量的影响就比较显著,如机器设备带病运转,操作者违章操作等。
控制图的控制界限就是用来区分正常波动和异常波动的。
1、控制图的基本结构1)以随时间推移而变动着的样品号为横坐标,以质量特性值或其统计量为纵坐标; 2)三条具有统计意义的控制线:上控制线UCL 、中心线CL 、下控制线LCL ; 3)一条质量特性值或其统计量的波动曲线。
2、控制图原理的解释 第一种解释:“点出界就判异”小概率事件原理:小概率事件实际上不发生,若发生即判异常。
控制图就是统计假设检验的图上作业法。
第二种解释:“抓异因,弃偶因”控制限就是区分偶然波动与异常波动的科学界限。
休哈特控制图的实质就是区分偶然因素与异常因素的。
UCLLCL样本统计量数值x 或R14 15 16 17 18按用途分类1)分析用控制图——用于质量和过程分析,研究工序或设备状态;或者确定某一“未知的”工序是否处于控制状态;2)控制用控制图——用于实际的生产质量控制,可及时的发现生产异常情况;或者确定某一“已知的”工序是否处于控制状态。
4、R X -图的绘制1)确定控制对象(统计量)一般应选择技术上最重要的、能以数字表示的、容易测定并对过程易采取措施的、大家理解并同意的关键质量特性进行控制。
2)选择控制图对于计量数据而言,R X -控制图是最常用最基本的。
质量控制图的原理和作用
质量控制图的原理和作用
质量控制图是质量管理中常用的工具,用于监控和控制过程的稳定性和一致性。
它基于统计原理,帮助团队识别和分析过程中的变异,并提供及时的反馈,以便采取适当的措施来改进和控制质量。
质量控制图的原理是建立在统计过程控制的概念上。
它通常基于数据采集和样本检验,并与预期的标准进行比较。
以下是几个常见的质量控制图和其原理:
1. 控制图:控制图是一种统计工具,用于检测过程中的常规变异和特殊因素引起的非常规变异。
它基于样本数据的变异性,并通过设置上下控制限来标识正常变异范围。
当样本数据超出控制限时,表示过程发生了特殊因素,需要进一步调查和纠正。
2. 均值图:均值图用于监控过程的中心线(平均值)是否在可接受的范围内稳定。
它计算每个样本的平均值,并绘制在控制图上。
如果平均值超出控制限,表示过程存在偏差,需要进行调整和改进。
3. 范围图:范围图用于监控过程的变异性。
它计算每个样本的范围(最大值与最小值之差),并绘制在控制图上。
范围图可以帮助识别过程中的非常规变异,并检测出偶然误差或特殊因素的存在。
4. Cp/Cpk图:Cp(过程能力指数)和Cpk(过程能力指数对称性)图用于评
估过程的能力和一致性。
它们基于过程的规格限制和测量数据的变异性,提供了关于过程能力。
控制图如何制作
第7页
共7页
<上一页
预览:
总损失为最小。如图5-7所示。这就是大多数控制图的控制界限都采用μ±3方式的理由。
图5—7两种错误总损失最小点
X—R控制图的操作步骤及应用示例
用于控制对象为长度、重量、强度、纯度、时间、收率和生产量等计量值的场合。X控制图主要用于观察正态分布的均值的变化,R控制图主要用于观察正态分
步骤3:计算Xi,Ri。
步骤4:计算X,R。
步骤5:计算R图控制线并作图。
步骤6:将预备数据点绘在R图中,并对状态进行判断。
若稳,则进行步骤7;若不稳,则除去可查明原因后转入步骤2重新进行判断。
步骤7:计算X图控制线并作图。
将预备数据点绘在X图中,对状态进行判断。
若稳,则进行步骤8;若不稳,则除去可查明原因后转入步骤2重新进行判断。
的X和R值记录在控制图的下方区域,形成“抽样数据区”,最下方可作为“不良原因对策区”,这样就可形成一份完
整的Xbar--R控制图。
二、控制图的轮廓线
第3页/(共6页)
控制图是画有控制界限的一种图表。如图5-4所示。通过它可以看出质量变动的情况及趋势,以
便找出影响质量变动的原因,然后予以解决。
图5-4控制图
以上是X-R控制图的介绍。
步骤8:计算过程能力指数并检验其是否满足技术要求。
若过程能力指数满足技术要求,则转入步骤9。
步骤9:延长X-R控制图的控制线,作控制用控制图,进行日常管理。
上述步1~步骤8为分析用控制图操作步骤,在这里如果直接SPC软件来做的话,就不需要自己计算跟画控制图,控制图计算公式已嵌入SPC软件中,只要把相关样本数据录入
(5)控制对象要选择容易测定并对过程容易采取措施者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制图设计的原理及应用
1. 控制图的定义和作用
控制图是一种用来描述和分析过程变化的可视化工具。
通过对数据的收集、整理和分析,控制图可以帮助我们识别过程中的特殊原因变异和常规原因变异,并为我们提供改进过程的依据。
2. 控制图设计的原理
控制图设计的原理主要基于统计学中的过程控制原理和质量管理原则。
以下是控制图设计的基本原则:
2.1 稳定性原理
控制图设计的目的是要检测和监控过程中的变异情况。
过程的稳定性是设计控制图的前提,即过程应该是可重复且稳定的。
如果过程不稳定,控制图的分析结果将失去意义。
2.2 可测性原理
控制图设计的另一个关键原则是可测性。
设计控制图时需要选择合适的测量指标,以及建立测量方法和测量系统,确保测量结果具有可靠性和有效性。
2.3 独立性原理
控制图设计应该尽量避免相关性和依赖性。
每个数据点应该是相互独立的,并且应该避免使用过去数据对未来数据进行预测或判断。
2.4 正态分布原理
在控制图设计中,通常假设过程的变异符合正态分布。
这是因为正态分布具有对称性和稳定性,在实际应用中比较常见。
如果数据不服从正态分布,可以采用变换方法或非参数方法来处理。
3. 控制图的基本组成
控制图通常由中心线、控制限、数据点和样本标记组成。
3.1 中心线
中心线是控制图的参考线,表示过程的平均水平。
通常使用过程平均计算出的中心线作为基准线。
3.2 控制限
控制限分为上下控制限和警示限。
上下控制限用于判断过程是否处于统计控制
状态;警示限用于指示过程是否开始偏离统计控制状态。
3.3 数据点
数据点是通过测量和收集数据获得的结果,用于绘制控制图。
3.4 样本标记
样本标记用于标记数据点所属的样本或子组。
4. 控制图的常用类型
在实际应用中,常用的控制图包括:平均值图(X-图),范围图(R-图),方
差图(S-图),样本比率图(P-图)和计数图(C-图)等。
4.1 平均值图(X-图)
平均值图用来监控过程的平均水平是否稳定。
通过对一系列样本的平均值进行
绘制,可以发现过程的偏移、趋势和周期性变化。
4.2 范围图(R-图)
范围图用来监控过程的变异程度。
通过对一系列样本的范围(最大值和最小值
的差)进行绘制,可以评估过程的稳定性和变异程度。
4.3 方差图(S-图)
方差图也是用来监控过程的变异程度。
通过对一系列样本的样本方差进行绘制,可以更准确地评估过程的变异程度。
4.4 样本比率图(P-图)
样本比率图主要适用于不良品率等二项分布数据的控制。
通过对一系列样本的
不良品率进行绘制,可以判断过程是否发生了超出控制限的变异。
4.5 计数图(C-图)
计数图主要适用于计数型数据的控制。
通过对一系列样本的计数值进行绘制,
可以评估过程是否发生了超出控制限的变异。
5. 控制图的应用场景
控制图可以在各个领域中应用,以下是一些常见的应用场景:
5.1 生产过程控制
控制图可以帮助生产过程进行稳定性控制和质量改进。
通过监控过程变异,可以及时发现和解决问题,并提高产品质量和生产效率。
5.2 服务质量控制
控制图在服务行业中也有广泛的应用。
例如,在酒店业中可以使用控制图来监控客房打扫时间和客房设施的维护状况,以提供更好的服务。
5.3 医疗质量管理
控制图可以用于医疗领域中的质量管理。
例如,可以使用控制图来监控手术时间、药物剂量和感染率等指标,以提高医疗过程的安全性和效率。
5.4 供应链管理
控制图还可以用于供应链管理中的质量控制。
通过监控供应商的交货时间、产品质量和客户投诉率等指标,可以帮助企业优化供应链,提高客户满意度。
6. 总结
控制图是一种重要的质量管理工具,可以帮助我们识别过程中的特殊原因变异和常规原因变异,并提供质量改进的依据。
掌握控制图设计的原理和应用场景,可以更好地利用控制图进行过程控制和质量管理,提升产品和服务的质量。