乘积型相位鉴频器

乘积型相位鉴频器
乘积型相位鉴频器

东北石油大学课程设计

2011年3月4日

东北石油大学课程设计任务书

课程高频电子线路

题目乘积型相位鉴频器的设计

专业电子信息工程姓名学号

主要内容、基本要求、主要参考资料等

1、主要内容

本题目为集成模拟乘法器应用设计之一,即设计一个乘积型相位鉴频器。通过本次电路设计,掌握集成模拟乘法器的基本原理及其所构成的相位鉴频电路的设计方法、电路调整及测试技术。加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。

2、基本要求

(1) 采用集成模拟乘法器设计乘积型相位鉴频器,电路的工作中心频率为

06.5MHz

f ;

(2) 绘制电路原理图,并给出鉴频特性曲线;

3、主要参考资料

[1] 阳昌汉. 高频电子线路. 哈尔滨:高等教育出版社,2006.

[2] 吴运昌. 模拟集成电路原理与应用. 广州:华南理工大学出版社,2000.

[3] 谢自美. 电子线路设计·实验·测试. 武汉:华中科技大学出版社,2000.

[4] 高吉祥. 电子技术基础实验与课程设计. 北京:电子工业出版社,2002.

完成期限2月28日-3月4日

指导教师

专业负责人

2011 年 2 月25 日

一、电路原理

1.电路原理及用途

鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频器。鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。因此,实现鉴频的核心部件是相位检波器。 相位检波又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波

2.主要技术指标

乘积型鉴相器组成方框图如图6.17所示。图中,两个输入信号分别为 调相波 u1=U1msin(ωct+Δφ) 本地参考信号 u2=U2mcos ωct (6―43)

图6.17 乘积型鉴相器组成方框图

1) u1和u2均为小信号

当|U1m|≤26mV 、|U2m|≤26 mV 时,由式(6―43)可得输出电流为

式中,K=Io/(4U2T),为乘法器的相乘增益因子。

通过低通滤波器后,上式中第二项被滤除,于是可得输出电压为

(6―44)

12

()()22o T T u u i I th th U U =

2

u o u 1001222

121212sin()cos 4411

sin sin(2)22

m m c c T T m m m m c u u I i I U U t t U U KU U KU U t ω?ω?ω?==+?=?++?121

sin 2o m m L u KU U R ?=

?

图6.18 乘积型鉴相器的鉴相特性曲线

鉴相器灵敏度为 (6―45)

2) u1为小信号,u2为大信号

当|U1m|≤26mV 、|U2m|≥100mV 时,由式(6-43)可 得输出电流为

鉴相器灵敏度为

3) u1和u2均为大信号

当|U1m|≥100mV,|U2m|≥100mV 时,由式(6―43)可得输出电流为

121

2

m m L S KU U R =1

211

()244

(cos cos3)sin()23[sin sin(2)]o T o c c m c T o m c T

u i I K t U I t t U t U I

U t U ωωωω?ππ

?ω?π==-+???+?=?++?+???11sin o L o m T

o L m

T I R

u U U I R s U U ?ππ=?=(a )

(b )

二、设计步骤和调试过程

1、总体设计电路

用MCl496构成的乘积型相位鉴频器电路

MCl496构成的乘积型相位鉴频器电路如图5-64所示

2、电路工作状态或元件参数的确定

图中调频信号通过电缆由输入端IN 输入,经D1和D2组成的双限幅器整形,除去寄生调幅,其中一路信号由1496的输入端○

8、○10输入,另一路信号经C13、C18、L1、R18、组成的LC 串并联移相网络,变为调相调频波,由1496的输入端○

1、○4端输入。 LC 串并联移相网络的工作原理

另一路经LC 串并联移相网络输出的信号,产生的的相移为:

()()222

'()arctan[(1)]arctan[]22o o o o

Q Q ωωωωπ

ωπ

?ωωω-+=--=- (5-86)

R12

当1o

ω

ω?<< 时,上式可近似表示为

(5-87) 或

2()arctan (

)o

f

Q f ?ω?

?

?=????

(5-88) 式中o f 为回路的谐振频率,与调频波的中心频率相等,Q 为回路品质因数,△f 为瞬时频率偏移。

鉴频器的相移φ与频偏△f 的特性曲线如图5-65所示。

由图可见:在f=f 0即△f=0时相位等于2π

,在f ?范围内,相位随频偏呈线性

变化,

图5-65 相移与频偏

从而实现线性移相。

MCl496的作用是将调频波与调频~调相波相乘,其输出经R 22、C 21、C 22组成的RC 低通滤波网络输出。 乘法器鉴相的基本原理

设在乘法器的一个输入端输入调频波u s (t)设其表达式为

()cos[sin ]

s sm c f u t U t m t ω=+Ω

(5-83)

式中,f m 为调频系数,Ω?=/ωf m 或/f m f F =?,其中ω?为调制信号产生的频偏。在乘法器的另一输入端输入经线性移相网络移相后的调频调相波

u '()s u t ,设其表达式为

乘法器的输出中,高频分量可以被滤波器滤掉。经低通滤波器得到所需

要的频率分量为:

()

''

'()cos{sin [()]}

2

sin[sin ()].................584s sm c f sm c f u t U t m t U t m t π

ω?ωω?ω=+Ω++=+Ω+

-o

f f Q /2?图14-3 移相网络的相频特性

2'()arctan ()()

22

o Q π

ωπ?ω?ωω???=

-=-????

()sin ()

o m u t U ?ω=

(5-85)

只要线性移相网络的相频特性)(ω?在调频波的频率变化范围内是线性的,当rad 4.0)(≤ω? 时,)()(sin ω?ω?≈,所以输出信号电压为:

(5-86)

因此鉴频器的输出电压()o u t 的变化规律与调频波瞬时频率的变化规律相同,从而实现了相位鉴频。所以相位鉴频器的线性鉴频范围受到移相网络相频特性线性范围的限制。

乘积型相位鉴频器鉴频特性

鉴频器的输出电压u 0与调频波瞬时频率f 的关系称为鉴频特性,特性曲线(或称S 曲线)如图5-66所示。

图5-66 鉴频器的鉴频特性曲线(或称S 曲线)

鉴频器的主要性能指标是鉴频灵敏度S d 和线性鉴频范围2Δf max 。S d 定义为鉴频

器输入调频波单位频率变化所引起的输出电压的变化量,通常用鉴频特性曲线u O -f 在中心频率o f 处的斜率来表示,即/d o S V f =??, 2Δf max 定义为鉴频器不失真解调调频波时所允许的最大频率变化范围,2Δf max 可在鉴频特性曲线上求出。

3、仿真及仿真结果分析

双失谐回路鉴频器的输入调频波的波形如下图5-1所示。

图14-1 相位鉴频特性()()2o m m o

f

u t U U Q

f ?ω?==

图4-1 输入调频波的波形图

模块一后,调频波变换为调频、调幅波,其输出波形如下图5-2所示。原调频信号为等幅的调频波,波形仅有有疏密之别,经变换电路变换后,波形振幅不等,形成包络。

图4-2 调频、调幅波的波形图

再经模块二,即二极管包络检波器检波之后,输出所需的原调制信号,得到的仿真波形图如下图5-3所示。

图4-3 双失谐回路鉴频器输出的原调制信号波形图

将原输入的调频波与经双失谐回路鉴频器鉴频之后输出的原调制信号进行

对比,其仿真波形如下图5-4所示。

图4-4 输入调频波与输出信号的比较

4、设计电路的性能评测

为了分析的简化,先假设相位鉴频器的初级回路的品质因数较高,初、次级回路的互感耦合比较弱。这样在估算初级回路电流时,就不必考虑初级本身的损耗电阻和从次级引人到初级的损耗电阻。由图3可知,初级回路中流过电感L 1的电

为:

在同名端如图所示的条件下,初级回路电流在次级回路中感应电动势

为: 代入得:

次级回路路端电压U ab 可由等效电路求出

式中,2221/X L C ωω=- ,是次级回路总电抗,其值随频率不同可能为正,可能为负,还可能为零。

1当输入信号频率c f f =时, 20X =。于是

此式表明,次级回路电压比初级回路电压

滞后π/2,则电压矢量图如

图4 (a)所示。

图4 矢量合成图

因为鉴频器的输出电压

o u 与12D D U

U -

成正比,由矢量图知12D D U U =,则

鉴频器的输出电压为:12()0o d D D u K U U =-= ○

2当输入信号频率c f f >时, 20X >,这时次级回路总阻抗为

式中,2Z 是

模,其值为:

θ是

的相角,其值为:

代入得

此式表明,次级回路电压

比初级回路电压

滞后(2

π

θ+),对应的矢量图

如图图4 (b)所示。

从图中可知12D D U U <,则鉴频器的输出电压为:12()0o d D D u K U U =-< ○

3当输入信号频率c f f 时, 20X <,这时次级回路总阻抗为

式中,,

代入得

.

.2212

1

(5-69) (1)

j ab

C U U e Z M

L πθω??

-+ ???

=.

.2

212

1

(5-74)

(1)

j ab

C U U e Z M

L π

θω??-- ???

=

此式表明,次级回路电压

比初级回路电压滞后(

||2

π

θ-),对应的矢量图

如图4(c)所示。从图中可知12D D U U >,鉴频器的输出电压为:

12()0o d D D u K U U =->

图5 鉴频特性曲线

由上分析可得鉴频器输出电压o u 与频率f 的关系曲线如图5所示。在

c f f =点, 0o u =,随着失谐的加大, 1D U 与2D U 幅度的差值增大,o

u 的幅值加大。当f>f时,

o u 为负。当c f

f

时,

o u 为正。当频率偏离超过

1m f

和2m f 两点时,曲线弯曲,这是由于两输入谐振回路失谐严重,

度都变小,合成电压也相应减小,鉴频特性曲线下降。

三、结论及心得体会

这次课程设计业使我明白了在知识的领域里我还有很多很多的不足,并且再一次的深深的体会到理论和实践之间还有很到的差别。在以后的学习中应该多多的注意实践知识的训练和积累。在以后的学习生活中要不断的开拓自己的动手能力,不断的训练自己的动手能力。这次课程设计让我深深的明白了自己以后该做什么,该怎么去做。这次课程设计课程设计业让我复习了高频电子线路原理与分析的相关知识。通过这次试验我复习了鉴频电路的设计。通过这次课程设计我还对mathtype 数学公式编辑器有了一定的了解,并且会用它编辑公式。对word 也有了进一步的掌握。

参考资料

[1]阳昌汉.高频电子线路.北京:高等教育出版社,2006

[2]曾兴雯,刘乃安,陈健.高频电路原理与分析.西安:西安电子科技大学出版社,2006.8

[3]张肃文.高频电子线路.北京:高等教育出版社,1993

[4]陈邦媛.射频通信电路.北京:科技出版社.2004

[5]董在望.通信电路原理.北京:高等教育出版社.2002

[6]谢嘉奎.电子线路:非线性部分.北京:高等教育出版社,2004

[7]曾兴雯. 高频电子线路.北京:高等教育出版社,2004

高频小信号调谐放大器的电路设计与仿真

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目:1.高频小信号调谐放大器的电路设计与仿真 2. 乘积型相位鉴频设计与仿真 3. 高频谐振功率放大器设计与制作 初始条件: 对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.谐振频率:o f =10.7MHz ;谐振电压放大倍数:dB A VO 20≥,;通频带:MHz B w 17.0=;矩形系数:101.0≤r K 。要求:放大器电路工作稳定,采用自耦变压器谐振输出回路 2.电路的主要技术指标:输出功率Po ≥125mW ,工作中心频率fo=6MHz , >65%, 已知:电源供电为12V ,负载电阻,RL=51Ω,晶体管用3DA1,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe ≥10,功率增益Ap ≥13dB (20倍)。 时间安排: 第15周,安排任务(鉴3-204) 第16周,仿真、实物设计(鉴主实验室) 第17周,完成(答辩,提交报告,演示) 指导教师签名: 年 月 日

系主任(或责任教师)签名:年月日 高频小信号谐振放大器 (3) 1.设计任务 (3) 2 .总体电路方框图 (3) 3 单元电路设计 (4) 3.1小信号放大电路 (4) 3.2 选频网络 (5) 4仿真结果 (6) 5 实物制作与测试 (7) 乘积型相位鉴频设计与仿真 (8) 1.鉴频器概述 (8) 2.鉴频器的主要参数 (8) 2.1鉴频特性(曲线) (8) 2.2鉴频器的主要参数 (9) 3.鉴频方法 (9) 3.1直接鉴频法 (9) 3.2间接鉴频法 (10) 3.2乘积型相位鉴频器原理说明 (10) 4.乘积型相位鉴频器实验电路说明及仿真设计 (11) 4.1乘积型相位鉴频器电路 (11) 4.2仿真电路设计及结果分析 (12) 5.MC1496鉴频电路的鉴频实物实验 (14) 5.1鉴频电路的鉴频操作过程 (14) 5.2鉴频特性曲线(S曲线)的测量方法 (14) 高频功率放大器 (15) 1.放大器电路分析 (15) 2 谐振功率放大器的动态特性 (16) 2.1谐振功放的三种工作状态 (16) 2.2 谐振功率放大器的外部特性 (17) 3单元电路的设计 (19) 3.1确定功放的工作状态 (19) 3.2基极偏置电路计算 (20) 3.3计算谐振回路与耦合线圈的参数 (21) 3.4电源去耦滤波元件选择 (21) 4电路的安装与调试 (22) 总结 (23) 参考文献 (24)

鉴相器原理与分类

鉴相器原理及分类更新于2010-05-13 03:52:41 文章出处:与非网 鉴相器取样鉴频 鉴相器-原理特性 使输出电压与两个输入信号之间的相位差有确定关系的电路。表示其间关系的函数称为鉴相特性。鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。常见的鉴相特性有余弦型、锯齿型与三角型等。 鉴相器特性用ud(t)=kdf【θe(t)】表示。式中kd为鉴相器的增益系数;θe(t)=θ1(t)-θ2(t),表示两个输入信号之间的相位差。函数f【·】表示鉴相特性,它反映鉴相器的输出电压ud(t)与相位差的关系。常见的鉴相特性有余弦型、锯齿型与三角型等。 鉴相器-分类 鉴相器可以分为模拟鉴相器和数字鉴相器两种。 二极管平衡鉴相器是一种模拟鉴相器。两个输入的正弦信号的和与差分别加于检波二极管,检波后的电位差即为鉴相器的输出电压。其鉴相特性通常为余弦型的。鉴频鉴相器是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。这种鉴相器的鉴相特性为锯齿形。因它兼具鉴频作用,故称鉴频鉴相器 二极管平衡鉴相器 这是一种模拟鉴相器,原理电路如图1。二极管D1、D2和C1R1、C2R2构成两个峰值检波器。两个输入的正弦信号u1(t)=U1sin(ωt+θ1)、u2(t)=U2sin(ωt+θ2)的和与差分别加于检波二极管D1和D2,检波后的电压差即为鉴相器的输出电压ud。当U2U1时,ud∝U1cos(θ1-θ2)。在这种情况下,它的鉴相特性是余弦型的(图2a)。 鉴频鉴相器 这是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。图3是一种鉴频鉴相器的框图。比相器可由触发器构成。当两个输入信号u1和u2同频同相时,触发器没有输出,充电电流等于零。当u1脉冲序列超前于u2时,触发器产生一个其宽度与相位差成正比的正脉冲,充电电路被充电,其输出电压为正值,大小与充电脉冲宽度成正比。若u1落后于u2,则触发器输出一个负脉冲,充电电路的输出为负值。这种鉴相器的鉴相特性为锯齿形(图2b)。这种鉴相器兼具鉴频作用,故称鉴频鉴相器。

乘积型相位鉴频器的设计

一、电路原理 1.电路原理 (1)乘积型相位鉴频由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。如图所示。 图1 正交鉴频原理图 (2)用LM1596构成的乘积型相位鉴频器电路如图所示。 图2 LM1596构成的相位鉴频器 其中C 1与并联谐振回路C 2L 共同组成线性移相网络,将调频波的瞬时频率的变化转变成瞬时相位的变化。分析表明,该网络的传输函数的相频特性)(ωφ的表 达式为: )]1(arctan[2)(20 2 --=w w Q w π φ 当 <

或 )2arctan(2 )(0 f f Q f ?-= ?π φ 式中f 0—回路的谐振频率,与调频的中心频率相等。Q —回路品质因数。△ f —瞬时频率偏移。相移φ与频偏△f 的特性曲线如图所示。 图3 相移φ与频偏△f 的特性曲线 2.主要技术指标 相位鉴频法的原理框图如下图所示。图中的变换电路具有线性的频率—相位转换特性,它可以将等幅的调频信号变成相位也随瞬时频率变化的、既调频又调相的FM-PM 波。把此FM-PM 波和原来输入的调频信号一起加到鉴相器上,就可以通过鉴相器解调此调频信号。相位鉴频法的关键是相位检波器,相位检波器或鉴相器就是用来检出两个信号之间的相位差,完成相位差—电压变换作用的部件或电路。设输入鉴相器的两个信号分别为: 把它们同时加于鉴相器,鉴相器的输出电压o u 是瞬时相位差的函数,即: 在线性鉴相时,o u 与输入位相差21()()()e t t t ???=-成正比。信号2u 中引入/2π固 定相移的目的在于当输入相位差21()()()e t t t ???=-在零附近正负变化时,鉴相器输出电压也相应地在零附近正负变化。 图4 相位鉴频器的框图 11122222cos ()cos ()sin ()2c c c u U t t u U t t U t t ω?πω?ω?=+???? ?? =-+=+???????? 21()()o u f t t ??=-????

鉴相器

鉴相器 开放分类:电子电子技术电子术语通信 编辑词条分享 英文名:phasedetector 鉴相器,顾名思义,就是能够鉴别出输入信号的相差的器件。它是PLL,即锁相环的重要组成部分。 使输出电压与两个输入信号之间的相位差有确定关系的电路。表示其间关系的函数称为鉴相特性。鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。常见的鉴相特性有余弦型、锯齿型与三角型等。 鉴相器特性用u d(t)=k d f【θe(t)】表示。式中k d为鉴相器的增益系数;θe(t)=θ1(t)-θ2(t),表示两个输入信号之间的相位差。函数f【2】表示鉴相特性,它反映鉴相器的输出电压u d(t)与相位差的关系。常见的鉴相特性有余弦型、锯齿型与三角型等。 鉴相器

鉴相器可以分为模拟鉴相器和数字鉴相器两种。 二极管平衡鉴相器是一种模拟鉴相器。两个输入的正弦信号的和与差分别加于检波二极管,检波后的电位差即为鉴相器的输出电压。其鉴相特性通常为余弦型的。鉴频鉴相器是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。这种鉴相器的鉴相特性为锯齿形。因它兼具鉴频作用,故称鉴频鉴相器 二极管平衡鉴相器这是一种模拟鉴相器,原理电路如图1。二极管D1、D2和C1R1、C2R2构成两个峰值检波器。两个输入的正弦信号u1(t) =U1sin(ωt+θ1)、u2(t)=U2sin(ωt+θ2) 的和与差分别加于检波二极管D1和D2,检波后的电压差即为鉴相器的输出电压u d。当U2U1时,u d∝U1cos(θ1-θ2)。在这种情况下,它的鉴相特性是余弦型的(图2a)。 鉴相器 鉴频鉴相器这是一种数字鉴相器。两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。图3是一种鉴频鉴相器的框图。比相器可由触发器构成。当两个输入信号u1和u2同频同相时,触发器没有输出,充电电流等于零。当u1脉冲序列超前于u2时,触发器产生一个其宽度与相位差成正比的正脉冲,充电电路被充电,其输出电压为正值,大小与充电脉冲宽度成正比。若u1落后于u2,则触发器输出一个负脉冲,充电电路的输出为负值。这种鉴相器的鉴相特性为锯齿形(图2b)。这种鉴相器兼具鉴频作用,故称鉴频鉴相器。 鉴相器 取样鉴相器由取样器和保持电路两部分组成。图4是原理电路,4个二极管构成取样器,电容器C d构成保持电路。当被鉴相信号u0(f0,θ0)的频率f0正好等于取样脉冲u i(f i,θi)的频率f i的整数倍时,每次取样的电压值相等。鉴相器的输出电压u d为保持电容器C d上的直流电压。当f0厵nf i时,每次取样的电压值不等,输出电压u d为阶梯形的交流电压。取样鉴相器输出的电压和相位差成正弦关系。 鉴相器 背景知识:

正交鉴频器实验报告

正交鉴相鉴频器 实验报告 一. 设计方案: 1. 实验原理: 先将调频波经过一个移相网络变换成调相调频波,然后再与原调频波一起加到一个相位检波器进行鉴频。 利用模拟乘法器的相乘原理可以实现乘积型相位检波: 输入信号 ()cos(sin )s sm c f v t V t m t ω=+Ω 移相后的信号为: ''' ()cos{sin [ ()]} 2 sin[sin ()] s sm c f sm c f v t V t m t V t m t π ω?ωω?ω=+Ω++=+Ω+ 得到的输出信号 '' 1()KV sin[2(sin )()] 2 1 V sin () 2 o sm sm c F sm sm v t V t m t K V ω?ω?ω=+Ω++ 其中第一项为高频分量,可以用滤波器滤掉,第二项是所需的频率分量。只要线性移相网络的相频特性()?ω在调频波的频率变化范围内是线性的,当 ()0.4rad ?ω≤时,sin ()()?ω?ω≈。因此,鉴频器的输出电压()o v t 的变化规 律与调频波瞬时频率的变化规律相同,从而实现了相位鉴频。 2. 各部分电路具体实现: 鉴相鉴频器主要由三部分组成:移相网络,模拟相乘器和低频放大器。具体电路实现如下: (1) 移相网络: v D (t)

用LC 谐振回路实现移相网络,使输入信号移相90°。谐振回路的谐振频率为中频频率2.455MHz 。 (2) 模拟相乘器 用MC1496构成相乘器,使输入的两路正交信号相乘。1,4管脚和8,10管脚间分别接有电位器R2和R5用来调节输入直流平衡。电源处C7,C8和L2构成 型滤波网络,R12和C9起级间去耦作用。 (3) 低频放大器: 用LM741运放来放大输入调制信号,同时运放还能起到低通滤波以及隔离的作用。通过调节相应的电阻值可以改变放大的倍数。在运放的两个输入端2脚和3脚加上两个隔直电容,可以滤去直流分量,以保证运放的工作点正确。R21和C15构成低通滤波器。 L2 R13R12

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

高频课程2设计

目录 摘要............................................................... I Abstract........................................................... I I 1绪论. (1) 2 鉴频及方法原理 (2) 2.1 鉴频 (2) 2.2 鉴频方法 (3) 2.3 乘积型相位鉴频器 (4) 2.3.1 移相网络 (5) 2.3.2 低通滤波器 (5) 3 MC1496芯片的介绍 (7) 3.1 内部结构 (7) 3.2 静态工作点设置 (8) 3.2.1 静态偏置电压的设置 (8) 3.2.3 静态偏置电流的确定 (8) 4 设计内容 (9) 4.1总体设计电路 (9) 4.2电路图 (12) 4.3鉴频特性曲线的测量方法 (13) 4.3静态工作点测量 (13) 5心得体会 (16) 参考文献 (17)

摘要 鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频。其鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。因此实现鉴频的核心部件是相位检波器。相位检波器又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波。 乘积型相位鉴频器实际上是一种正交鉴频器,它由移相网络、乘法器和低通滤波器三部分组成。调频信号一路直接加至乘法器,另一路经相移网络移相后(参考信号)加至乘法器。由于调频信号和参考信号同频正交,因此,称之为正交鉴频器。这个设计采用乘积型相位鉴频器 MC1496芯片完成一个相位鉴频器的设计。 关键词:鉴频、调频、乘积型相位鉴频器、MC1496芯片

鉴相器

桥式鉴相器电路 如图所示的电路是一种桥式鉴相器。假定在输入端1上作用着正弦信号。这个信号在频率和相位上需与加在输入端11上的脉冲信号相比较,当一个信号的频率或相位与另一个信号的频率或相位相差别时,就可在接线端子X 上得到输出信号,如果在信号中没有这种差别,那么在输出端上就没有电压,这个电路也可以这样来改造,改变一只二极管的连接极性,使得输出端上形成直流电压,当输入信号有差别时,这个直流电压值就增加或喊少。 双脉冲型鉴相器电路 如图是电视机使用的双脉冲平衡型鉴相器的原理电路。同步脉冲分相管基极加有负极性行同步脉冲。在不加行同步脉冲时,由于分相管基极上没有加正向偏置电压,因此分相管不导通,在行同步脉冲到来时,使分相管导通。因此在发射极上可得到负极性行同步脉冲,而在集电极上得到正极性行同步脉冲。适当选取R5,R8之值。可使正负同步脉冲的幅度相等。D1,D2是特性相同的两只二极管,电阻r1=R2,电容C1=C2。

PM信号的解调电路--开关型二极管环形鉴相器 原理电路见图5.5-34A,令 这种电路的分析与两个输入信号的相对大小有密切关系,在大多数实际应用中,鉴相器的一个输入电压比另一个大得多,结果分析可大为简化。 当满足U1》U2时,二极管处于开关开作状态,其“开”或“关”仅由U1(T)决定,而与U2(T)无关。采用开关函数法分析,当二极管为理想(即二极管正向电阻为零,反向电阻为无穷大)时,可得 式中R11为U1(T)的内阻,R12为U1(T)的内阻。在匹配情况下: 可见当U1》U2时,开关型环形鉴相器具有正弦鉴相特性。当φ在0~X/6范围内,可实现线性鉴相。 PM信号的解调电路--二极管平衡鉴相器 图5.5-33A给出了一个二极管平衡鉴相器常用电路。它可视为由二部分组成,图中虚线以左部分称为相位差一幅度变换器,虚线以右部分为包络检波器。

实验12 斜率鉴频与相位鉴频器

实验12 斜率鉴频与相位鉴频器 —、实验准备 1.做本实验时应具备的知识点: FM波的解调 斜率鉴频与相位鉴频器 2.做本实验时所用到的仪器: 变容二极管调频模块 斜率鉴频与相位鉴频器模块 双踪示波器 万用表 二、实验目的 1.了解调频波产生和解调的全过程以及整机调试方法,建立起调频系统的初步概念; 2.了解斜率鉴频与相位鉴频器的工作原理; 3.熟悉初、次级回路电容、耦合电容对于电容耦合回路相位鉴频器工作的影响。 三、实验内容 1.调频-鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2.观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 四、基本原理 从FM信号中恢复出原基带调制信号的技术称为FM波的解调,也称为频率检波技术,简称鉴频。鉴频器的解调输出电压幅度应与输入FM波的瞬时频率成正比,因此鉴频器实际上是一个频率—电压幅度转换电路。实现鉴频的方法有很多种,本实验介绍斜率鉴频和电容耦合回路相位鉴

频。 1.斜率鉴频电路 斜率鉴频技术是先将FM波通过线性频率振幅转换网络,使输出FM波的振幅按照瞬时频率的规律变化,而后通过包络检波器检出反映振幅变化的解调信号。实践中频率振幅转换网络常常采用LC并联谐振回路,为了获得线性的频率幅度转换特性,总是使输入FM波的载频处在LC并联回路幅频特性曲线斜坡的近似直线段中点,即处于回路失谐曲线中点。这样,单失谐回路就可以将输入的等幅FM波转变为幅度反映瞬时频率变化的FM波,而后通过二极管包络检波器进行包络检波,解调出原调制信号以完成鉴频功能。 图12-1为斜率鉴频与相位鉴频实验电路,图中13K02开关打 向“3”时为斜率鉴频。13Q01用来对FM波进行放大,13C2、13L02为频率振幅转换网络,其中心频率为9MHZ左右。13D03为包络检波二极管。13TP01、13TP02为输入、输出测量点。 2.相位鉴频器 本实验采用平衡叠加型电容耦合回路相位鉴频器,实验电路如图12-1所示,开关13K02拨向“1”时为相位鉴频。 相位鉴频器由频相转换电路和鉴相器两部分组成。输入的调频信号加到放大器13Q01的基极上。放大管的负载是频相转换电路,该电路是通过电容13C3耦合的双调谐回路。初级和次级都调谐在中心频率上。初级回路电压直接加到次级回路中的串联电容13C04、13C05的中心点上,作为鉴相器的参考电压;同时,又经电容13C3耦合到次级回路,作为鉴相器的输入电压,即加在13L02两端用表示。鉴相器采用两个并联二极管检波电路。检波后的低频信号经RC滤波器输出。

(相位鉴频器)电子测量实验指导书(科)

Xb08610209 陆斌 08电子信息(2)班 相位鉴频器 一、实验目的 1、熟悉相位鉴频电路的基本原理。 2、了解鉴频特性曲线(S 曲线)的正确调整方法。 3、将变容二极管调频器与相位鉴频器两实验板进行联机调试,进一步了解调频和解调全过程及整机调试方法。 二、实验原理 相位鉴频器是模拟调频信号解调的一种最基本的解调电路,它具有鉴频灵敏度高,解调线性好等优点。 1、鉴频概述 调频波的解调称为频率解调,简称鉴频;调相波的解调称为相位检波,简称 鉴相。它们的作用都是从已调波中检出反映在频率或相位变化上的调制信号。但是采用的方法不尽相同。由于在调频接收机中,当等幅调频信号通过鉴频前各级电路时,因电路频率特性不均匀而导致调频信号频谱结构的变化,从而造成调频信号的振幅发生变化。如果存在着干扰,还会进一步加剧这种振幅的变化。鉴频器解调这种信号时,上述寄生调幅就会反映在输出解调电压上,产生解调失真。因此,一般必须在鉴频前加一限幅器以消除寄生调幅,保证加到鉴频器上的调频电压是等幅的。限幅与鉴频一般是连用的,统称为限幅鉴频器。 鉴频器输出电压u 0随输入频率f (或频偏 )变化的特性称为鉴 频特性。在线性解调的理想情况下,鉴频特性为一直线,实际上会弯曲,呈“S”型,称为“S”曲线。 2、鉴频器指标 1)鉴频跨导(效率、灵敏度)S D :鉴频特性在f c 处的斜率,用它来评价鉴频能力。 单位为V/Hz 。S D 越大,表明鉴频器将输入瞬时频偏变换为输出解调电压的能力越强。 c f f f -=?

一般情况下,S D 为调制角频率的复值函数,即()D S j Ω,要求它的通频带大于调制信号的最高频率 m ax Ω 2)峰值带宽max B :鉴频器输出电压两峰值点所对应的频率差,即 max 21B f f =-,它近似表明鉴频器鉴频线性区的宽度。为了减小鉴频器的非线性 失真,要求鉴频特性近似线性的范围 m ax 2f ?大于2m f ?。 ③ 最大输出电压0m ax U :鉴频器输出的最大电压。 ④ 线性度要好与失真要小。 3.电容耦合双调谐回路相位鉴频器: 相位鉴频器的组成方框图如3-3示。图中的线性移相网络就是频—相变换网络,它将输入调频信号u1 的瞬时频率变化转换 为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。 图3-4的耦合回路相位鉴频器是常用的一种鉴频器。这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。 图3-4 耦合回路相位鉴频器 图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调 o

乘积型相位鉴频器的设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:乘积型相位鉴频器的设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式有一定的了解;具备晶体管电路的基本设计及基本调试能力;能够正确使用实验仪器进行电路的调试与检测;使用适当的软件进行仿真和制作PCB板图。 主要内容: 本题目为集成模拟乘法器应用设计之一,即设计一个乘积型相位鉴频器。通过本次电路设计,掌握集成模拟乘法器的基本原理及其所构成的相位鉴频电路的设计方法、电路调整及测试技术。加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 基本要求: (1) 采用集成模拟乘法器设计乘积型相位鉴频器,电路的工作中心频率 为f=6.5MHz。 (2) 绘制电路原理图,并给出鉴频特性曲线。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1 原理说明与电路分析 (3) 1.1电路原理及用途.........................................................................................错误!未 定义书签。 2.2 模拟乘法器MC1496 (4) 2.3 低通滤波器 (5) 2.4主要技术指标 (5) 3 乘积型相位鉴频器 (8) 3.1 乘积型相位鉴频器的原理图....................................................................错误!未 定义书签。 3.2电路工作状态或元件参数的确定 (9) 3.3仿真结果 (11) 3.4 调试及静态工作点的测量 (14) 4 元件清单 (16) 5 心得体会 (17) 6参考文献 (18)

高频实验九 电容耦合相位鉴频器实验报告

实验九 电容耦合相位鉴频器实验 一.实验目的 1. 进一步学习掌握频率解调相关理论。 1. 了解电容耦合回路相位鉴频器的工作原理。 3. 了解鉴频特性(S 形曲线的调试与测试方法)。 二、实验使用仪器 1.电容耦合相位鉴频器实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源 三、实验基本原理与电路 1. 实验基本原理 从调频波中取出原来的调制信号,称为频率检波,又称鉴频。完成鉴频功能的电路,称为鉴频器。在调频波中,调制信息包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 本实验采用的是相位鉴频器。相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间的相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度的变化。 鉴相器采用两个并联二极管检波电路。假设二极管D3的检波电路和二极管D4的检波电路完全对称,两个检波电路的电压传输系数完全相等,检波后的输出信号为两个检波电路的输出电压差。即034D D U U U =- 当瞬时频率0f f =时, 2U 比1U 滞后90°,但|3D U |=|4D U |,这时,鉴频器输出为零。当0f f >时, 2U 滞后于1U 的相角小于90°,|3D U |>|4D U |,鉴频器的输出大于零。当0f f <时,2U 滞后于1U 的相角大于90°,

|3D U |<|4D U |,鉴频器的输出小于零。相位鉴频器鉴频特性的线性较好,鉴频灵敏度也较高。 图9-1频率电压转换原理图。 (ω<ω0)U 2(ω=ω0) (ω>ω0) . U 1.. U 2 .2U 2. 2 .. U 1 .U 2 .2 U 2. 2 . . U 2 .2 U 2. 2 (a) (b)(ω=ω0)(c)(ω>ω0) (d)(ω<ω0) 图9-1频率电压转换原理图。 鉴频器的主要参数: (1) 鉴频跨导 鉴频器的输出电压与输入调频波的瞬时频率偏移成正比,其比例系数称为鉴频跨导。图9-3为鉴频器输出电压V 与调频波的瞬时频偏f ?之间的关系曲线,称为鉴频特性曲线。它的中部接近直线部分的斜率即为鉴频跨导。它代表每单位频偏所产生的输出电压的大小,希望鉴频器的鉴频跨导应该尽可能的大。 (2)鉴频灵敏度 指鉴频器正常工作时,所需要输入调频波的最小幅度。其值越小,鉴频器灵敏度越高。 (3)鉴频器频带宽度 从上图的鉴频特性曲线中可以看出,只有特性曲线中间一部分的线性度较好,我们称2m f ?为频带宽度。一般,要求2m f ?大于输入调频波频偏的两倍,并

相位鉴频器

课程名称通信电子线路 实验项目相位鉴频器成绩 学院信息专业通信工程学号20141060149姓名李越 实验时间2016.06.04实验室3501指导教师谢汝生 1.实验目的 1.熟悉变容二级管调频器和相位鉴频器电路原理及构成。 2.了解调频器调制特性和相位鉴频器的鉴相特性及测量方法。 3.将变容二极管调频器与相位鉴频器两实验板进行联机试验,进一步了解调 频和解调全过程及整机调试方法。 2.实验设备 1.双踪示波器(RIGOL DS5062CA数字存储示波器) 2.频率计(AT-F1000-C数字频率计) 3.万用表(DT9205数字万用表) 4.扫频仪(BT3C宽带扫频仪)

5.清华科教TPE-GP2型高频电路实验箱及G4实验板 6.高频信号发生器(前锋QF1055A/1056A信号发生器) 3.实验电路及基本原理分析 从调频波中取出原来的调制信号,称为频率检波,又称为鉴频。在调频波中,调制信号包含在高频振荡频率的变化量中,所以调频波的解调任务就是要求鉴频器输出信号与输入调频波的瞬时频移成线性关系。 鉴频器电路是先借助谐振电路将等幅的调频波转换为幅度随瞬时频率变化的调幅调频波,再用二极管检波器进行幅度检波,以还原出调制信号。由于信号的最后检出还是利用高频振幅的变化,为了避免寄生调幅干扰检出的调制信号,一般都将输入鉴频器的调频波进行限幅去干扰,使其幅度恒定后再进行鉴频。

相位鉴频器是利用回路的相位-频率特性来实现调频波变换为调幅调频波的。它是将调频信号的频率变化转换为两个电压之间相位变化,再将这相位变化转换为对应的幅度变化,然后利用幅度检波器检出幅度变化。 本实验所用电路如图,该电路为电容耦合回路叠加型相位鉴频器。电路中V1/V2构成差分对振幅限幅电路,对输入信号进行去干扰限幅。同时在V2的集电极负载回路中设置了由CT1、C6、L1组成的并联谐振回路,与由CT2、C10、i 为调幅调频波。再通过后面两只检波二极管D1、D2组成的对称幅度检波器分别对上下两个调幅包络进行检波,最后得到调制信号。 4.实验步骤及内容记录(包括数据、图表、波形、程序设计等) 1.用扫频仪调整相位鉴频器的S型鉴频特性。 将实验电路中E、F、G三个接点分别与半可调电容C T1、C T2、C T3连接。

实验十二 斜率鉴频与相位鉴频器

实验十二斜率鉴频与相位鉴频器 一、实验目的 1. 了解调频波产生和解调的全过程以及整机调试方式,建立起调频系统的初步概念; 2. 了解斜率鉴频与相位鉴频器的工作原理 3. 熟悉初、次级回路电容、耦合电容变化对FM波解调的影响。 二、实验项目 1. 调频—鉴频过程观察:用示波器观测调频器输入、输出波形,鉴频器输入、输出波形; 2. 观察初级回路电容、次级回路电容、耦合电容变化对FM波解调的影响。 三、实验步骤 1.模块上电 插装好斜率鉴频与相位鉴频、变容二极管调频器模块,接通电源,即可开始实验。 2.相位鉴频实验(该实验与实验11的内容有部分重复) (1)以实验10中的方法产生FM波,即音频调制信号频率为1KHZ,电压峰—峰值500mv,加到1P01音频输入端,并将调频输出中心频率调至8.2MHZ左右,然后将其输出连接到鉴频单元的输入端1P01,将鉴频器单元开关1K01拨向相位鉴频。 用示波器观察鉴频输出1TP02波形,此时可观察到频率为1KHZ的正弦波。如果没有波形或波形不好,应调整调频单元1W01和鉴频单元1W01。建议采用示波器作双线观察:CH1接调频器输入端1TP01,CH2接鉴频器输出端1TP02,并作比较。 (2)若改变调制信号幅度,则鉴频器输出信号幅度,则鉴频器输出信号幅度亦会随之变大,但信号幅度过大时,输出将会出现失真。 (3)改变调制信号的频率,鉴频器输出频率应随之变化,将调制信号改成三角波和方波,再观察鉴频输出。 3.斜率鉴频实验 (1)将鉴频单元开关1K01拨向斜率鉴频。 (2)信号连接和测试方法与相位鉴频完全相同。 四、实验报告要求 1.画出调频—鉴频系统正常工作时的调频器输入、输出波形和鉴频器输入、输出波形。

鉴相器

鉴相器 鉴相器是一个相位比较装置,又称为相位比较器。它的输出误差电压v d(t)是v i(t)与v o(t) 的瞬时相位之差的函数。 A.鉴相特性 a.表示鉴相器输出电压与两个比较信号相位之间的关系。 b.典型的鉴相特性有: ●正弦鉴相特性 ●三角鉴相特性 ●锯齿波鉴相特性

B.鉴相器电路实例 说明: a.二极管鉴相器 1) 二极管平衡鉴相器 电路:(右图) ⊙v d(t)=A D1sinφe(t)

⊙A D 为鉴相特性斜率或称鉴相增益或称鉴相灵敏度,量纲为(V/rad)。 ⊙|φ e (t)|≤30o,则鉴相器等效一个相位减法器,其极性代表v i超前v o 或滞后v o(指同频时,并不考虑它们固定π/2相位差)。 ⊙当t=0, △ω=ω i -ωr为v i与v o的固有频差(或起始频差)。 当t≠0,ω i ≠ω ,v d为v i与v o差拍电压,v d为交流电压,则意味环路 失锁。 当t→∞,ω i =ω V d 为直流电压,则意味环路锁定。 2).二极管环型鉴相器 ★★例一:电路 ⊙v d(t)=A D2sinφe(t) A D2= 2A D1 ⊙与平衡鉴相器比较优点有: ☆鉴相灵敏度高一倍 ☆实现输出平衡和阻抗匹配。 ☆平衡对称结构好载漏小。 ★★ 例二:电路

⊙v d=A D2sinφe(t) ⊙R 1~R 4 补偿均衡二极管的非线性,起温度稳定作用。 ⊙射频波段,T r1,T r2 用传输线变压器。为克服匝数少,变压器次级绕 组中心抽头困难,用电阻R 5~R 10 加以精确的平衡鉴相器。 ⊙电容C 1~C 4 用来补偿电路电容。 b.高频鉴相器(这是微波锁相环采用的鉴相器) ⊙传输线变压器,使次级得到二个 对称的 v1(t)信号电压.并且磁力线集 中,初次 级之间分布电容可作为电路的 基本元 件。 ⊙高频电容采用片电容,电力线集中,寄生 参数影响小。 ⊙电路简单,易调上下对称(对地而言)。 ⊙灵敏度高,工作频率高,可从30MHz~400MHz。 c.集成化鉴相器 (数字锁相环和模拟锁相环的鉴相器都可做成集成化电路) 举例:用压控吉尔伯特相乘器构成鉴相器(集成块)

基于MC1496的相位鉴频器电路设计与仿真

课程设计报告 题目:基于MC1496的相位鉴频器电路 设计与仿真 学生姓名:薛瑞 学生学号: 1008030313 系别:电气信息工程学院 专业:电子信息工程 届别: 2014届 指导教师:马立宪 电气信息工程学院制 2013年5月

基于MC1496的相位鉴频器电路设计与仿真 学生:薛瑞 指导教师:马立宪 电气信息工程学院电子信息工程专业

1 设计任务及要求 1.1设计任务 本设计是通过模拟乘法器MC1496和低通滤波器组成的乘积型相位鉴频器,通过电路设计,能够实现仿真波形,将仿真波形与理论比较,分析出设计中的误差。 1.2 设计要求 (1)乘积性的相位鉴频器中心频率10.7MHz。 (2)调制信号频率500kHz,用MC1496设计频相转换网络和低通滤波器。 (3)输出波形无显著失真。 1.3设计研究基础 1.3.1鉴频器概述 鉴频器使输出电压和输入信号频率相对应的电路。按用途可以分为两类:第一类用于调频信号的解调。常见的有斜率鉴频器、相位鉴频器、比例鉴频器等。对这类电路的要求主要是非线性失真小,噪声门限低。第二类用于频率误差测量,如用在自动频率控制环路中产生误差信号的鉴频器。对于这类电路的零点漂移限制较严,对非线性失真和噪声门限则要求不高。 实现调频信号解调的鉴频电路可分为三类,第一类是调频——调幅变换型。第二类是相依乘法鉴频型,这种类型是将调频波经过移相电路变成调相调频波,其相位的变化正好与调频波瞬时频率的变化呈线性关系,然后将调相调频波与原调频波进行相位比较,通过低通滤波器取出解调信号,因为相位比较器通常用乘法器组成,所以称为相移乘法鉴频;第三类是脉冲均值型。 1.3.2鉴频器的主要参数 1.3. 2.1鉴频特性(曲线) 鉴频特性曲线指鉴频器的输出电压u0与输入电压瞬时频率f 或频偏Δf 之间的关系曲线。 理想鉴频特性曲线应是一条直线,但实际上往往有弯曲,呈S形,如下图所示。

13.鉴频器实验

鉴频器实验 学号:200800120228 姓名:辛义磊 仪器编号:30 一、 实验目的 1、 进一步理解鉴频的基本原理及实现方法 2、 掌握乘积型相位鉴频器的工作原理、实现电路与测量方法 3、 进一步掌握频率特性测量仪的使用方法 二、 实验器材 高频电路试验箱 数字示波器 直流稳压电源 数字万用表 三、 实验原理 能够完成对调频信号解调的电路称为鉴频器,它是从频率已调波中不失真地还原出原调制信号的过程,它们的任务是把载波频率的变化变换成电压的变化。其基本方法是将调频波进行特定的波形变换,使变换后的波形中包含有反映调频波瞬时频率变化规律的某种参量,如幅度、相位或平均分量,然后设法检测出这个参量,即得到原始调制信号。 就其功能而言,尽管鉴频器的输出V o (t)是在输入信号V i (t)作用下产生的,但二者却是截然不同的两种信号。显然,鉴频器将输入调频波的瞬时频率)(t f (或频偏)(t f )的变化变换成了输出电压)(t V o 的变化,这种变换特性称为鉴频特性,它是鉴

频器的主要特性。输出电压与瞬时频率)(t f (或频偏)(t f ?)之间的关系曲线,称为鉴频特性曲线。在线性解调的理想情况下,此曲线为直线,但实际上往往有弯曲,呈S 形,简称S 曲线。 鉴频器的主要指标有鉴频特性范围2max f ?和鉴频灵敏度 d S 。 鉴频线性范围是指鉴频特性曲线中近似直线段的频率范 围,用2max f ?表示。它表明了鉴频器不失真的解调时所允许的频率变化范围,因此要求2max f ?应大于输入调频波最大频偏的两倍,即m f ?>?2f 2max 。2max f ?也称为鉴频器的带宽。鉴频灵敏 度d S 是指在中心频率c f t f =)((0 ) (=?t f )附近曲线的斜率, 即c f t f d f v S =???=)(0|。 显然,鉴频灵敏度越高,意味着鉴频特性曲线越陡峭,鉴频能力越强。 鉴频器的类型和电路很多,如斜率鉴频器、相位鉴频器、脉冲计数式鉴频器、锁相鉴频器。 乘积型相位鉴频器的框图如图所示,相移网络一般采用单谐振回路或耦合回路,乘法器一般采用模拟乘法器,低通滤波

过零比较和锁相环相位比较器电路原理图如图

过零比较和锁相环相位比较器电路原理图如图 在常使用集成电路的锁相环CD4046,是通用的CMOS锁相环集成电路,其特点是电源电压范围宽(为3V-18V),输入阻抗高(约100MΩ),动态功耗小,在中心频率f0为10kHz下功耗仅为600μW,属微功耗器件。下图是CD4046的引脚排列,采用 16 脚双列直插式,各引脚功能如图2.12所示。 脚相位输出端,环路入锁时为高电平,环路失锁时为低电平。2脚相位比较器Ⅰ的输出端。3脚比较信号输入端。13脚相位比较器Ⅱ的输出端。14脚信号输入端。对相位比较器Ⅱ而言,当14脚的输入信号比3脚的比较信号频率低时,输

出为逻辑“0”;反之则输出逻辑“1”。如果两信号的频率相同而相位不同,当输人信号的相位滞后于比较信号时,相位比较器Ⅱ输出的为正脉冲,当相位超前时则输出为负脉冲。在这两种情况下,从1脚都有与上述正、负脉冲宽度相同的负脉冲产生。从相位比较器Ⅱ输出的正、负脉冲的宽度均等于两个输入脉冲上升沿之间的相位差。而当两个输入脉冲的频率和相位均相同时,相位比较器Ⅱ的输出为高阻态,则1脚输出高电平。上述波形如图2.13所示。由此可见,从1脚输出信号是负脉冲还是固定高电平就可以判断两个输入信号的情况了。 2.13 比较器输出波形图 电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。 电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平; 当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平; 电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。利用简单电压比较器可将正弦波变为同频率的方波或矩形波。 简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此我们就要对它进行改进。改进后的电压比较器有:滞回比较器和窗口比较器。 运放,是通过反馈回路和输入回路的确定“运算参数”,比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。电压比较器输入是线性量,而输出是开关(高低电平)量。一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。 可用作电压比较器的芯片:所有的运算放大器。常见的有LM324 LM358 uA741 TL081\2\3\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合,其实它们也是一种运算放大器。

频率解调(相位鉴频器)电路实验

实验九频率解调(相位鉴频器)电路实验 一、实验目的: 1. 掌握乘积型相位鉴频器电路的基本工作原理和电路结构;; 2. 熟悉相位鉴频器的和其特性曲线的测量方法; 3. 观察移相网络参数变化对鉴频特性的影响; 4. 通过将变容二极管调频器与相位鉴频器进行联机实验,了解调频和解调的全过程。 二、预习要求: 1. 复习相位鉴频的基本工作原理和电路组成; 2. 认真阅读实验内容,了解实验电路中各元件的作用 三、实验电路说明: 本实验电路如图9-1所示。 图9-1 四、实验仪器: 1. 双踪示波器 2. 万用表 3. 实验箱及频率调制、解调模块 五、实验内容及步骤: 1.用逐点描绘法测绘乘积型相位鉴频器的静态鉴频特性: 1)用高频信号源从P1端输入一幅度适中、6.5MHz的的正弦信号; 2)将开关K1拨至R5档; 3)用万用表测鉴频器的输出电压:在5—8MHz的范围内(以6.5MHz为基准),以每格0.02 MHz的间隔测量相应的输出电压,记录下来并绘制出静态鉴频特性曲线(注意:当6.5MHz 相位鉴频时,应使输出电压为零;如果不为零,可以调可变电容C5,归零后再进行实验); 4)将开关K1拨至R6档,重复第2)步的工作,并与之比较; 2.观察调频信号解调的电压波形: 1)将调频电路中心频率调为6.5MHz; 2)将鉴频电路的中心频率也调谐为6.5MHz;

3)将调频输出信号(调频电路中的TP1端)送入相位鉴频器的输入端P1,将F=2KHz 的调制信号加至调频电路的输入端进行调频; 4)用双踪示波器同时观测调制信号和解调信号,比较二者的异同。将调制信号的幅度改变,观察波形变化,分析原因。 六、实验报告要求: 1、整理各项实验所得的数据和波形,绘制出曲线; 2、分析回路参数对鉴频特性的影响; 3、分析讨论各项实验结果。

相关文档
最新文档