第五单元 简易方程
人教版数学五年级上册第五单元《简易方程》单元整体设计

亦然。
用符号语言更能体现出数学语言的简练、明确等特点,更好地满足数学思考的需要。
用具体的数和运算符号所组成的式子只能表示个别具体的数量之间的关系,而用字母表示数,既简单明了,又能概括出数量关系的一般规律,在较大范围内肯定了数学规律的正确性。
如:在教学“用字母表示数”时,出示:爸爸比小红大30岁。
提问:小红1岁时,爸爸多少岁?小红2,3,4……岁时,爸爸多少岁?学生得出:1+30,2+30,3+30,4+30……。
教师进一步提问:小红的年龄每年都在变化,爸爸的年龄每年也在变化,但是什么没有发生变化?上面的每一个式子只能表示某一年爸爸的年龄,能不能用一个式子简明表示出任何一年爸爸的年龄呢?引导学生用“”来表示任何一年爸爸的年龄。
教师进一步引导学生体会符号的概括性:表示什么?又表示什么?这样的教学,使学生经历从具体到抽象的认知过程,逐步体会字母的现实意义,感受数学符号的简洁美和概括性。
同时也渗透了函数思想。
2.运用──经历符号化过程,实现数学建模会用符号表示,也就是会把实际问题中的数量关系用符号表示出来,这个过程叫做符号化。
符号化的问题已经转化为数学问题,随后就是进行符号运用和推理,最后得到结果,这就是数学建模的思想。
如:从纸上剪下2 cm,4 cm,5.6 cm,8 cm……长度的部分,所得的面积分别是多少?如果随意剪下一段,面积又是多少?引导学生用字母表示为。
又如:要求学生看图,说一说3本书与2.4元之间的关系。
学生开始可能会说道:“3本书的价钱一共是2.4元”。
教师可以引导学生试着用一个式子表示它们之间的关系,学生可能会说道:“每本书的价钱×3=2.4元”。
教师进一步要求学生用含有字母的式子表示出它们的关系,这时学生可能会用“”来表示其数量关系。
这一过程是学生逐步数学化的过程,从具体情境中抽象出数量关系,并用符号来表示,是将问题进行一般化的过程,能很好地提升学生的认知水平,增强学生的符号意识。
人教版五年级 上册数学 核心素养目标 教案 第五单元 简易方程

环节一:师:古诗是中华传统文化的瑰宝,读起来朗朗上口,韵味十足。
同学们,你们知道吗?古诗里也藏着数学知识呢!请看这首古诗。
课件出示梅花图片以及王安石的《梅花》。
全班一起朗诵一遍。
(初步感知:墙角有“数”枝梅花)环节二:1、教学用含有字母的式子表示加减数量关系和一个量。
课件出示教科书P52例1。
环节三:教学用含有字母的式子表示乘除数量关系和一个量-----例2。
教师活动:1.师:同学们想不想知道月球上到底有什么秘密呢?让我们一起来探索。
2.师:观察情境图,说一说你们知道了哪些数学信息。
3.师:你们知道为什么人在月球上能举起的物体的质量是地球上的6倍吗?4.自主探究。
5.学生完成表格后,先小组交流,再全班交流。
师:如果用x表示人在地球上能举起的物体的质量,那么你能用含有x的式子表示出人在月球上能举起的质量吗?6、代入求值。
学生活动:1、引导学生完成表格2、总结:1:我是用“x×6”这个式子来表示人在月球上能举起的物体的质量的。
2:我是用“6x”这个式子来表示的,因为我在书上看到中间的乘号可以省略不写,而且在省略乘号时,我们一般把数字写在字母的前面。
3、求含有字母的式子的值,一般不写单位。
活动意图:在学习的过程中要重视学习能力的培养,引导学生主动地进行思考、讨论、交流等活动,促使学生再一次经历用含有字母的式子表示数和数量关系的过程,进一步发展学生的抽象概括能力。
作业设计:一、基础作业 1.想一想,填一填。
龟兔赛跑。
(1)兔子每小时跑( )km 。
(2)当x =45时,兔子每小时跑( )km 。
2.胡萝卜每千克x 元,红萝卜每千克的价格是胡萝卜的2.4倍。
(1)红萝卜每千克( )元。
(2)当x =3.5时,红萝卜每千克的价格是( )元。
(3)当x =( )时,红萝卜的价格是每千克7.8元。
二、拓展作业课本练习十二第1题板书设计:课时教学设计课题 用字母表示数(2) 授课时间: 课型:新授课时:1课时环节一:复习导入课件出示习题。
人教版五年级数学上册第五单元《简易方程》教材分析及教学设计

人教版五年级数学上册第五单元《简易方程》教材分析及教学设计一. 教材分析简易方程是五年级数学上册第五单元的内容,主要让学生掌握方程的概念,学会解一元一次方程。
教材通过生活中的实例,引导学生理解方程的意义,并通过大量的练习,使学生熟练掌握解方程的方法。
二. 学情分析五年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但是对于方程的概念和解法还比较陌生。
因此,在教学过程中,需要注重引导学生理解方程的意义,并通过大量的实践,使学生掌握解方程的方法。
三. 教学目标1.让学生理解方程的概念,知道方程的意义和作用。
2.让学生学会解一元一次方程,掌握解方程的基本方法。
3.培养学生运用方程解决实际问题的能力。
四. 教学重难点1.重点:让学生掌握解一元一次方程的方法。
2.难点:引导学生理解方程的意义,并能够运用方程解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解方程的意义。
2.练习法:通过大量的练习,使学生熟练掌握解方程的方法。
3.互助合作学习:让学生在小组内进行讨论和实践,共同解决问题。
六. 教学准备1.教学课件:制作课件,展示生活中的实例和方程的解法。
2.练习题:准备适量的练习题,用于巩固所学知识。
3.板书设计:设计简洁明了的板书,突出教学重点。
七. 教学过程1.导入(5分钟)利用课件展示生活中的实例,引导学生思考:为什么用方程来解决问题?让学生初步理解方程的意义。
2.呈现(10分钟)讲解方程的概念,让学生明确方程的意义和作用。
通过示例,展示解一元一次方程的方法。
3.操练(10分钟)让学生在小组内进行讨论和实践,尝试解方程。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师选取部分学生的作业进行讲解和评价。
5.拓展(10分钟)让学生运用所学知识,解决实际问题。
教师引导学生思考,并提供必要的帮助。
6.小结(5分钟)总结本节课所学内容,强调方程的意义和解方程的方法。
五年级数学下册第五单元《解简易方程》教学案

板书设计
方程的意义
教学反思
这节课利用天平教具,激起了学生很大的兴趣,让学生分类总结式子,有理有据,感知方程的意义。课堂生成资源,方程不带单位,含有字母的等式说法不完整,学生生出的问题,学生解决。有尽量让每一位都能参与其中。就是板书有点凌乱。
第二课时
学习目标
1.通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2.猜猜:除了这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?出示第二个天平关系。
3.让学生观察现在的天平是什么样的?(平衡),左边两个盖子,右边四个夹子。
怎样用等式来表示这幅图呢?
4.学生猜测后,教师进行实际天平操作,验证学生的猜测。如果把天平的两边物品的数量分别扩大到原来的 3倍、4 倍呢?(仍然保持平衡)
师:(处理第三个,追问)怎么又可能了呢?
生:如果遮住的是未知数,那就是方程。如果遮住的是已知数,那就不是方程。
4.学生独立完成并汇报。
师:谁先来说说你写的方程?
生:28+x=40。
生2:40-x=28。
生3:40-28=x。
生:40-28=12(岁)。
1.判断下面的式子,哪些是等式?哪些是方程?
①45+35=80
让学生猜测。这里对学生可能有些难度,有些学生的猜测脱离不了等式的性质。
如:学生猜测天平的两边同时放2个、3 个杯子;同时减去一把茶壶等。这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(0除外),会怎么样呢?
生尝试写出:2a=4b
学生回答:去掉一个盖子和两个夹子。引导是把两边都平均分成两份,都去掉一份
人教版五年级上册数学第五单元《简易方程》教案

人教版五年级上册数学第五单元《简易方程》教案一. 教材分析《简易方程》是人教版五年级上册数学第五单元的教学内容。
本节课主要让学生初步接触方程,理解方程的概念,学会用字母表示数,并能简单解决含有未知数的实际问题。
内容主要包括:1. 理解方程的概念,认识等式与方程的区别;2. 学会用字母表示数,并能正确列出方程;3. 能通过简单的运算解决含有未知数的实际问题。
二. 学情分析五年级的学生已经掌握了基本的运算技能,对数学问题有一定的分析能力。
但在解决实际问题时,还缺乏用数学语言表达问题和解决问题的能力。
因此,在教学过程中,需要注重培养学生的数学语言表达能力,以及解决实际问题的能力。
三. 教学目标1.让学生理解方程的概念,认识等式与方程的区别。
2.学会用字母表示数,并能正确列出方程。
3.能通过简单的运算解决含有未知数的实际问题。
4.培养学生的数学语言表达能力,提高解决实际问题的能力。
四. 教学重难点1.重点:理解方程的概念,认识等式与方程的区别;学会用字母表示数,并能正确列出方程。
2.难点:解决含有未知数的实际问题,以及方程的求解。
五. 教学方法采用情境教学法、问题教学法和小组合作学习法。
通过创设情境,提出问题,引导学生独立思考,分组讨论,共同探索,从而解决问题。
六. 教学准备1.教具:黑板、粉笔、课件。
2.学具:练习本、铅笔。
七. 教学过程1.导入(5分钟)利用课件展示生活中的图片,引导学生观察并提出问题。
如:“小明买了3个苹果,小红买了2个苹果,他们一共买了多少个苹果?”让学生尝试用数学语言表达这个问题。
2.呈现(10分钟)教师通过讲解,让学生理解方程的概念,认识等式与方程的区别。
如:“等式是用等号连接的两个数或表达式,而方程则是含有未知数的等式。
”3.操练(10分钟)教师提出问题:“小明有x个苹果,小红有y个苹果,他们一共买了多少个苹果?”让学生尝试用字母表示数,并列出方程。
教师选取部分学生的答案,进行讲解和评价。
人教版五年级数学上册第五单元《简易方程》教材分析及说课稿

人教版五年级数学上册第五单元《简易方程》教材分析及说课稿一. 教材分析《简易方程》是人教版五年级数学上册第五单元的内容。
本节课主要让学生初步接触方程,了解方程的意义和基本形式,学会用字母表示数,以及解简易方程。
教材内容由浅入深,从具体的数值问题引入方程的概念,通过解决实际问题,引导学生认识和理解方程。
教材还配备了丰富的练习题,帮助学生巩固所学知识。
二. 学情分析五年级的学生已经具备了一定的数学基础,能够理解和掌握一些基本的数学概念。
但在解决实际问题时,还需要引导学生将问题转化为数学模型,进而用方程来表示和解决。
此外,学生对于字母表示数可能还比较陌生,需要通过具体的例子和练习,让学生逐步理解和接受。
三. 说教学目标1.让学生了解方程的意义和基本形式,学会用字母表示数。
2.培养学生解决实际问题的能力,提高学生运用方程解决问题的意识。
3.培养学生的逻辑思维能力和团队协作能力。
四. 说教学重难点1.重点:让学生掌握方程的基本形式,理解方程的意义。
2.难点:引导学生将实际问题转化为方程,并用字母表示数。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现和提出方程。
2.利用多媒体课件,生动展示方程的解法,帮助学生理解和掌握。
3.学生进行小组讨论和实践,培养学生的团队协作能力和实际操作能力。
六. 说教学过程1.导入:通过一个具体的问题,引导学生思考如何用数学方法来解决。
2.新课导入:介绍方程的概念和基本形式,让学生初步认识方程。
3.实例讲解:通过具体的例子,让学生学会用字母表示数,并解简易方程。
4.练习巩固:让学生独立完成一些简易方程的练习,检验学生对知识的掌握。
5.拓展提高:引导学生思考如何将实际问题转化为方程,并用字母表示数。
6.小结:对本节课的内容进行总结,强调方程的意义和基本形式。
7.布置作业:布置一些有关方程的练习题,让学生巩固所学知识。
七. 说板书设计板书设计要简洁明了,突出重点。
第五单元《简易方程》(单元复习课件)五年级数学上册 人教版
x=( 5 ) 320×( 5 )=(1600)(m) ( 1600 )÷400=(4 )(圈) 答:( 5 )分钟后两人第一次相遇,相遇时赵兰跑了( 4 )圈。
甲、乙两人在环形跑道上同时从同一地点同向跑步,属于追及 问题。每追及一次,两人跑的路程差就是一个环形跑道的长度。
Text重he难re 易错点剖析
6.等式的性质
根据等式的性质填空。
(1)如果a=b(a、b均不为0),a+8=b+( 8 );3a=b×( 3 ) (2)如果3x = x+100,那么2x =( 100 )
等式的性质1 等式两边加上或减去同一个数,左右两边仍然相等。 等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,左 右两边仍然相等。
a×4 = 4a
x×y = xy
9×y+5×y =14y a+a+6 =2a+6 12×x-7×x = 5x 2.5×c-c = 1.5c
在用字母表示的式子里,乘号可以用“·”代替,或省 略不写;利用乘法的分配律还可以对一些较复杂的式子 进行化简。
Text重he难re 易错点剖析
在方程后面画√。
6x+8 = 23 ( √ )
(2)当m=2130, a=56.56时, a÷(2231-m)=56.56÷(2231-2130)=0.56(元/千瓦时)
把数值代入含有字母式子进行计算,结果注意不要忘了单位。
Text重he难re 易错点剖析
4.含有字母式子的化简计算
省略乘号并化简下列各式。 2×x = 2x t×47 = 47t
Text he拓re 展练习
5.学校食堂为同学们准备了相同数量的纯牛奶和酸奶。小明 每次领取5瓶纯牛奶和3瓶酸奶分发给同学们,领取若干次 后,纯牛奶没有了,酸奶还剩16瓶。学校食堂给同学们准 备纯牛奶和酸奶各多少瓶?
人教版五年级数学上册第五单元《简易方程》教学反思
人教版五年级数学上册第五单元《简易方程》教学反思第1节《用字母表示数》教学反思第1课时课后反思1.讨论交流式的学习,使学生充分经历了知识的发生、发展和应用的全过程。
2.重视三维目标的整合,促进学生全面发展。
第2课时课后反思1.对教材的理解把握比较到位。
课堂中充分引导学生说哪种更简便,并引导学生对所学知识进行概括,能够让学生对基本知识的掌握由浅入深。
2.应在课堂中多涉及一些生活实例,让学生能够从生活中感悟,以提高学生学习用字母表示数的兴趣。
第3课时课后反思1.给学生创设思考空间,在课堂上相信学生,大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。
2.在学生已有的学习基础上构建数学模型。
让学生在熟悉和喜爱的活动中分析问题、解决问题。
3.对学生作出正面评价,在学生取得成绩或进步时给予肯定和鼓励,激发学生进一步探究学习的兴趣。
第4课时课后反思1.在学习中体验,在体验中学习。
学生学习数学可以用“操作体验”的方法,“操作体验”就是指在实际的生活情境中去感受、去探索、去应用、去发现、去理解数学知识,因此本课教学都是在“操作体验”中学习。
2.本课教学的重点之一就是让学生经历和体验用字母表示数量关系的过程,感受符号化思想,发展抽象概括能力。
比如:借助三角形引导用字母表示几根小棒的式子x+x+x=3×x=3x,这一过程就是符号化的过程;接着在求出摆成的三角形和正方形共需要多少根小棒的教学中,3x+4x=(3+4)x=7x,借助乘法分配律来体验是符号化抽象的运算。
第2节《解简易方程》教学反思第1课时课后反思1.引导学生去寻找生活中的平衡现象,对“平衡”进行深入的理解,同时也让学生体会到数学离不开生活,生活中处处有数学。
2.以学生发现的问题为主线,以天平为核心,围绕“平衡”展开研究,在这些活动中学生们体会了方程的意义,获得了学习数学的乐趣。
3.学生有了问题,才会思考和探索;有探索才会有创新,才会有发展。
五年级数学上册第五单元《简易方程》教材分析及说课稿
五年级数学上册第五单元《简易方程》教材分析及说课稿一、教材分析《简易方程》是五年级数学上册第五单元的内容,它是在学生已经学习了用字母表示数、简易运算等知识的基础上进行学习的。
本单元主要围绕解简易方程展开,通过探索、实践、总结等环节,帮助学生理解并掌握解简易方程的方法,培养他们的抽象思维能力和解决问题的能力。
本单元的重点是让学生了解方程的概念,学会用字母表示数,并能根据实际问题列出简单的方程。
同时,通过练习和实际应用,让学生进一步理解方程的性质和解法,提高他们的数学素养。
二、教学目标1.知识与技能:•使学生理解方程的概念,知道什么是方程。
•帮助学生学会用字母表示数,并能根据实际问题列出简单的方程。
•引导学生学习解简易方程的方法,包括移项、合并同类项等。
2.过程与方法:•通过观察、比较、归纳等学习活动,培养学生的抽象思维能力和逻辑推理能力。
•鼓励学生合作学习,共同解决问题,提高他们的团队协作能力。
3.情感态度与价值观:•激发学生的学习兴趣,培养他们勇于探索、敢于创新的精神。
•引导学生认识到数学在解决实际问题中的重要作用,增强他们的学习自信心。
三、说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是五年级数学上册第五单元《简易方程》。
下面我将从教材分析、教学目标、教学重难点以及教学过程四个方面进行阐述。
(一)教材分析《简易方程》是在学生已经掌握了一定的数学基础知识和技能的基础上进行学习的。
本单元通过引入方程的概念,引导学生用数学语言描述实际问题,并尝试用数学模型(即方程)来解决问题。
这一过程不仅有助于学生巩固所学知识,还能培养他们的抽象思维能力和解决问题的能力。
(二)教学目标针对本单元的教学内容,我制定了以下教学目标:1.知识与技能目标:使学生理解并掌握方程的定义和性质,学会用字母表示数,并能根据实际问题列出简单的方程。
2.过程与方法目标:通过观察、比较、归纳等学习活动,培养学生的抽象思维能力和逻辑推理能力;鼓励学生合作学习,共同解决问题。
第五单元解简易方程(教学设计)五年级上册数学人教版
实际问题与方程(二)。
(教材第77页)1. 教授学生如何理解并解决涉及两积之和等于已知总数的问题,尤其是当方程中包含小括号时。
同时,训练学生使用这些方法来列出并解决具有类似数量关系的应用题。
2. 提升学生的问题分析能力,并鼓励他们运用多种策略和方法来解决问题,以培养他们的创新思维和解决问题的能力。
3. 引导学生养成仔细检验答案的良好习惯,以确保他们的解题过程准确无误,同时加强他们的责任心和学习效果。
重点:在解题过程中,关键在于准确地找出题目中隐藏的等量关系。
这是建立方程的基础,也是解决这类问题的首要步骤。
学生需要仔细审题,理解题目中给出的各个条件和数据,从而明确各个量之间的关系,特别是等量关系。
难点:在明确了等量关系之后,如何根据这些关系列出正确的方程,并用这个方程来解决实际问题,这是解题的难点。
学生需要具备扎实的代数基础和逻辑思维能力,能够灵活运用方程式的性质和运算规则,以及题目中的具体条件,来构建和求解方程。
实物投影。
妈妈购买了2千克的苹果和3千克的梨,每种水果的价格都是已知的。
我们需要计算妈妈总共需要支付多少钱来购买这些水果。
假设苹果的单价为 a 元/千克,妈妈买了 m 千克的苹果;梨的单价为 b 元/千克,妈妈买了 n 千克的梨。
根据题目,我们知道:1. 苹果的单价 a =2.4 元/千克,妈妈买了 m = 2 千克的苹果。
2. 梨的单价 b = 2.8 元/千克,妈妈买了 n = 3 千克的梨。
购买苹果和梨的总费用可以用以下方程表示:总费用 = a × m + b × n现在我们将已知的数值代入方程,计算总费用。
将数值代入方程,我们得到:2.4 × 2 + 2.8 × 3 = 13.2 元所以,妈妈总共需要支付 13.2 元来购买这些水果。
数量关系可以表示为:苹果的总价(2.4 × 2)+ 梨的总价(2.8 × 3)= 总钱数(13.2元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五单元 简易方程
第五单元简易方程
第五单元简易方程
一、用字母则表示数、运算定律、公式【知识点】:
1、用字母表示数的特点:
①字母不是一个具体内容的数,值域就是不确认的,可以变化的;
②未知数的取值要符合实际,一旦字母的值确定了,式子的值也就确定了。③同一个
题目中,一个字母只能表示一个量,不同字母表示不同的量;2、用字母表示数量关系:
步骤:①从题目中找出数量关系②用字母表示数量关系中的量注意事项:
①数与字母相加的简写:a×6=6×a=6?a=6a②1乘字母的简写:a×1=1×a=1?a=1a=a
③加减法式子后面有单位,要给式子带上括号,如:(a+25)岁
④把字母的值代入式子时,结果后面不提单位,例如:a=10时,a+30=10+30=40
3、用字母表示公式:
正方形周长c=4a正方形面积s=a4、用字母则表示运算定律:
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合
律:a×b×c=a×(b×c)乘法分配律:a×(b+c)=a×b+a×c5、化简含有字母的式子:运用
乘法分配律
【练】:
1、仔细想,认真填。
(1)存有红花a朵,黄花b朵(a>b),两种花掉共计()朵,黄花比红花太少()
朵。
(2)公交车上原有28人,到站后下车a人,又上车b人,现在车上有()人。(3)
三个连续的偶数中,若中间的偶数用n表示,则最小的偶数为(),最大的偶数为()。
2、爷爷比小明小52岁,小明的年龄就是a岁,爷爷的年龄就是()岁。(1)当a=8
时,爷爷的年龄就是多少岁?
1
2
长方形周长c=(a+b)×2长方形面积s=ab
(2)a能够就是100吗?(若世界上寿命最久的人活过137岁)
3、填空。
(1)王师傅a天搞了b个零件,他平均值每天搞()个零件。(2)苹果每千克a元,
梨每千克b元,各卖m千克。(a>b)①am则表示()②bm则表示()③a+b则表示()
④a-b则表示()4、看看图提问问题。
(1)说出下列各式子的含义。
acbcac+bc
(2)当a=1.5,b=4,c=1.2时,计算出(1)中各式子的值。
5、用b则表示单位面积产量,x则表示面积,s则表示总产量。(1)写下则表示总
产量的式子;
(2)科研所有0.84公顷的玉米试验田,每公顷产25000千克。利用上面的式子求这
块试验田可产玉米多少千克。
6、用所含字母的式子则表示长方形的周长和面积。当少?
2
x=3
时,长方形的周长和面积各是多
7、通常用则表示v速度,用t则表示时间,用s则表示路程,用字母则表示三者之
间的数量关系式。
如果小明骑自行车每分钟行驶250米,7分钟行驶多少米?
8、从武汉至北京的铁路长约1200km,一列动车以每小时220km的速度从武汉驶往北
京。(1)送出t小时后,这列于动车距武汉存有多离?如果t=3,这列于动车距武汉存有
多少千米?
(2)开出t小时后,这列动车离北京有多远?如果t=5,这列动车离北京有多远?
9、例如图放置餐桌和椅子。
(1)一张餐桌坐6人,两张餐桌坐10人,像这样摆下去,m
(2)当m=12时,用上面的式子排序可以挤多少人?
张餐桌可以坐多少人?
10、张明测出某一弹簧的长度与装设物体的质量存有下表的关系:
物体质量x(kg)弹簧长度(cm)0313.524.034.545.055.5(1)请你根据表中的信息,
写出本题中的数量关系式。
(2)当x=2.2时,弹簧的长度就是多少?
11、如图,阴影部分是一个正方形。(1)阴影部分的面积是()(2)空白部分的面
积是()
3
(3)当a=18,b=3时,空白部分的面积是多少?
【作业】:
1、仔细想,认真填。
(1)小华看看一本书,已经看看了108页,以后每天看看35页,x天后一共看看了
()页。(2)用20元钱,卖x个单价为1.5元的笔记本,应当寻回()元。
(3)商店运进150千克橘子,运进的苹果比橘子多a千克,150+a表示()(4)幼
儿园里买了45箱“未来星”牛奶,每箱x元,45x表示(2、用含有字母的式子表示下面
的数量关系。(1)60减去x的3倍的差。
(2)比a的9倍多45的数。
(3)b的8倍减去9.6的差。
3、代入表达式。
(1)当a=1.5,b=7.2时,求a+b的值。
(2)当m=12,n=9时,谋mn的值。
(3)当x=15.9,y=0.3时,求x÷y的值。
4、一本书存有200页,张明每天读a页,念了8天。(1)用所含字母的式子则表示
剩的页数。
(2)当a=3时,还剩多少页?
(3)想一想,式子中的a可以则表示哪些数?
4
)5、成年男子的标准体重可以用下面的式子则表示:标准体重=体重-105(体重:
厘米,体重:千克)
(1)用含字母的式子表示成年男子标准体重:;(身高用h表示)(2)小丽爸爸身
高175厘米,他的标准体重应该是多少?
6、未知长方形的短就是阔的1.5倍,如果用a则表示阔,用c则表示周长,恳请你
用所含字母的式子则表示长方形的周长。当a=12cm时,谋c.
7、判断。
(1)x2则表示两个x相加。()(2)因为8×a=8a,所以8×72的乘号可以省略不
写下。()(3)c×3可以译成c3。()
(4)52=10。()(5)a2一定大于2a。()(6)x+x+x=3+x。()(7)3a+4a=7a,
3a+4b=7ab。()8、我会算。
2x+3x=6a-5a=7m+5m=10y-y=9b-3b=5b+6b-11b=5x+5x+7x=a×a×8=9、顽皮用小正方形
挂大门。
摆1个大门需要()个小正方形,摆2个大门需要()个小正方形??摆个大门需要()
个小正方形。
10、小玲家、小敏家、学校在同一条直线上,且小玲家和小敏家分别在学校的西边和
东边,小玲从家启程,每分钟跑65米,a分钟可以至学校;小敏从家启程,每分钟跑70
米,a分钟可以至学校。
(1)小玲和小敏谁家离学校近?
(2)如果a=15,小玲家至小敏家一共存有多少米?
n
5