风力发电机常见故障与维护

风力发电机常见故障与维护
风力发电机常见故障与维护

风力发电机常见故障与维护

发表时间:2017-05-15T13:58:08.437Z 来源:《电力设备》2017年第4期作者:杨海龙1 张文龙2 张德新3

[导读] 本文对风力发电机故障特征、常见故障类型、原因与运行维护进行分析。

(北京京能清洁能源电力股份有限公司北京 100028)

摘要:我国风能资源丰富,风力发电机分布广泛,由于机电设备固有特点,需要做好故障检修与设备维护工作,才能保证发电效率,提供稳定电力供应。本文对风力发电机故障特征、常见故障类型、原因与运行维护进行分析。

关键词:风力发电机;故障;维护

引言

风力发电机是一种利用风来实现发电的机械,其构成包括采风的风叶、调整方向的对风构件、塔状支撑结构、动力传输构件以及发电机等多种器械。在风力发电厂里是主要的运转装置。随着社会用电量的极具攀升,对于风力发电机的要求也越来越高,因此,做好风力发电机的运行维护工作,避免其发生重大故障,是风电场工作人员的重要工作。

1.基本故障特征

通常风力机组全年运行中会出现至少二十次故障,其中七成故障是部件损坏所致。结构上讲,风力发电机组基本都可以分为内部件和机械部件两部分,一般内部部件损坏不会引起从属损坏,机械部件则会。为保证安全,若想登机巡检,都要在负荷率偏低情况下进行,甚至要求发电机组停运才可登机,这些规定为发电机组检修造成一定阻碍。此外,即使严密巡检,机械部件真实损坏情况也难以准确检测,例如位于主传动系统大构件,必须分析化验结果或振动频谱才能确定情况,这也是无法避免难题。主传动系统构件损坏通常会引起关联构件损坏,进一步加重了损失。

2.风力发电机常见故障

2.1发电机故障

风力发电机主要作用就是把自然能转变成的机械能尽可能转换为电能,经电网传输到用电单位使用。在运行中经常会出现发电机异常振动、过度发热的情况,而且还会出现电机轴承过热以及线圈短路断路的情况。发电机是风电核心组成,不止要与其他设备一样做常规养护,还要采取专门保护措施,减少故障发生率。从我国发电情况可以发现,发电机组的单机容量不停的增长,与其对应的发电机功率同时跟着变大,简单的维护措施无法再达到使其正常运行的标准了,如果没有密闭的保护措施,电磁将会对其工作造成干扰从而无法正常运行。并且电机的转动速度超过了一定的值对内部的部件也会造成损害,如果再快一点,电机的震动将会加剧造成故障发生的可能性也就会升高。

2.2发电机叶片故障

风力发电机中的叶片处于持续转动的状态下,会受到自然风、重力以及阵风等各个方面的力的作用,在转动过程中叶片还会受到来自设备内部的激振力的作用,这些都会对叶片造成损伤,常见的叶片故障主要有叶片断裂、偏移或者弯曲,有些也会由于达到使用寿命出现疲劳失效。

2.3变流器故障

风力发电机中的蓄电池可以将发电机所产生的直流电能储存起来,但是用电单位或住户必须要使用交流电,因此在电力输送过程中,需要将所产生的直流电通过变流器作用转换为交流电,所以保障风力发电机中的变流器安全运行格外重要。如果变流器出现故障问题,那么一定会影响风力发电机的电压电流。例如引发电流或电压忽高忽低,电压不稳或过大等现象。如果没有及时发现此问题,变流器所流经的电压电流会超过其额定使用范围,有较大概率会烧毁变流器或被击穿。

3.风力发电机故障原因

3.1发电机过热的原因

发电机过热一般是由于过度摩擦造成,当发电机的轴承缺油或者长时间的运转间隙出现变动的时候往往就会导致轴承出现比较严重的摩擦,引起温度升高。有些时候是由于轴承磨损破坏或者转子安装偏差,造成扫膛,引起异常振动和发电机发热。另外发电机过载运转,当定子的线圈短路,绝缘被破坏或者出现错误的线路连接的时候就会使线路出现故障,产生比较严重的短路电路,造成发电机发热。

3.2发电机叶片故障的原因

发电机的叶片在工作中主要就是随风速的变化而产生不同状态的转动。风力大的时候转速就大,风力小的时候转速就小。有些时候会出现瞬时的风速变化,对叶片的冲击较大。而且风机的叶片都比较长,导致刚性比较差,轻微的振动就可能导致叶片出现断裂。另外由于发电机的叶片都是在露天环境下工作,长时间之后容易在叶片的表面出现不均匀的积灰,导致叶片受力不均匀,质点出现偏移,最终导致叶片疲劳失效。

3.3异常振动的原因

发电机异常振动的原因一般可以分为两方面,一方面是在发电机设计制造的过程中存在设计缺陷或者质量问题,一些零部件的加工精度不达标,零部件不能很好的匹配,导致在转动过程中出现偏移,引发振动;另一方面是由于在运行使用过程中受到环境影响导致零部件受损,出现异常振动,发电机长时间使用会导致一些零部件出现松动,当转子的质心与发电机的旋转中心不能完全重合的时候就会使转动失去动平衡,失去平衡之后产生的离心力会作用到轴承上面,使发电机产生振动;同时在发电机的安装以及日常检修维护中的不正常操作也会导致异常振动,比如一些零部件安装不到位,或者当部件损坏使用的替换件不匹配等。

4.运行维护

发电机的正常使用一方面要依靠发电机本身的高质量制造安装,另一方面要依靠日常在使用过程中对发电机的运行维护。

4.1定期维修

发电机的重点维修内容主要包括连接点之间螺栓力矩的检测和传动过程中零部件的润滑。螺栓力矩的检测能够保证各部件连接到位,不会出现松动,造成发电机振动甚至零件脱离的情况,一般在风力比较低的时候对螺栓力矩进行检测维修。不同零部件的润滑需要选用不同的润滑方式,在封闭性的齿轮箱内一般是使用稀油润滑,定期更换过期的润滑油保持齿轮之间的正常传动。而对于一些外置的齿轮和轴承则一般是使用黄油进行干润滑,轴承温度一般比较高,需要经常进行润滑补充。但是在补充润滑的时候要注意润滑油的使用量,量太高

论大型发电机定子铁心常见故障及处理措施

论大型发电机定子铁心常见故障及处理措施 发表时间:2016-05-23T11:59:01.650Z 来源:《电力设备》2016年第2期作者:巩宇 [导读] (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040) 摘要:定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。发动机在运行多年后,由于种种原因,定子铁心的压紧力会逐渐减小,甚至发生松动。它的产生给发电机的安全运行带来隐患,有的甚至造成了机组被迫停运。而这种情况一旦出现,不但会造成严重的经济损失,还会影响发动机的寿命。因此,有必要对此问题进行探讨和重视。现代大型汽轮发电机更注重选用有方向或无方向性的优质冷轧硅钢片,以降低铁心损耗,提高发电机效率。本文主要探讨大型发电机定子铁心常见故障及处理措施。 关键词:发电机;定子铁心;故障 发电机在人们生活中占到很大的比重,维护发电机的正常运转,对于维护正常的经济生活非常重要。而定子铁心的相关问题在发动机故障中经常出现,影响到发电机定子铁心的因素很复杂,定子铁心常见故障一般分为定子铁心与机座的振动异常、定子铁心压装变松等多种。对于这些故障,在机组进行修整期间,应该使用探测仪对定子铁心进行以下检查,密切关注相关部位振动值和噪声、齿部和轭部、铁损试验。为了获得要求的磁、电特性和机械强度,减少磁滞和涡流损耗,定子铁心选择了磁导率高、损耗小,能达到一定工艺要求。 1 大型发电机定子铁心常见的故障 1.1 定子铁心与机座的振动异常 发电机运行后,轴系、定子铁心及机座的振动是不可避免的。采用端盖式轴承的发电机,定子铁心及机座的振源来自两方面:一是来自转子传来的机械振动;二是电机电磁场产生的电磁振动。由于转子的平衡精度不可能达到理想程度,转子旋转后,由于质量不平衡引起的振动通过轴承和端盖传到定子机座,产生工频(50Hz)振动;而由于转子磁极(大齿)与小齿呈现的相互垂直的刚度的差异,则对定子产生二倍工频(100Hz)的振动[1]。由电机电磁场产生的电磁振动力为:(1)因定子铁心有交变磁通通过所产生的交变电动力导致的工频振动。在铁心未压紧或铁心局部过热时即产生强烈的振动和噪声。(2)旋转的转子加励磁后,相当于旋转的电磁铁,对定子铁心产生使其变形的磁拉力,由此产生二倍频振动力,即椭圆振动--这也是定子铁心振动的主要振源。发电机带负载后将使铁心的倍频振动力加强,且由于定子端部漏磁场的轴向分量影响产生轴向的倍频振动力。当发电机发生三相短路时,将使定子铁心的椭圆振动与形加剧。两相短路时,定子铁心还会发生扭转振动。为将这些危害发电机安全运行的振动减至最小,除在设计和制造工艺方面提高定子铁心的刚度和弹性模量,使其固有频率避开工频和二倍频外,对大型汽轮发电机的定子铁心还采用弹性固定的办法即弹性定位筋或弹簧板隔振结构固定在定子机座上,以减小铁心振动直接传至机座上。 1.2 定子铁心压装变松 国产及进口200MW及以上容量的大型汽轮发电机曾多次发生过定子铁心硅钢片压装变松故障,轻微者仅对松弛部位加塞涂绝缘漆的硅钢片等塞紧,或扭紧定位筋及穿心螺母进行局部处理;严重者则需将定子绕组全部抬出,相关的紧固件全部拆除,以更换已损坏的整段铁心,对铁心进行整体压装,造成极大损失。从历次对铁心松弛故障原因分析的结果来看,老旧机组大多因为运行年久,在交变电磁振动力及铁心自身重力的影响下,破坏了铁心叠片间绝缘漆膜形成的阻滞力,导致铁心叠片变松,片间绝缘被破坏,形成片间短路和局部过热。新投入的发电机定子铁心叠片变松的原因则是多方面的。 2 大型发电机定子铁心常见故障及处理措施 排除接地故障时,应认真观察绕组的损坏情况,除了由于绝缘老化、机械强度降低造成绕组接地故障,需要更换绕组外,若绕组绝缘尚好,仅个别绕组接地,只需局部修复。(1)槽口部位接地。如果查明接地点在槽口或槽底线圈出口处,且只有一根导线绝缘损坏,可把绕组加热至130℃左右使绝缘软化后,用划线板或竹板撬开接地点处的槽绝缘。把接地处烧焦的绝缘清理干净,插入适当大小的新绝缘纸板,再用绝缘电阻表测量绝缘电阻。绕组绝缘恢复后,趁热在修补处涂上白干绝缘清漆即可。若接地点有两根以上导线绝缘损伤,应将槽绝缘和导线绝缘同时修补好,避免引起匝间短路。(2)双层绕组上层边槽内部接地。先把绕组加热到130℃左右使绝缘软化,取出接地线圈上的槽楔,再把接地线圈的上层边起出槽口清理损伤的槽绝缘,并用新绝缘纸板把损坏的槽绝缘处垫好。同时检查接地点有无匝间绝缘损伤,然后把上层边再嵌入槽内,折合槽绝缘,打入槽楔并做好绝缘处理。在打入槽楔前,应用绝缘电阻表测量故障绕组的绝缘电阻,使绝缘电阻恢复正常。对于双层绕组下层边槽内部对地击穿,可采用局部换线法和穿线修复法进行修复。(3)若接地点在端部槽口附近,损伤不严重,在导线与铁心之间垫好绝缘后,涂刷绝缘清漆即可。(4)若接地点在槽的里边,可轻轻抽出槽楔,用划线板和线匝一根一根地取出,直到取出故障导线为止,用绝缘带将绝缘损坏处包好,再把导线仔细嵌回线槽。(5)绕组受潮引起接地的应先进行烘干,当冷却到60~70℃左右时,浇上绝缘漆后再烘干。(6)若由于铁心凸出,划破绝缘,应将凸出的硅钢片敲下,在绝缘破损处重新包好绝缘。 定子铁心故障探测仪的应用。发电机定子铁心故障检查试验的目的是查找运行时的过热点隐患,防止扩大为发电机事故。上节提到的铁心试验方法是传统的试验方法,是通过临时安装的励磁绕组,在定子铁心上产生周向环绕磁通,试验时要抽出转子,大型发电机通常要用承载约300A电流的电缆,穿过定子内膛至定子机壳外部绕若干匝。对于500MW的发电机,要在铁心中产生的磁通密度达到发电机额定工作磁密的80%,大约需要3MVA的试验电源。试验时用红外热像仪测量定子内膛铁心表面的温度分布查找铁心故障点,以确定铁心表面的局部缺陷。这一电压是由穿过ABCD回路的磁通感应产生的,随着该回路尺寸的不同,电压数值可能达到几十甚至几百伏,后者是指轴向通风的发电机,在这些发电机中温度计导线沿着槽由定子端部引出。显然,这个电阻温度计对汽轮发电机机壳的任意第二点短路,都会形成电流回路。假如,定子机壳的E点是第二个短路点,在ABC-DE回路中就有电流,电流数值与回路电阻及短路点之间的感应电压数值有关。通常,电阻温度计的引线沿槽布设,从临近的铁心段间的径向通风沟引出。如运行经验指出,由于AB-CDE的面积小,故回路的感应电势和感应电流也小,未曾发现铁心损坏。具有轴向通风系统的汽轮发电机,当电阻温度计本身或它的引线绝缘损坏时,可能损坏有效铁

6发电机常见故障及处理方法

6.发电机常见故障及处理方法 6.1 发电机不发电或电压<100V 故障原因诊断分析: 1. 发电机运转至正常转速后电压为0,一般发生于长时间停用的发电机组,大多是发电机缺少剩磁造成的。在静止状态下用6V~12V蓄电池接在励磁绕组接线端子F1、F2上,F1接电源的正极,F2接电源的负极,短时间接通一下电源即可。 2. 若充磁后电压不能恢复,说明电机绕组存在短路故障,具体测量可用直流电阻电桥测量电机绕组的直流电阻。 3. 充磁后,如果试验空载电压恢复正常,但是,带载后电压下降厉害,应重点检查静止整流模块、旋转整流模块、电流互感器、整流变压器。 4. 如果U≠0 ,在30V~50V左右,进行它励试验,若电压不能恢复正常,应检查旋转整流模块是否损坏,励磁机绕组、主机绕组是否存在短路、断路。 5. 若进行它励试验时正常,一般故障出现在励磁系统,重点检查静止整流模块 V4、电流互感器T1、T2、T3,电抗器L1、整流变压器T6,检查绕组有无断路,插套有无松动,静止整流模块是否损坏。

6.2 发电机有电压,但电压在300多伏 故障原因诊断分析: 1. 发电机的电压调整范围一般为360V~440V,电压整定电位器调整至最大时,发电机电压应440V左右。若调整无效,电压保持在360V左右,可能是电压整定电位器阻值为零或电压整定电位器至AVR板上X2插头的1、3端子的两根线出现短路。应检查电压整定电位器是否完好,可用万用表测量电位器的直流电阻,阻值应在0~4.7kΩ内均匀变化。或者检查电位器是否接入AVR板。 2. 如检查电压整定电位器完好,检测弯板上的可控硅是否损坏,可控硅损坏严重(完全导通)可能导致分流电阻完全分流且分出电流大小不可调,从而使励磁电流较小,发电机电压始终处于低压状态。 3. 如果发电机电压在350以下,最大可能性是三块旋转整流模块中有一块出现故障,导致励磁机转子三相电流只有两相通过整流供给主机转子。 4.电抗器气隙太小,可适当加大电抗器气隙。

风力发电机电气故障诊断及维修实例分析

风力发电机电气故障诊断及维修实例分析 朱刚1 周艳华2 (1.神华国华江苏风电有限公司;2.江苏省东台市供电公司江苏东台224200) Abstract: The wind turbine integrated computer, automatic control, optical fiber communication, the technical achievements of the power frequency converters, servo drives, precision, detection, and new mechanical structure, high flexibility, high precision and a high degree of automation features. In today's energy industry, almost all managers and technical staff have been recognized that wind turbine with conventional forms of electricity generation in alternative energy and environmental protection are unmatched advantage, universal access to wind power technology is the future of human survival and development the only way. Keywords: wind turbine fault diagnosis maintenance instance 风力发电机综合了电子计算机、自动控制、光纤通信、电力 变频变流、伺服驱动、精密检测与新型机械结构等方面的技术成 果,具有高柔性、高精度和高度自动化的特点。在当今能源行业, 几乎所有的管理者和技术人员都已经认识到风力发电机在能源 替代和环境保护等方面都有着常规发电形式所无法比拟的优势, 全面普及风力发电等新能源技术是未来人类生存和发展的必由 之路。既然作为一种机电一体化的复杂系统,出现各种各样的故 障亦是必然,如何在现场条件下正确、快速地分析故障原因,发 现故障部位进而快速处理故障,使故障风机恢复正常投入运行, 提高设备的可利用率,是现场维修人员需要深入探讨的问题。 1 风力发电机电气故障的分类 风力发电机的电气故障可按故障的性质、现象、原因或者后 果等进行分类。根据故障发生的部位不同,可以分为硬件故障和

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

风力发电机组主要部件的检修与维护

风力发电机组主要部件的检修与维护 装备本121--李勇2012525107 维护检修时应对风机各部件按照维护手册和维护计划逐项详细检查,特别是叶片、轮毂、导流罩、主轴、齿轮箱、集电环(及传动轴)、联轴器、发电机、空气和机械制动系统、传感器、偏航系统、控制部分、电气回路、塔筒、监控系统及配套设备检查等。控制部分概述控制计算机、变频器和变桨控制器通过接口彼此联系。 每个组件都带有自己的监视功能。 控制计算机位于塔顶(机舱内)的机舱控制柜内,它通过玻璃光纤数据传输 电缆与塔基内的显示屏相连。控制计算机连续不断的发出转矩设定给变频器控制计算机,发出叶片角度设定值给同步控制器,同步控制器驱动在轮毂中的变桨控制电机。出现内部故障时,控制计算机可以通过所谓的看门狗电路中断安全链。 刹车通过刹车瓦的磨损和刹车是否完全松开来监视刹车情况。控制计算机和变桨控制装置之间的通讯通过不同的系统功能持续监视,如果发现错误,“变桨控制失败”触点打开以开始紧急停机。 变频器系统由几个控制柜组成,位于塔基。变频器系统配置了自己的计算机控制系统。变频器能自己关闭,它能给信号给控制计算机使变桨控制机构立即开始工作。在同步控制器中,变桨控制自身监视只对故障起作用,象下列故障:叶片和叶片角度偏差等。它能够通过始终联结的电缆请求控制计算机快速停机。 控制面板基本功能 - 按 CTRL 激活显示灯(屏幕节电功能)。 - 连续按两次任何按键可以激活控制面板。 - 某些功能的激活需要同时按两个键。如同时按下 CTRL 或 SHIFT 键可以激活想要的功能。功能键 ENTER 用来确定通过数字键盘输入的 参数值和某些菜单的确认 STOP WEC 停机:风机正常停机。 RESET 复位和执行自动运行。 START 快速启动。 F1 指示选择菜单的位置 F2 指示有关联的其他菜单 F3 对按键 0-9 向前或向后转换数字或字母。按下 F3 后,当按键 1 时将显示字母 A,再次按键 1 将显示字母 B,第 3 次将显示 C。然而如果包含字母的值被编辑,字母也被显示。 F4 光标上移一行 F5 显示上级单 F6 屏幕向上翻滚F7 屏幕向下翻滚 F8 显示图形 F9 光标下移一行 F10 显示下级菜单 控制柜检查内容、质量要求及处理方法: 检查内容:

浅析风力发电机故障检修与处理方法

浅析风力发电机故障检修与处理方法 发表时间:2018-06-25T16:50:56.237Z 来源:《电力设备》2018年第3期作者:董文鑫 [导读] 摘要:在风电场的运行中,设备的使用和维护成本占据较大比例,其对风电场的经济效益产生了直观的影响,因此做好设备检修工作,防范设备故障的发生,同时对故障范围进行有效的控制,防止经济损失的进一步扩大,一直以来都是风电场运营管理的重中之重。(国华(河北)新能源有限公司河北省张家口市 076750) 摘要:在风电场的运行中,设备的使用和维护成本占据较大比例,其对风电场的经济效益产生了直观的影响,因此做好设备检修工作,防范设备故障的发生,同时对故障范围进行有效的控制,防止经济损失的进一步扩大,一直以来都是风电场运营管理的重中之重。本文将对风力发电机故障原因加以探讨和分析,并论述几种常见故障类型的处理方法,以期全面提高故障检修效率,促使风力发电机尽快恢复到正常状态,从而保证电力生产的安全性和稳定性。 关键词:风力发电机;故障检修;处理方法 引言:现阶段,风力发电已经成为了一种重要的发电方式,既缓解了当前紧张的能源形势,又不会对生态环境产生污染和破坏,是可持续发展理念的有力举措,在我国的大部分地区都得到了推广应用。但是风力发电对环境和设备有着较强的依赖性,风力发电机长期暴露于露天环境下,发生故障的概率较高,如不能及时进行处理,将会严重影响到电力生产的持续性和稳定性。在此情况下,了解风力发电机的故障类型和诱发原因,采取行之有效的措施予以解决,也就变得尤为重要。 一、风力发电机概述 1、风能及风力发电的现状 目前,全球的风能资源总量约有2.7×109MW,其中能够被利用的风能大约有2×109MW,而中国的风能资源占据了全球第三的位置。一般情况下,风能资源的利用方式大多为风力发电,其在世界经济进步、科学技术发展的时代背景下已经跃然成为了增速最快的发电技术了,相应的风电整机容量也在不断得扩大。据近几年的相关数据统计,2010年时,世界的风力发电量占全球的电力消费的2.5%左右,2012年时,全球的新增装机容量已经达到了44711MW,总装机容量如预期般地超过了2.83×109MW,据专家预测,到了2020年时,风力发电大约能够提供增速为7.7%~8.3%的风力。 2、风力发电机的构造及工作原理 风力发电机是风能转化为电能的最基本可利用工具,主要由限速安全机构、叶轮、尾翼的调向器、储能装置、包括装置在内的发电机、塔架、传动装置(如齿轮箱、制动器、低速或高速轴等)、刹车系统、偏航系统、控制系统等部件构成;其工作的原理为叶轮在风力作用下,把风的动能转化为叶轮轴的机械能,再由叶轮轴带动发电机进行发电。这整个过程都较为简单,主要运用到了空气动力学的原理,即风在吹过叶轮时在叶片的正反两面形成了压力差而产生升力,从而让叶轮不停旋转的同时还能连续性地横切风流,从而得到了转化后的机械能。 3、故障原因分析 风力发电机是一种能量转换装置,能够将风能先转变为机械能,再通过发电装置转化为电能。而在地面受到建筑物的遮挡,会影响到风能的传递,这就要求风力发电机设置在距离地面数十米的高空中,确保风力发电机的叶片与风充分接触,才能提高风能的利用率。然而这种设计形式也具有一定的弊端,使得风力发电机的受力情况变得愈发复杂,不同气候环境、不同时刻的风速情况有所差异,造成了叶片受力的不断变化,同时叶片作为传导部件,还会将受到的冲击力传递给风力发电机的其他结构,首当其冲的就是主轴、齿轮箱和发电机,这些都是风力发电系统的重要环节,也是最容易出现故障的部件。 二、风力发电机的定期检修 当风力发电机投入使用一个阶段后,为保证风力发电机能够保持安全稳定的运行状态,应当定期开展检修工作。具体检修工作实施中,需要做好以下几方面的工作:首先,对螺栓力矩以及电气连接情况加以检测,保证各个连接点之间维持良好的连接状态,同时做好传送带等部分的润滑处理,随后,需要针对风力发电机运行重点功能部分展开测试。如果风力发电机运行时间过长,那么其螺栓很可能会出现松动情况,同时由于风力发电机是在长期震动的条件下运行的,为此,螺栓松动情况很可能会发生。如若发生了螺栓松动情况,那么其所承受的力就会不均匀,这种情况下很容易被剪切。所以,在开展日常检修工作中,要求认真检测螺栓力矩,查看螺栓有无松动情况,及时发现及时处理。在实际处理期间,若是风力发电机所处环境温度低于-5℃,则应当下调螺栓力矩,下降幅度为标准力矩的80%为宜,进而更加便于固定。另外,应当保证检测过程中周围温度在5℃以上。具体检修工作中,通常会在夏季阶段对螺栓松动状态进行检修,同时要在无风或是微风的条件下检修,防止高风力季节无法实现对风力资源的有效利用。在对传送带与有关部件采取润滑处理过程中,需要选择合适的润滑方法,要了解到不同部件所需采用的润滑方法存在较大差别。齿轮箱和偏航减速齿轮箱通常会利用稀油润滑的方式,而轴承盒偏航齿轮等部件则会利用干油润滑的方式。若是稀油润滑,则应当保证润滑油数量充足,润滑油不足时需要立即补充,但若是润滑油过期,那么应当及时更换。对于干油润滑的部件来说,通常它们都处于一种高温的工作环境下,很容易因为温度过高对零部件造成损害,降低了零部件的使用寿命。在对轴承和偏航齿轮等使用干油润滑的部件,不应补加过多的润滑油,一定要严格按照补加标准进行添加,避免由于润滑油过多而烧坏电机。 三、风力发电机常见故障及处理方法 (1)当故障表现为风轮转动时发出异常声响时,故障原因可能为叶片开裂、机舱罩松动或松动后碰到转动件;风轮轴承座松动或轴承损坏;增速器或齿轮箱轴承松动或损坏;制动器、发电机、联轴器松动或损坏。 处理方法:检查叶片是否有开裂;对机舱罩的螺栓进行紧固处理;重新调整风轮轴和增速器的同轴度,并紧固固定螺栓;当轴承已经损坏时,则应更换轴承,并对轴承底座进行重新安装;更换轴承及油封后,将增速器重新安装;重新固定制动器及调整刹车片间隙。调整发电机的同轴度并将紧固螺栓紧固牢靠。若联轴器损坏则需更换联轴器。 (2)风度达到额定风速以上,但风轮达不到额定转速,发电机不能输出额定电压时,故障原因可能为:风向标不对风;发电机转子和定子接触摩擦;增速器轴承或风轮轴承损坏;刹车片回位弹簧失效致使刹车片半制动状态;微机调速失灵;变桨距轴承损坏;变桨距同步器损坏。 处理方法:调整或更换风向标使之正对风向;检查驱动系统卡滞的位置,采取相应的措施消除卡滞现象;若由于液压驱动变桨距的油

汽油发电机常见故障汇总及解决方法

汽油机点火不着的原因具体有哪些方面? 汽油机要实现正常启动,必须具备三个条件:一、配气系统正常;二、供油系统正常;三、点火系统正常;这三个条件缺一不可。分析发动机不能启动故障,就从这三个方面进行逐一排查,定能事半功倍。当然在判断正常与非正常时,需要有一定经验积淀。工作过程中,发动机自行熄火后,不能启动。检查步骤是:1、握住起动手柄,慢慢拉转轴,感受压缩行程时的阻碍力,若阻力大则汽缸压缩力正常,初定配气系统正常,2、拆下火花塞后,重新装入火花塞冒中,并使火花塞搭铁,打开,迅速拉动起动手柄,观察火花塞跳火(俗称跳火试验)情况,若火花正常,则初定点火系统正常。问题可能出现在燃油供给系统,燃油供给系统故障有二种情况:其一:油流不畅或无油。主要原因有:①、油箱中无油;②、油箱盖小孔堵塞;③、油箱底部滤网堵塞;④、化油器开关油道堵塞;⑤、浮子室卡滞;⑥、主量孔堵塞。其二:油流通畅。主要原因有:①、燃油中有水;②、气缸内燃油过多;③、混合汽通道漏气。需要特别提醒的是,搁置较长时间的起动时,除作上述检查外,还要注意检查开关位置和风门的开度,以及燃油质量问题。安装有机油传感器的发动机首先检查箱内机油是否足够,传感器是否搭铁或损坏。若燃油供给系正常,气缸压缩正常,则故障在点火系。故障原因有:①、电极度脏污、积炭;②、火花塞绝缘体损坏;③、火花塞间隙不对;④、高压线漏电;⑤、火花塞损坏;⑥、点火线圈损坏;⑦、不够。点火系故障判断方法是:做火花塞跳火试验,观察有无火花或火花强弱,若无火花,拆下火花塞冒,用高压线直接跳火试验,若火花正常,故障在火花塞及火花塞冒。再将火花塞放置机体上,用高压线接触火花塞尾部进行跳火试验,若跳火正常,则火花塞冒损坏;若跳火微弱,或不跳火,则火花塞可能:①、火花塞积炭;②、火花塞电极间隙过大或过小;③、火花塞绝缘损坏;若高压线无电火花,断开点火器与点火开关的联接线,再作跳火试验,若跳火正常,则点火开关搭铁,清除搭铁点即可正常启动。若仍不跳火,可拆点火器上的熄火搭铁线,再跳火试验,若跳火正常,则熄火搭铁线有搭铁现象;若跳火微弱或不跳火则点火器损坏或磁场变弱。若燃油供给正常,点火系正常。则故障在配气系统。配气系统故障有两种现象:其一,气缸无压缩拉动曲轴无转动阻力。压缩过程漏气,可能产生的原因有:①、汽门密封不严漏气;②、气门发卡;③、汽缸垫损坏;④、气缸头螺丝松动;⑤、花塞松动;⑥、活塞环焦结;⑦、活塞环磨损;⑧、磨损;⑨、活塞磨损;⑩、过小或无间隙。其二,压缩正常。可能产生的原因有:①、启动负荷大,启动转速不够;②、进气或排气门推杆脱出;③进排气道堵塞;④、气门间隙过大。还应注意别人拆装过曲轴箱盖的发动机,应检查配气正时,确保万无一失。自行熄火的发动机,当检查确认配气正时、压缩良好、无进排气堵塞。然油供给正常,化油器雾化可靠。火共塞跳火也正常,但仍不能启动时,这时唯一应检查的部位是--飞轮键,若飞轮键被剪切就会使飞轮与曲轴正常装配位置发生改变,使飞轮上的相对曲轴的定位发生改变,最终造成点火不正时,故发动机不能启动,这一故障须拆卸飞轮才能检查。本人在工作中遇到二例。发动机工作中自行熄火,手拉起动盘不能

柴油发电机常见问题及解决措施

柴油发电机常见问题及解决措施 人类的生活越来越离不开电力支持,随着科技进步,出现了越来越多的供电方式。按其能量来源大致分为核能发电、水力势能发电、火力发电、风力发电和太阳能发电。在大型发电站的支持下,城市才能正常运作。但是城市对电的供应需求也越来越大,尤其是在夏季,用电高峰期经常会出现供电不足的现象。而医院、政府机关等单位一旦断电将产生极大的负面后果。除此之外,断电对大型企业会造成非常大的经济损失。所以现在越来越多的单位都拥有自己的备用电源。作为最常用的备用电力设备,柴油发电机组的维护和运行问题逐渐得到人们的重视。本文就多年使用柴油发电机设备的经验,对其进行维护、故障诊断及管理进行阐述。 柴油发电机组共有六大系统,分别是机油润滑系统、燃油系统、控制保护系统、冷却散热系统、排气系统和起动系统。其中问题主要集中在启动系统、冷却系统和燃油系统。 一、启动系统问题 由于柴油发电机是一般情况下是备用电源,因此柴油发电机常处于待机状态,运行状态较短暂。但正是由于是应急电源,其应急启动能力尤为关键,这就要求启动系统不能有问题。而启动的关键在于蓄电池,蓄电池是发动机启动时的唯一电源,对蓄电池要进行悉心的维护。要让蓄电池达到额定电压,就要求在平时对蓄电池的电压进行监控,对蓄电池进行充电时,到达额定电压后停止充电,若电压低于额定电压则自动进行充电。这需要带蓄电池电压监控功能的自动充电设备。 维护保养蓄电池要关注蓄电池内部成分比例,如果内部水、酸损失没有得到及时补充,或电解液量达不到规定液面高度,就会使蓄电池的性能大幅降低。若补充电解液时过量,则多于的电解液易腐蚀接线柱,处理的方法是打磨掉腐蚀,重新加固螺丝,以降低电阻。

发电机常见故障与解决方案报告书汇总

双馈发电机简介及常见故障 一:双馈电机简介及工作原理 (1)简介: 双馈异步风力发电机(DFIG,Double-Fed Induction Generator)是一种绕线式感应发电机,是变速恒频风力发电机组的核心部件,也是风力发电机组国产化的关键部件之一。该发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构. 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变流器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 (2)工作原理: 双馈感应发电机由定子绕组直连定频三相电网的绕线型感应发 电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。 “双馈”的含义是定子电压由电网提供,转子电压由变流器提供。该系统允许在限定的大范围内变速运行。通过注入变流器的转子电流,变流器对机械频率和电频率之差进行补偿。在正常运行和故障期间,发电机的运转状态由变流器及其控制器管理。

变流器由两部分组成:转子侧变流器和电网侧变流器,它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器通过控制转子电流分量控制有功功率和无功功率,而电网侧变流器控制直流母线电压并确保变流器运行在统一功率因数(即零无功功率)。 功率是馈入转子还是从转子提取取决于传动链的运行条件:在超同步状态,功率从转子通过变流器馈入电网;而在欠同步状态,功率反方向传送。在两种情况(超同步和欠同步)下,定子都向电网馈电。(3)优点: 首先,它能控制无功功率,并通过独立控制转子励磁电流解耦有功功率和无功功率控制。其次,双馈感应发电机无需从电网励磁,而从转子电路中励磁。最后,它还能产生无功功率,并可以通过电网侧变流器传送给定子。但是,电网侧变流器正常工作在单位功率因数,并不包含风力机与电网的无功功率交换。 二:电机常见故障及解决办法 1:电机轴电流电流? 电机的轴--轴承座--底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。

风力发电机组齿轮箱的故障及其分析

毕业设计(论文)2010 级风能与动力技术专业 题目:风力发电机组齿轮箱的故障及其分析 毕业时间: 学生姓名:X X X 指导教师:X X X 班级:10风电(1)班

目录 一、绪论 (1) (一)风力发电机组齿轮箱故障诊断的意义 (1) 二、风力发电机组齿轮箱的故障诊断 (2) (一)风力发电机组齿轮箱的常见故障模式及机理分析 (2) (二)齿轮箱典型故障振动特征与诊断策略 (6) (三)针对齿轮箱不同故障的改进措施 (9) 三、结论 (12) 参考文献: (12) 致谢 (13)

风力发电机组齿轮箱的故障及其分析 摘要:随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词:风力发电机;故障模式;齿轮箱;故障诊断 一、绪论 (一)风力发电机组齿轮箱故障诊断的意义 风电对缓解能源供应,改善能源结构、保护环境和电力工业的持续发展意义重大。这些年来,风电机组在我国得到了广泛的安装使用。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,风力发电机的故障也成为一个不容忽视的问题。 随着风电机组运行时间的加长,目前这些机组陆续出现了故障(包括风轮叶片、变流器、齿轮箱、变桨轴承,发电机、以及偏航系统等都有),导致机组停止运行。当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故。风电机组的部分部件一旦损坏,在风电场无法修复,必须运到专业厂家进行修理。因其维修费用高、周期长、难度大,势必给风电场造成巨大的经济损失,严重影响了风电的经济效益。 风电机组的输出功率是波动的,可能影响电网的电能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。当风电机组发生故障时,输往电网的

浅谈风力发电机的日常维护

浅谈风力发电机的日常维护 【摘要】风是日常生活当中不可缺少的一项,而且是可再生能源。在资源短缺的情况下,风力发电事业作为一个新型事业起到了良好的带头作用。随着科技脚步的不断前进,我国的风力研究事业也在不断发展,从而建立起了风电场。但是由于风力发电机长时间的使用而不能进行清洗,在使用时间的日积月累当中,部件的损坏故障情况时有发生。下面对风力发电机组的运行与维护工作进行一下深入探讨。 【关键词】风力发电机;运行;维护;使用 1.运行 风力发电机组的运行控制系统都是由工业微处理器来进行控制的,一般是由多个CPU 来统一运行的,其中它自身的抗干扰能力就十分强悍,而且还可以通过通信系统和计算机来进行相互关联,可进行远程控制管理,这样可以大大的降低运行的人工工作量。所以风力发电机的主要工作量就是进行远程故障排除以及数据统计和对出现故障的原因进行分析。 1.1远程故障排除 风力发电机组的大部分故障都可以通过远程复位控制以及自动复位控制来进行排除。风力发电机的运行工作和相关电网的质量程度是很有联系的,而且为了可以进行双向的保护,还对风力发电机组进行了多重保障设置,以免故障发生。由于风向、风速的不可控制性,所以对风速的最大限度值也可以进行自动复位控制,还有相关的温度最大程度限定值也可以进行自动复位,如:发电机组温度、齿轮箱温度以及环境的温度等。风力发电机的过度超负荷任务也可以进行自动复位。除去自动控制复位故障以外,其他远程故障复位所引起的主要原因有:(1)风力控制发电器误报故障。 (2)各个部分的检测感应器误操作。 (3)控制系统以及风力发电机的运行不可靠。 1.2运行方面的数据统计工作 对风力发电场所发生的情况进行数据统计研究是风电场管理工作当中的一项重要内容。通过对风力发电场的数据研究统计工作,可以对发电场的考核工作起到很好的带头作用,也可以对风电场的设计、风险评估、设计造型选型进行相关的理论依据。每个月的数据统计表,都是运行工作的重要工作之一,其中的真实可靠性直接关系着电场的经济效益。我们通过对风向情况数据进行统计与分析,通过这些数据掌握了各种型号的风力发电机随着季节变化,冷暖变化的运行以及出力的规律,并且可以根据以上情况来制定详细化的定期维修维护时间,以便减少资源的浪费情况,尽可能的减少资源。 1.3故障原因的分析 我们通过对风力发电机所有可能发生的故障情况都进行了深入研究分析,找出了可以尽可能减少故障发生频率的方法,从而减少了故障的发生率,停机运行时间,可以提高设备的寿命性、完好性以及利用率。如:对Vastas风力发电机组偏航电机超负荷的使用故障的分析,我们得知此故障的原因是:首先是机械上有的电机输出轴承以及键块磨损导致了超负荷的产生,还有就是齿盘断裂处发生偏航电机的超负荷,在电气上发生的软偏模块的超负荷损坏,软偏触屏板的损坏等等,我们经过研究分析是因为电压波动的正负值调频的太低造成的,所以我们对

发电机常见故障原因及对策分析

发电机常见故障原因及对策分析 [摘要]近年来,随着我国社会经济的快速发展,科技技术、自动化技术等都有了进一步的发展。目前,发电机广泛应用于各行各业,若发电机出现故障,将严重影响着企业的正常运营,甚至给企业带来巨大的经济损失与社会损失。文中就常见的发电机故障展开分析,重点探讨其故障原因,针对其原因所在,有针对性的提出了相应的解决对策,避免发电机事故的发生。 [关键词]发电机常见故障故障原因对策 作为大型动力设备的发电机,不仅具备体积小的优点,而且具有功率大、转速高、运行平稳、安全性高的优势。但其运行过程中难免会出现一些故障,如何才能更好的防治、解决发电机运行中的常见故障,这对真正提高发电机的运行效率及运行安全性能具有重要的意义,下面将就此展开分析、论述。 1发电机常见故障及其原因分析 1.1绝缘电阻低于标准或产品技术条件规定的数值 出现绝缘电阻低于标准或产品技术条件规定的数值故障的原因:(1)原动机转速过低;或是由于二极管被击穿。(2)励磁回路中的电阻高于正常规定值;或是励磁电刷偏离中性线。(3)运输、存放、长时间停机或有水滴入电机内使线圈受潮或变形。(4)电机刷压力过小,接触面积过小,使其发生接触不良的现象。 1.2发电机电压过低 出现发电机电压过低的故障原因:(1)原动机转速太低,励磁回路电阻过大。(2)定子绕组或励磁绕组中有短路或接地故障。 1.3发电机电压过高 出现发电机电压过高的故障原因:(1)转速过高,分流电抗器铁心气隙过大。(2)磁场变阻器短路,发电机事故飞车。 1.4发电机线圈损坏故障 (1)一般使用年限较久的发电机极为容易出现线圈损坏的故障,即发电机的线圈绝缘出现局部损坏的现象,或是由于其线圈绝缘被击穿而出现故障。(2)若定子线圈处的绝缘层与绝缘线圈常年受外部环境中的土尘、水泥等颗粒性物质及水和油污等物质浸湿,而且在槽口拐弯部位浸漆的不完全,都容易损坏定子线圈的绝缘层,进而引发电压击穿或接地烧毁等故障,严重影响发电机的对正常及安全运行。(3)此外,在使用发电机的过程中,由于发电机在其运转工作的过程中其轴承会产生一定的磨损,若未定期对其进行必要的检测、维修与保养,当其

发电机常见故障新版

发电机常见故障、事故处理 第一、发电机的异常运行及处理 一、发电机过负荷: 1.现象: 1)定子电流指示超过额定值 2)有、无功表指示超过额定值 2.原因:系统发生短路故障、发电机失步运行、成群电动机启动和强行励磁等情况下,发电机的定子或转子都可能短时过负荷。 3.处理方法: 1)系统故障,监视发电机各部分温度不超限,定子电流为额定值。 2)系统无故障,单机过负荷,系统电压正常: A.减少无功,使定子电流降到额定值以,但功率因数不超过0.95,定子 电压不低于0.95倍额定电压。注意定子电流达到允许值所经过的时间,不允许超过规定值。 B.若减少无功不能满足要求,则请示值长降低有功。 C.若AC励磁调节器通道故障引起定子过负荷,应将AC调节器切至DC 调节器运行。 D.加强对发电机端部、滑环和整流子的检查。如有可能加强冷却:降低发 电机入口风温,发电机、变压器组增开油泵、风扇等。 E.过负荷运行时,应密切监视定子线圈,空冷器前后的冷、热风温度、机 组振动摆度,不准超过允许值,并作好详细的记录。 二、发电机三相电流不平衡: 1.现象:

1)定子三相电流指示互不相等,三相电流差较大,负序电流指示值也增大。 2)当不平衡超限且超过规定运行时间时,负序信号装置发“发电机不对称过 负荷”信号。 3)造成转子的振动和发热。 2.原因: 1)发电机及其回路一相断开或断路器一相接触不良。 2)某条送电线路非全相运行。 3)系统单相负荷过大:如有容量巨大的单相负载。 4)定子电流表或表计回路故障也会使定子三相电流表指示不对称。 3.处理方法: 当发电机三相电流不平衡超限运行时,若判明不是表计回路故障引起,应立即降低机组的负荷,使不平衡电流降到允许值以下,然后向系统调度汇报。等三相电流平衡后,再根据调度命令增加机组负荷。水轮发电机的三相电流之差,不得超过额定电流的20%,同时任何一相的电流,不得大于其额定值。水轮发电机允许担负的负序电流,不得大于额定电流的12%。 三、发电机温度异常: 1.现象:发电机绕组或铁心温度比正常值明显升高或超限,发电机各轴承温度比正常值明显升高或超限。 2.原因: 1)测量元件故障 2)冷却系统故障:冷却水压不够、冷却水量不足、管路堵塞、破裂或阀心脱 落。 3)三相电流不平衡超限引起温度升高。 4)发电机过负荷。

系列风电机组事故分析及防范措施风电场存在的问题

机组安全不仅与整机质量有关,而且与风电企业的管理体制、风电场管理与运维人员有着密不可分的关系。就中国目前大部分风电场的管理体制来看,风电场维护维修人员的技术水平和责任心,对保证机组正常运行及机组安全有着最为直接和关键性的作用。下面就现场人员、风电场管理、机组运维以及风电场现状等几个方面所存在的问题予以阐述和分析。 风电场存在的问题 一、现场人员的技术水平及运维质量堪忧目前,中国绝大部分风电场,主要依靠现场人员登机判断和处理机组故障,检查和排除安全隐患。公司总部和片区的技术人员不能通过远程直接参与风电场机组的故障判断和检查,难以给现场强有力的技术支持。设备厂家的公司总部、片区除了提供备件外,难以对现场机组管理、故障判断和处理起到直接的作用。风电场与公司总部、片区之间严重脱节。 中国大多数风电场地处偏远地区,条件艰苦,难以长期留住高水平的机组维护维修人才。再者,不少风电企业对风电场运维的重视度不够,促使现场人员大量流失,造成不少经验丰富的运维人员跳槽或改行。经验丰富、认真负责的现场服务技术人员严重匮乏,这也是中国风电场重大事故频发的重要原因之一。 如果说在质保期内不少风电场的现场服务存在人才和技术问题,那么,在机组出质保后,众多风电场的运维质量和现场人员的技术水平更令人担忧。尤其是保护措施完善、技术含量高的双馈机组,由于现场人员的技术水平有限,加之,众多风电场在机组出质保后备件供应不及时,要确保机组正常的维修和运行更加困难。为了完成上级下达的发电量指标,维修人员不按机组应有的安全保护和设计要求进行维修,不惜去掉冗余保护,采取短接线路、修改参

数等方法导致机组长期带病运行,人为制造安全隐患。 在机组出质保后,有些风电场业主以低价中标的方式,把机组维修和维护外包。而外包运维企业为了盈利,把现场人员的工资收入压得很低,难以留住实践经验丰富的现场人员,现场人员极不稳定,因此,确保机组的安全运行变得更加困难。 二、目前风电场开“工作票”所存在的问题 在风电场机组进入质保服务期以后,大部分风电场的机组故障处理流程通常是:在风电场监控室的业主运行人员对机组进行监控,当发现机组故障停机后,告诉设备厂家的现场服务人员;能复位的机组,在厂家现场人员的允许下,对机组复位;不能复位的,通知设备厂家人员对机组进行维修;在维修之前,厂家人员必须到升压站开工作票;只有经过风电场业主相关部门的审批同意后,厂家现场人员方可进行故障处理;机组维修后,厂家服务人员再次到升压站去完结工作票。 在风电合同中,通常把机组利用率作为出质保考核的重要指标,一些风电场开工作票的时间远远超过机组维修时间。因此,开工作票、结工作票等一系列工作流程直接会影响机组利用率,同时还会造成不必要的发电量损失。有的风电场还有这样的要求,如设备厂家的现场服务人员第一次到该风电场服务,则需先在风电场接受为期三天至一周的入场教育,方能入场登机处理现场问题。

相关文档
最新文档