半导体薄膜制备及光电性能表征

合集下载

微电子技术中的半导体薄膜材料

微电子技术中的半导体薄膜材料

微电子技术中的半导体薄膜材料摘要:本文着重介绍了用于微电于技术的非晶态、宽带隙、纳米相、超晶格、量子微结构以及多孔硅等半导体薄膜材料并指出,原子组态的无序化,材料禁带的宽带隙化,能带剪裁的任意化以及人工结钩的低维化和量子化,集中体现了半导体薄膜材料的发展特点。

关键词:薄膜材料,结构性质,发展特点1 引言薄膜材料是发展微电子技术的先导条件和制造微电子器件的物质基础,近半个世纪以来,随着各种成膜方法的长足进步,半导体薄膜材料从体单晶到非晶态,从非晶态到纳米相,从窄禁带到宽带隙,从常规制备到人工设计,涌现出了一大批高质量和有重要实用价值的新材料。

目前,关于半导体薄膜材料物理与工艺的研究,已成为真空、微电子和材料科学中一个极其活跃的领域[1]。

半导体薄膜材料研究的核心为新材料的研究和传统材料性能的提高。

前者是按照人为的意志构想新的结构形式和设计新的化学组分,并通过现代超薄层外延技术加以实现;后者则是利用适宜的工艺方法改变材料的微观结构,使其呈现出常规材料所不具有的全新原子组态。

2 不同结构类型的半导体薄膜材料2.1 非晶态材料非晶态半导体是一门在凝聚态物理领域中占据着重要地位且发展十分迅速的新兴学科,研究非晶态材料的意义不仅是在科学技术上获得大量的新材料和新器件,而且可以开拓和加深人们对固体物理领域中许多基本问题的认识与理解。

以促进固体物理学的发展,同时对其许多周边物质,如非晶态合金及多层异质结、超微粒子、多孔硅以及硅系高分子等的研究也将产生积极而深远的影响。

原子结构的无序性和化学组分的多样化,使非晶态半导体具有许多显著不同于晶态半导体的物理特性[2]。

对于大多数非晶态材料而言,其组成原子都是由共价键结合在一起,形成了一种连续的共价键无规网络结构;在非晶态半导体中可以实现连续的物性控制,当连续改变其化学组成时,其禁带宽度、电导率和相变温度等都随之连续变化;在热力学上,非晶态处于一种亚稳状态,仅在一定条件下才可以转变成晶态;此外,非晶态材料的结构特性、电学及光学性质都灵敏地依赖制备方法与工艺条件。

半导体材料测量(精)

半导体材料测量(精)

半导体材料测量 (measurement for semiconductor material)用物理和化学分析法检测半导体材料的性能和评价其质量的方法。

它对探索新材料、新器件和改进工艺控制质量起重要作用。

在半导体半barl材料制备过程中,不仅需要测量半导体单晶中含有的微量杂质和缺陷以及表征其物理性能的特征参数,而且由于制备半导体薄层和多层结构的外延材料,使测量的内容和方法扩大到薄膜、表面和界面分析。

半导体材料检测技术的进展大大促进了半导体科学技术的发展。

半导体材料测量包括杂质检测、晶体缺陷观测、电学参数测试以及光学测试等方法。

杂质检测半导体晶体中含有的有害杂质,不仅使晶体的完整性受到破坏,而且也会严重影响半导体晶体的电学和光学性质。

另一方面,有意掺入的某种杂质将会改变并改善半导体材料的性能,以满足器件制造的需要。

因此检测半导体晶体中含有的微量杂质十分重要。

一般采用发射光谱和质谱法,但对于薄层和多层结构的外延材料,必须采用适合于薄层微区分析的特殊方法进行检测,这些方法有电子探针、离子探针和俄歇电子能谱。

半导体晶体中杂质控制情况见表1。

表1半导体晶体中杂质检测法晶体缺陷观测半导体的晶体结构往往具有各向异性的物理化学性质,因此,必须根据器件制造的要求,生长具有一定晶向的单晶体,而且要经过切片、研磨、抛光等加工工艺获得规定晶向的平整而洁净的抛光片作为外延材料或离子注入的衬底材料。

另一方面,晶体生长或晶片加工中也会产生缺陷或损伤层,它会延伸到外延层中直接影响器件的性能,为此必须对晶体的结构及其完整性作岀正确的评价。

半导体晶体结构和缺陷的主要测量方法见表 2。

表2半导体晶体结构和缺陷的主要测量方法电学参数测试半导体材料的电学参数与半导体器件的关系最密切,因此测量与半导体导电性有关的特征参数成为半导体测量技术中最基本的内容。

电学参数测量包括导电类型、电阻率、载流子浓度、 迁移率、补偿度、少子寿命及其均匀性的测量等。

溶胶—凝胶法制备ZnO薄膜

溶胶—凝胶法制备ZnO薄膜

溶胶—凝胶法制备ZnO薄膜一、本文概述本文旨在探讨溶胶-凝胶法制备ZnO薄膜的工艺及其相关特性。

ZnO薄膜作为一种重要的半导体材料,在光电子器件、太阳能电池、气体传感器等领域具有广泛的应用前景。

溶胶-凝胶法作为一种制备薄膜材料的常用技术,具有工艺简单、成本低廉、易于控制等优点,因此受到广大研究者的关注。

本文将首先介绍溶胶-凝胶法的基本原理和步骤,然后详细阐述制备ZnO薄膜的具体过程,包括前驱体溶液的配制、溶胶的制备、凝胶的形成以及薄膜的成膜过程。

接着,我们将讨论制备过程中可能影响薄膜性能的因素,如溶胶浓度、凝胶温度、退火条件等,并通过实验验证这些因素的影响。

我们将对制备得到的ZnO薄膜进行表征和分析,包括其结构、形貌、光学性能和电学性能等方面。

通过对比不同制备条件下的薄膜性能,优化制备工艺参数,为实际应用提供指导。

本文的研究结果有望为ZnO薄膜的制备和应用提供有益的参考。

二、溶胶—凝胶法原理溶胶-凝胶法(Sol-Gel)是一种湿化学方法,用于制备无机材料,特别是氧化物薄膜。

该方法基于溶液中的化学反应,通过控制溶液中的化学反应条件,使溶液中的物质发生水解和缩聚反应,从而生成稳定的溶胶。

随着反应的进行,溶胶中的颗粒逐渐增大并相互连接,形成三维网络结构,最终转化为凝胶。

在制备ZnO薄膜的溶胶-凝胶法中,通常使用的起始原料是锌的盐类(如硝酸锌、醋酸锌等)和溶剂(如乙醇、水等)。

锌盐在溶剂中溶解形成溶液,然后通过加入水或其他催化剂引发水解反应。

水解产生的锌离子与溶剂中的羟基(OH-)结合,形成氢氧化锌(Zn(OH)2)的胶体颗粒。

这些胶体颗粒在溶液中均匀分散,形成溶胶。

随着反应的进行,溶胶中的氢氧化锌颗粒逐渐长大,并通过缩聚反应相互连接,形成三维的凝胶网络。

凝胶网络中的空隙被溶剂填充,形成湿凝胶。

湿凝胶经过陈化、干燥和热处理等步骤,去除溶剂和有机残留物,同时促进ZnO晶体的生长和结晶,最终得到ZnO薄膜。

半导体化学3、化学基础知识

半导体化学3、化学基础知识

X射线衍射分析
X射线衍射原理
利用X射线在晶体中的衍射现象,通过分析衍射图谱获得晶体结 构信息。
半导体材料中的应用
用于确定半导体材料的晶体结构、晶格常数、晶体取向等。
实验方法与技巧
样品制备、实验参数设置、数据收集与处理等。
电子显微分析
1 2
电子显微技术
包括透射电子显微镜(TEM)和扫描电子显微镜 (SEM),利用电子束与物质相互作用产生的信 号进行成像分析。
气相沉积法
化学气相沉积(CVD)
在高温下,通过气体之间的化学反应在基片上沉积出固态薄膜。
物理气相沉积(PVD)
通过蒸发、升华或溅射等物理过程,使源材料从靶材上转移到基片上形成薄膜。
分子束外延(MBE)
在高真空或超高真空条件下,由装有各种所需组分的炉子加热而产生的蒸气,经小孔准直 后形成的分子束或原子束,直接喷射到适当温度的单晶基片上,同时控制分子束对衬底扫 描,就可使分子或原子按晶体排列一层层地“长”在基片上形成薄膜。
半导体化学3化学基础知识
目录
• 半导体化学概述 • 半导体材料基础知识 • 半导体材料制备技术 • 半导体材料表征技术 • 半导体器件加工工艺简介 • 半导体化学应用前景展望
01 半导体化学概述
半导体定义与分类
半导体定义
半导体是指常温下导电性能介于 导体与绝缘体之间的材料。
半导体分类
根据化学成分不同,半导体可分 为元素半导体(如硅、锗等)和 化合物半导体(如砷化镓、磷化 铟等)。
03
工程技术
与工程师合作,将半导体化学的研究成果应用于实际生产中,推动半导
体产业的创新发展。同时,通过不断的技术创新和改进,提高半导体器
件的性能和降低成本,满足不断增长的市场需求。

β-NaYF4:Yb,Er复合丝素荧光薄膜的制备与表征

β-NaYF4:Yb,Er复合丝素荧光薄膜的制备与表征

β-NaYF4:Yb,Er复合丝素荧光薄膜的制备与表征祁宁;赵兵【摘要】采用高温热分解法合成β-NaYF4:Yb,Er纳米晶体,然后将丝素薄膜作为柔性基底材料与β-NaYF4:Yb,Er复合制备了一种丝素基荧光薄膜.使用透射电镜(TEM)、高分辨透射电镜(HRTEM)、X-射线衍射仪(XRD)、傅立叶红外光谱仪(FT-IR)、紫外可见分光光度计、荧光光谱仪对β-NaYF4:Yb,Er和丝素基荧光薄膜进行表征.结果表明:β-NaYF4:Yb,Er纳米晶体平均粒径35 nm,分散性良好,六方相,表面包覆油酸.β-NaYF4:Yb,Er纳米晶体质量浓度对丝素基荧光薄膜的透光率有重要影响,随β-NaYF4:Yb,Er质量浓度的提高,丝素基荧光薄膜的透光率不断减小.丝素基荧光薄膜在980 nm激光器激发下荧光光谱图中有3个发射峰,分别对应于Er3+离子2H1/2→4I15/2(520 nm)、4S3/2→4I15/2(540 nm)、4F9/2→4I15/2(660 nm)能级跃迁,其主要的发光机制是能量传递上转换.%β-NaYF4:Yb,Er nanocrystals were firstly prepared by thermal decomposition and then spin-coated on silk fibroin film substrate to obtain fluorescence silk fibroin film. β-NaYF4:Yb,Er nanocrystals and fluorescence silk fibroin film were characterized by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), fluorescence spectra and optical transmittance spectra. It could be seen that the as-prepared β-NaYF4:Yb,Er nanocrystals with the average size of 35 nm were well dispersed, hexagonal-phase and coated with oleic acid. The concentration of β-NaYF4:Yb,Er nanocrystals had a major impact on transmittance of fluorescence silk fibroin film. The transmittance decreased withconce ntration increasing of β-NaYF4:Yb,Er nanocrystals. The UC emission spectrum of fluorescence silk fibroin film under 980 nm laser excitation showed three emissions located around 520, 540 and 660 nm, which arose from the 4f configuration transitions of Er3+ from 2H11/2 to 4I15/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2, respectively. The main upconversion luminescence mechanism was energy transfer upconversion (ETU).【期刊名称】《印染助剂》【年(卷),期】2017(034)008【总页数】5页(P15-19)【关键词】丝素;β-NaYF4:Yb,Er;纳米晶体;荧光;薄膜【作者】祁宁;赵兵【作者单位】苏州大学纺织与服装工程学院,江苏苏州 215000;现代丝绸国家工程实验室,江苏苏州 215000;苏州大学纺织与服装工程学院,江苏苏州 215000;现代丝绸国家工程实验室,江苏苏州 215000【正文语种】中文【中图分类】O484.4柔性发光薄膜在太阳能电池、显示器、LED、可植入设备中有重要的应用价值[1]。

半导体基础实验报告

半导体基础实验报告

竭诚为您提供优质文档/双击可除半导体基础实验报告篇一:半导体物理实验报告电子科技大学半导体物理实验报告姓名:艾合麦提江学号:20XX033040008班级:固电四班实验一半导体电学特性测试测量半导体霍尔系数具有十分重要的意义。

根据霍尔系数的符号可以判断材料的导电类型;根据霍尔系数及其与温度的关系,可以计算载流子的浓度,以及载流子浓度同温度的关系,由此可确定材料的禁带宽度和杂质电离能;通过霍尔系数和电阻率的联合测量.能够确定我流子的迁移约用微分霍尔效应法可测纵向载流子浓度分布;测量低温霍尔效应可以确定杂质补偿度。

霍尔效应是半导体磁敏器件的物理基础。

1980年发现的量子霍尔效应对科技进步具有重大意义。

早期测量霍尔系数采用矩形薄片样品.以及“桥式”样品。

1958年范德堡提出对任意形状样品电阻率和霍尔系数的测量方法,这是一种有实际意义的重要方法,目前已被广泛采用。

本实验的目的使学生更深入地理解霍尔效应的原理,掌握霍尔系数、电导率和迁移率的测试方法,确定样品的导电类型。

一、实验原理如图,一矩形半导体薄片,当沿其x方向通有均匀电流I,沿Z方向加有均匀磁感应强度的磁场时,则在y方向上产生电势差。

这种想象叫霍尔效应。

所生电势差用Vh表示,成为霍尔电压,其相应的电场称为霍尔电场ey。

实验表明,在弱磁场下,ey同J(电流密度)和b成正比ey=RhJb(1)式中Rh为比例系数,称为霍尔系数。

在不同的温度范围,Rh有不同的表达式。

在本征电离完全可以忽略的杂质电离区,且主要只有一种载流子的情况,当不考虑载流子速度的统计分布时,对空穴浓度为p的p型样品Rh?1?0(2)pq式中q为电子电量。

对电子浓度为n的n型样品Rh??1?0nq(3)当考虑载流子速度的统计分布时,式(2)、(3)应分别修改为??h?1??h?1Rh??Rh???pqnq??p??n(4)式中μh为霍尔迁移率。

μ为电导迁移率。

对于简单能带结构??h?(5)h??h?p??nγh称为霍尔因子,其值与半导体内的散射机制有关,对晶格散射γh=3π/8=1.18;对电离杂质散射γh=315π/512=1.93,在一般粗略计算中,γh可近似取为1.在半导体中主要由一种载流子导电的情况下,电导率为?n?nq?n和?p?pq?p(6)由(4)式得到Rh?ph?p和Rh?nh?n(7)测得Rh和σ后,μh为已知,再由μ(n,T)实验曲线用逐步逼近法查得μ,即可由式(4)算得n或p。

NiO薄膜制备及特性研究

电子系统,就会使对方的通信,雷达等电子信号失灵,造成一定程度上的指挥瘫痪。
利用TCO薄膜对微波的衰减性,在重要的军用信号接收仪器(计算机,雷达)的屏蔽
窗上镀上一层一定衰减性的透明薄膜,可以避免外来电磁波的侵扰。TCO薄膜还可以 做防紫外线、红外线用的防护镜。
1.3透明导电薄膜的发展方向
1.3.1提高透明导电薄膜的综合性能
beamபைடு நூலகம்
evaporation,and
sol-gel
deposition.Among
these
methods,reactive
on
sputtering has been most sputtering
widely
used.The properties of the
films depend
v耐ous
parameters,including
的性能要求。
.表1-1透明导电薄膜的主要应用及性能要求
用途
表面方阻
Q/[3
透光率
Tavg,%
主要性能
当前透明导电薄膜在国防科技中的应用随处可见,例如夜间侦察仪器、坦克、潜
艇的观察窗等都用到了这些薄膜,不但可以隔热降温,而且可以去霜除雾。 另外,电磁波会使某些电子设备失灵。利用特定功率的干扰性电磁波扰乱敌人的
长春理工大学 硕士学位论文 NiO薄膜制备及特性研究 姓名:李俊俏 申请学位级别:硕士 专业:微电子学与固体电子学 指导教师:王新 20100301


氧化镍是具有典型的3d电子结构的半导体氧化物,是一种P型氧化物材料,它 的禁带宽度在3。0-4。OeV之闻。壹予NiO薄膜具有很好的化学稳定性,较好的光学,
对于TCO薄膜来说,很难在维持很高光学透过率(95%)的同时又使电阻率较低。 所以同时改善薄膜的光学和电学特性是今后研究的重点。进一步研究薄膜当中的载流

半导体ndc薄膜成分

半导体ndc薄膜成分一直是材料科学领域中一个备受关注的研究课题。

半导体ndc薄膜由多种元素组成,其成分的选择和比例对薄膜的性能具有重要影响。

通过对半导体ndc薄膜成分的深入研究,可以更好地了解其物理化学性质,为材料设计和应用提供重要依据。

半导体ndc薄膜被广泛应用于电子器件、太阳能电池、光电器件等领域,其成分的选择对于薄膜的性能至关重要。

常见的半导体ndc薄膜成分包括氮化硅、氧化物、碳化物等。

这些成分在材料的制备过程中起着至关重要的作用,不同比例的成分可以调控薄膜的光电性能、机械性能等方面。

在半导体ndc薄膜成分的选择中,氮化硅是一种常用的材料。

氮化硅具有优异的化学稳定性和抗腐蚀性能,可在高温、高湿等恶劣环境中稳定工作。

氮化硅薄膜可以通过化学气相沉积、物理气相沉积等方法制备,具有良好的导电性和光学性能,广泛应用于集成电路、光学镀膜等领域。

除了氮化硅,氧化物也是一种常见的半导体ndc薄膜成分。

氧化锌、氧化铟锡等氧化物薄膜具有良好的电学性能和光学性能,被广泛应用于透明导电薄膜、光伏器件等领域。

氧化物薄膜的制备方法多样,可以通过溶液法、磁控溅射等技术实现,具有较高的制备效率和加工便利性。

此外,碳化物也是一种重要的半导体ndc薄膜成分。

碳化硅、碳化钼等碳化物薄膜具有优异的高温稳定性和机械性能,广泛应用于航空航天、汽车制造等领域。

碳化物薄膜的制备方法多样,可以通过化学气相沉积、磁控溅射等技术实现,具有较高的结晶质量和成膜速度。

通过对半导体ndc薄膜成分的深入研究,我们可以更好地理解不同成分对薄膜性能的影响规律。

在薄膜的制备过程中,合理选择和调控成分比例可以有效提高薄膜的性能和稳定性,拓展其在电子器件、光伏器件等领域的应用。

随着材料科学和工程技术的不断发展,半导体ndc薄膜的成分设计和优化将进一步推动材料的创新和应用。

半导体apf薄膜作用

半导体apf薄膜作用半导体APF薄膜作用引言:半导体薄膜作为一种重要的材料,在现代电子领域发挥着关键作用。

其中,APF薄膜作为一种特殊的半导体材料,具有独特的性能和应用。

本文将详细探讨半导体APF薄膜的作用,以及其在电子器件中的应用。

一、APF薄膜的定义和特性APF薄膜,即Aluminum Pentafluoride的简称,是一种由铝和氟元素组成的化合物。

这种薄膜具有高度的稳定性、优异的导电性能和较低的能带间隙,使其成为半导体领域中备受关注的材料之一。

APF薄膜的特性决定了它在电子器件中的重要作用。

二、APF薄膜的作用1. 导电性能:APF薄膜具有良好的导电性能,能够在电子器件中起到导电的作用。

其导电性能可以通过控制薄膜的厚度和掺杂量来实现,从而满足不同器件的导电要求。

2. 保护作用:APF薄膜能够作为一层保护层,保护器件内部免受外界环境的侵蚀和损伤。

这种薄膜能够阻隔水分、氧气和其他有害物质的进入,从而延长器件的使用寿命和稳定性。

3. 光学性能:APF薄膜具有良好的光学性能,可以用于光学器件的制备。

其透明度和折射率可以通过控制薄膜的厚度和成分来调节,从而满足不同光学器件的需求。

4. 电子通道:APF薄膜能够作为电子通道,实现电子在器件中的传输。

通过调节薄膜的能带结构和掺杂方式,可以控制电子的传输性能和速度,从而实现器件的高效工作。

三、APF薄膜的应用1. 太阳能电池:APF薄膜作为太阳能电池中的电子通道层,能够提高光电转换效率和稳定性。

其导电性能和光学性能的优异特性,使其成为太阳能电池中不可或缺的材料。

2. 智能手机屏幕:APF薄膜作为智能手机屏幕的保护层,能够防止水分和其他有害物质对屏幕的侵蚀。

同时,其高透明度和优良的耐磨性,使得手机屏幕更加清晰和耐用。

3. 纳米电子器件:APF薄膜可以制备出尺寸小于100纳米的纳米电子器件,实现高密度和高速度的电子传输。

这些器件在微电子领域有着广泛的应用,如超大规模集成电路和量子计算等。

TiN及AlN薄膜的制备和光学性能研究

收稿日期:2002-03-20.基金项目:上海交通大学薄膜与微细技术教育部重点实验室基金资助项目.材料、结构及工艺TiN 及AlN 薄膜的制备和光学性能研究王浩敏,林更琪,李震,熊锐,李佐宜(武汉华中科技大学电子科学与技术系,湖北武汉430074)摘要:研究了反应溅射法制备AIN 、TiN 薄膜的工艺过程,摸索了用于磁光盘介质层的AIN 、TiN 薄膜的最佳制备工艺,并研究了采用此工艺制备的AIN 、TiN 薄膜的光学性能。

关键词:反应溅射;AIN ;TiN ;磁光盘中图分类号:TP333.41文献标识码:A文章编号:1001-5868(2002)04-0267-04Preparation of TiN and AIN Thin Films and Their Optical CharacteristicsWANG Hao-min ,LIN Geng-gi ,LI Zheng ,XIONG Re ,LI Zuo-yi(Dept.of Electronic Sci.&Technol.,Huazhong Univ.of Sci.and Technol.,Wuhan 430074,CHN )Abstract :A series of AIN and TiN thin fiIms for MO disks are prepared by RF magnetron sputtering technigue.Sputtering conditions of AIN and TiN fiIms prepared by RF reactive sputtering is investigated.Furthermore ,the opticaI characteristics of these fiIms are discussed.Key words :reactive sputtering ;AIN ;TiN ;MO disk1引言实用化磁光盘主要采用非晶重稀土-过渡金属系垂直磁化膜作为记录介质,但由于该系薄膜本身存在易氧化、抗腐蚀能力差的缺点,影响了磁光盘的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

... ... 半导体薄膜制备及光电性能表征

一、 实验简介 《半导体薄膜》实验主要内容:半导体薄膜简介,以ZnO薄膜为例,介绍其性能、生长和应用;磁控溅射生长ZnO薄膜;霍尔效应介绍;ZnO薄膜的性能测试,以Hall测试来表征ZnO薄膜的电学性能。

二、 半导体薄膜 半导体薄膜的基本分类可如下:(1)Ⅳ族半导体,如Si、Ge、金刚石等,为元素半导体;SiC等,为化合物半导体。(2)Ⅱ-Ⅵ族半导体,如Zn、Cd与O、S、Se、Te形成的化合物,主要有CdS、ZnSe、ZnO等,为化合物半导体。(3)Ⅲ-Ⅴ族半导体,如Al、Ca、In与N、P、As等形成的化合物,主要有InP、GaAs、GaN等,为化合物半导体。(4)复杂化合物半导体,如Cu(In,Ga)Se2等。(5)有机半导体。 在上述半导体材料中,Si和Ge的禁带宽度分别是1.12eV和0.66eV,此类半导体为窄禁带半导体;ZnO和GaN的禁带宽度均约为3.37eV,此类半导体为宽禁带半导体。另外,按照能带结构,导带底和价带顶在K空间中是否处在同一位置,还可分为间接带隙和直接带隙半导体,Si、Ge为间接带隙半导体,ZnO、GaN为直接带隙半导体。 本实验以ZnO为例介绍半导体材料,ZnO在自然界中以矿物的形式存在,人们在研究应用的过程中,先后制备出了多种形态的ZnO材料,如:粉体、陶瓷体材、体单晶、薄膜和纳米结构等。薄膜材料指的是利用某些生长技术,在衬底或基板上沉积一层很薄的材料,厚度通常在nm或μm量级。

三、 ZnO半导体薄膜 ZnO是一种“古老”而又“新颖”的材料,ZnO很早便作为一种陶瓷结构被广泛应用,而ZnO作为一种半导体材料的研究则始于上世纪80年代。ZnO是一种Ⅱ-Ⅵ族化合物半导体材料,同GaN一样,为直接带隙宽禁带半导体,室温下禁带宽度3.37eV。ZnO激子结合能为60meV,是GaN(25meV)的2倍多,可以实现室温甚至高温的激子复合发光,是一种理想的短波长发光器件材料。 ZnO晶体有三种不同的晶体结构。自然条件下,其结晶态是单一稳定的六方纤锌矿(Wutzite)结构,属六方晶系,图1为不同视角下的结构示意图。分子结构的类型介于离子键和共价键这之间。晶格常数为a=0.3243nm、c=0.5195nm,Zn-O间距为0.194nm,配位数为4:4。ZnO的分子量为81.39,密度为5.606 g/cm-3,无毒、无臭、无味、无砂性 两性氧化物,能溶于酸、碱以及氨水、氯化铵等溶液,不溶于水、醇(如乙醇)和苯等有机溶剂。熔点为l975 ºC,加热至1800 ºC升华而不分解。 图2显示了常用的一些半导体材料禁带宽度和晶格常数的关系。在所有的宽禁带半导体中,ZnO与GaN最为接近,有相同的晶体结构、相近的晶格参数和禁带宽度,ZnO与GaN的晶格失配很小(~1.8%)。ZnO可以与CdO或MgO形成ZnCdO或ZnMgO三元合金。CdO的禁带宽度为2.3 eV,MgO的禁带宽度为7.7eV,理论上,ZnO和CdO或MgO形成的三元合金体系可以将禁带宽度扩展到2.3~7.7 eV的范围,覆盖了从紫外到可见光的大部分波谱范围。 ZnO为极性半导体,存在着诸多的本征缺陷(如:Zn间隙Zni和O空位VO等),天然呈n型。ZnO可供选择的施主掺杂元素很多,包括IIIA族元素(如B、Al、Ga、In)、IIIB族元素(如Sc和Y)、IVA族元素(如Si、Ge和Sn)、VIB族元素(如Ti和Zr)、VB族元素(如V和Nb)、VI 族元素(如Mo),他们掺入ZnO取代Zn,提供电子。此外,掺入F、Cl等VII族元素O,提... ... 供电子。IIIA族元素Al、Ga、In是最为常用的,特别是Al掺杂ZnO(AZO)薄膜,10-3~10-4Ωcm

量级。

图1 ZnO晶体原子点阵示意图

图2 半导体材料禁带宽度和晶格常数的关系 相对于n型掺杂,ZnO的p型掺杂困难得多。全世界科学家10余年不懈努力,实验室中实现了较为稳定且低阻的p型ZnO薄膜,但离实用化还有不小的距离 ZnO的p型掺杂主要通过以下两个途径:一种是Ⅰ族元素,如Li、Na、K、Au、Ag、Cu等,替代Zn形成浅受主,产生空穴;另一种是Ⅴ族元素,如N替代O形成受主,产生空穴,掺入P、As、Sb等也可以产生空穴。目前研究最多的是N元素掺杂,多元素掺杂技术:N替代-H钝化、施主–受主共掺杂、双受主共掺杂等方法。N替代O 受主能级深(200meV),空穴激活难;N在ZnO中固溶度低(平衡态1013/cm3),掺入难;本征ZnO中氧空位缺陷密度高,自补偿严重。 目前,几乎所有的制膜技术均可用于ZnO薄膜的生长,而且生长温度一般较低,这有利于减低设备成本,抑制固相外扩散,提高薄膜质量,也易于实现掺杂。薄膜生长方法可大致分4种:物理气相沉积(PVD)、化学气相沉积(CVD)、液相外延 (LPE)、湿化学方法 (WCM)。物理气相沉积包括很多种方法,如溅射、蒸发、脉冲激光沉积(PLD)、分子束外延(MBE)等。化学气相沉积目前常用的为金属有机物化学气相沉积(MOCVD),此外,能量增强CVD、超高真空CVD、... ... 原子层外延等也属于CVD的范畴。液相外延是一种从过冷饱和溶液中析出固相物质并沉积在单晶衬底上生成单晶薄膜的方法,目前应用较少。湿化学方法有很多种,如溶胶-凝胶、喷雾热分解、液相电沉积等。 ZnO是一种多功能氧化物材料,在光电、压电、热电、铁电、铁磁等各个领域都具有优异的性能,在表面声波、太阳能电池等诸多领域得到了广泛应用。ZnO光泵浦紫外受激辐射的获得和p型掺杂的实现,ZnO薄膜作为一种新型的光电材料,在紫外探测器、LED、LD等领域有着巨大的发展潜力。ZnO在应用方面具有很多明显的优势:原料丰富,价格低廉;成膜性能好,外延生长温度低;有商用体单晶,可以进行同质外延;是一种环境友好材料,生物兼容性好等。

四、 磁控溅射生长ZnO薄膜 溅射(Sputtering)是建立在气体辉光放电的基础上,利用气体辉光过程中产生的正离子与靶材表面原子之间的动量交换,把物质从原材料移向衬底,实现薄膜的沉积。其中,磁控溅射是一种应用最为广泛和成熟的技术,可以克服通常溅射方法速率低和基片温升过高的弱点,适于大面积薄膜制备。磁控溅射与IC平面器件工艺具有兼容性,对设备要求不高,生产成本较低。 所谓磁控溅射,就是在二极溅射的基础上附加一个磁场,利用电子在正交电磁场中作螺旋线轨迹运动,进一步提高真空溅射镀膜的效率和质量。金属靶材为阴极,阳极接地,也可以是正电位,两极间通入工作气体,在此以氩气(Ar)为例,当两极间施加高压时,电极间的Ar发生电离,没有磁场时,就是普通的二极溅射。电离产生的电子向阳极作加速运动,而Ar+向阴极作加速运动,撞击阴极靶材。Ar+与靶材原子作动能交换,靶材原子获得的能量大于金属的逸出功时,将离开靶材表面。当垂直于靶面方向存在一个与电场正交磁场时。由洛仑兹定理可知,这时靶表面附近的电子运动轨迹发生改变,不再做直线运动,而是螺旋线运动。实际上它们的运动轨迹是很复杂的,不仅跟电场,磁场的强度和分布有关,而且还跟电子电离时的运动状态有关。 在磁控溅射系统中,一次电子(在等离子体中Ar原子电离出来的电子)有两个特点:其一,运动路径由直线运动变成了螺旋运动,运动路程大大增长,因此,它同Ar原子的碰撞几率明显增加,最终使得Ar原子的离化率大大提高。其二,某些可能飞向衬底的一次电子由于受磁场影响作而作螺旋运动,与Ar原子碰撞的几率增加,到达衬底表面的电子数量减少,电子能量大幅衰减小,从而对衬底上的薄膜因轰击而损伤的程度也大为降低。磁控溅射中的放电过程是异常阴极辉光放电,放电产生的等离子体Ar+尽管也受到磁场同样的洛伦兹力,但由于Ar+靠近阴极,且其质量大(1860Me),惯性很大,当Ar+跑向靶面时,受磁场的影响是很小的。因此,Ar+离子基本上是垂直撞击靶面。靶材表面原子由于受高能Ar+轰击而被轰出表面。当溅射的原子到达衬底后,由于粘附力的作用,其中大部分沉积在衬底上形成薄膜。磁控溅射放电基本上克服了二极溅射的“低速高温”的致命缺点,沉积速率较后者大为提高;同时,它又保持了溅射镀膜的优点,即溅射粒子到达衬底时动能很大,因而粒子在衬底表面的扩散速率相应增大,薄膜生长过程中的阴影效应相应减少。这样,薄膜中的空隙变得更小、更少,薄膜更致密。同时,又由于粒子到达衬底时动能很大,与衬底的结合很牢固。直流溅射中靶材只接收正离子,如果靶材是绝缘材料,阴极表面聚集的大量正离子无法被电子中和使其电位不断上升,阴阳两极电势减小,使溅射不能持续进行。 射频溅射原理:交变电场使得靶材正半周接收电子,负半周接收正离子,相互中和,从而使阴阳两极电位的大小保持稳定,使溅射能够持续进行。 直流溅射以高纯Zn为靶材,通入Ar和O2,溅射出的Zn与O2化合生成ZnO沉积在基板上。直流溅射比较简单,但也存在些不足,如因电荷积聚,不能直接用ZnO作靶材,用射频溅射解决上述问题,溅射频率一般为13.56MHz。图3为一种直流反应磁控溅射设备示意图,图4为一种多功能磁控溅射镀膜机示意图。 ... ... 图3 直流反应磁控溅射系统 图4 多功能磁控溅射镀膜机 多功能磁控溅射镀膜机设备由沈阳聚智科技有限公司制造,可以采用单靶、双靶或三靶任意轮流组合共溅工作模式,射频直流兼容。适用于各种单层膜、多层膜及掺杂膜的制备,溅射方向采用由下向上,向心溅射方式。可以避免微粒物质落到基片上,提高镀膜质量。溅射用靶材可以是导电材料也可以是绝缘材料。 该设备为一个不锈钢真空室结构,配置600L/S分子泵机组一套,微机型复合真空计1台,质量流量控制显示器1台 ,2个2英寸的永磁磁控靶,一个直3英寸可镀磁性材料的专用磁控溅射

相关文档
最新文档