电磁辐射的量子性

第二十章电磁辐射的量子性

§20-1 热辐射

一、热辐射的基本概念

热辐射——物体内带电粒子由于热运动,在任何温度下都会辐射电磁波,辐射的强度、波长与温度有关;这种与温度有关的辐射称热辐射。

平衡热辐射——物体辐射能等于从外界吸收的能量,达到某恒定温度(T)。

⒈单色辐射出射度(简称单色辐出度)

(

)dM

M T d λ

λλ

=

物体单位时间内,从单位表面积上发射的波长在λ到λ +d λ范围的辐射能d M λ,则单色辐出度为:

M λ(T )与温度T 与波长λ有关。⒉辐射出射度

在一定温度下,物体在单位时间、单位面积上辐射的各种波长的辐射能之和称辐射出射度:

()(T)d M

T M λλ

=?(,)a T λ=

被物体吸收的辐射能

吸收系数:投射于物体的总辐射能

⒊吸收系数反射系数

(,)r T λ=

被物体反射的辐射能

反射系数:

投射于物体的总辐射能

物体的吸收系数、反射系数都与温度T 和波长λ有关,因而温度一定后有相应的单色吸收与反射系数。

1≡λa 一般物体a <1,如称为绝对黑体,绝对黑体是理想化的,它能将任何温度下,任何波长的辐射能全部吸收。对不透明物体:

(,)(,)1

a T r T λλ+=二、基尔霍夫定律

A 1

A 2

A 3

T

B 设将温度不同的物体A 1、A 2、A 3及绝对黑体B 放置于一绝热、真空的容器中,

达到平衡后,不管系统内的物体是什么物质组成,也不管其形状如何,每一物体的辐射能量必定恒等于它所吸收的能量—辐射本领大的,吸收本领也一定较大。

Kirchhoff 定律:物体辐射本领和吸收本领的比值,与物体的性质无关,对于任何物体,这个比值是波长和温度的普适函数。

1

21

2()()

()(,)(,)(,)

B B M T M T M T a T a T a T λλλλλλ==

=

1),(=T a B λ对绝对黑体由于:所以:

()

()

(,)

B M T M T a T λλλ=三、绝对黑体的热辐射定律

对绝对黑体的单色辐射本领的研究,涉及热辐射的普适规律,因而特别引起人们的重视。为此特别引进了绝对黑体的模型—小孔辐射。自然界最黑的物质,对太阳光的吸收系数不超过99%,而小孔黑体可达几乎100% 。

A L1

L2

B1

B2

P

C

测定绝对黑体辐出度的实验装置

上图中,A为绝对黑体模型,对此模型加热,小

孔辐射电磁波,经L

1和平行光管B

1

成平行光到

达三棱镜P,经分光后,经平行光管会聚于热电偶C上从而可以测出某一波长的辐射功率。由此测定的黑体辐出度与波长的关系曲线如下:

λ(μm )

M λ(T )

1.0

2.0

3.0

4.00

2200k

2000k

1800k

1600k

19世纪末,对上述曲线的研究可得到两个实验定律:

⒈斯忒藩-玻尔兹曼定律

()4

()B B M T M T T

λλσ∞

=

=?

d 4

2

1

8

K

m s J 1067.5----????=σ⒉维恩位移定律

()

m m b

T b T

λλ==或K

m 10898.23

??=-b 该定律是红外遥感、红外热像、光测高温等技术的物理基础。

测得太阳光的峰值波长为510nm ,求太阳表面的温度及单位表面积所发射的功率。

K 568210

51010

898.29

3

=??==--m b

T λ解:

例题1:

()2

7

4

8

4

10656821067.5--??=??==m

W T E σ人体温度310K ,求人体表面辐射电磁波的峰值波长。解:m

9.3m

103.9310

10898.26

3

μλ=?=?==--T b m

反之,可测定人体辐射的红外线峰值波长而知道人体表面温度,加上成像技术,就可制成人体红外热像仪。

例题2:

§20-2 普朗克能量子假设

19世纪末,为从理论上推导黑体辐射公式,许多科学家从经典物理学理论出发,提出他们的研究结果,著名的有:

1890年,瑞利-琼斯用能量按自由度均分原理推得公式:

()4

2B ckT

M T λπλ

=

式中k 为玻耳兹曼常数,c 为真空中的光速。瑞利-琼斯公式在波长趋于零时很快发散,被称为“紫外灾难”。

1896年,维恩用类似麦克斯韦分子速率分布的思想推得另一公式:

式中c 2、c 3为常数,此公式在短波处与实验曲线较附,但在长波区偏差较大。

M B

λ

(T )普郎克理论

瑞利-琼斯公式

维恩公式

λ

()3/25

c T

B c e

M T λλλ

-=

1900年,普朗克得出一个和实验完全相符的理论公式:

(

)2

5

/211

B hc kT

hc

M T e

λλπλ

=

-c 是光速,k 是玻尔兹曼常数,e 是自然对数底,h 是普适恒量,称普朗克常量。h =6.63×10-34 J·s ,导出上述公式时,普朗克提出了与经典物理格格不入的假设,称普朗克能量子假设:

(1)辐射体由带电谐振

子组成,它们振动时向

外辐射电磁波并与周围

电磁场交换能量;

(2)谐振子的能量只能

处于某些特殊状态,即

它们的能量是某一最小

能量的整数倍,即ε,2

ε,3 ε,···nε

(3)ε称能量子,与振

子频率ν成正比ε=hν普朗克(Planck,Max)

1858-1947

由普朗克假设,再利用玻耳兹曼

统计分布率求平均能量,可导出普朗克公式:设参与辐射的谐振子总数N 0,其中能量为n h ν的谐振子总数为N i ,则谐振子的平均能量为

∑∑∞

=∞

=?=

n i

n i

N

N

nh νε由玻耳兹曼统计分布,能量为nh ν状态的谐振子数为:0nh kT

i N N e

ν

-

=

经运算后可得:

1

-=

kT

h e h νν

ε将上述能量子代入瑞利-琼斯公式中的谐振子平均能量kT ,可得普朗克公式:

()2

5

/211

B hc kT

hc

M T e

λλπλ

=

-在普朗克公式中:⑴当波长很大时:

λ

λ

λ

kT hc e

kT hc

kT hc +

=<<11则()4

14

2B ckT

M T c T

λπλλ

-=

=代入普朗克公式,得瑞利—琼斯公式:

⑵当波长很小时,

λ

λ

λ

kT hc kT hc e e kT hc

=->>11则代入普朗克公式,得维恩公式:

普通物理教案

()2

/5

2hc kT

B hc

M T e

λλπλ

-=

其中:

k

hc c hc

c /232

2==π⑶普朗克公式对波长积分可得斯忒藩-玻尔兹曼定律:

25

/0

5

4

4423()()21

215B B hc kT M T M T d d hc e

k T T c h

λλ

λλπλ

πσ∞

-==

=

-==??

⑷对普朗克公式求导,可得维恩位移定律

T

k

hc

d T dM m B 1

9651.40)

(=

=λλ

λ得得:

m T b

λ=

一个质量为0.2kg 的物体挂在倔强系数k=2.0N/m 的弹簧上,作振幅A =1×10-2m 的谐振动。试问:⑴如果振子能量是量子化的,则n 有多大?⑵如果振子的能量改变一个能量最小单位,则能量变化的百分比是多少?

例题3:

)/1(5.02

.00

.22121s m k ===

π

π

ν振子的能量为:

)

(010.0)10.0)(0.2(5.02

12

2J kA E ===解:⑴此振子的振动频率为:

物理学史10.7 关于量子力学完备性的争论史

10.7关于量子力学完备性的争论 玻恩、海森伯、玻尔等人提出了量子力学的诠释以后,不久就遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的大论战,许多理论物理学家、实验物理学家和哲学家卷入了这场论战,这一论战至今还未结束。现在正在进行的关于隐参量的辩论就是他们论战的继续。 早在1927年10月召开的第五届索尔威会议上就爆发了公开论战。那次会议先由德布罗意介绍自己对波动力学的看法,提出了所谓的导波理论。在讨论中泡利对他的理论进行了激烈的批评,于是德布罗意声明放弃自己的观点。接着,玻恩和海森伯介绍矩阵力学波函数的诠释和测不准原理。最后他们说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步被修改的。”玻尔也在会上发表了上节提到的演讲内容。这些话显然是说给爱因斯坦听的,但爱因斯坦一直保持沉默。只是在玻恩提到爱因斯坦的工作时,才起来作了即席发言,他用一个简单的理想实验来说明他的观点。 “设S是一个遮光屏,在它上面开一个不大的孔O(见图10-1),P是一个大半径的半球面形的照相胶片。假定电子沿着箭头所指示的方向落到遮光屏S 上。 这些电子的一部分穿过孔O,由于孔小,而电子具有速度,因此它们均匀地分布在(按:即衍射到)所有的方向从而作用在胶片上。” 这一事件的发生几率可由衍射的球面波在所考虑的点上的强度来量度。爱因斯坦说,可以有两种不同的观点来解释实验结果。按照第一种观点,德布罗意-薛定谔的ψ波不是代表一个电子,而是一团分布在空间中的电子云;量子论对于任何单个过程是什么也没有说的。它只给出关于一个相对说来无限多个基元过程的集合的知识。按照第二种观点,量子论可以完备地描述单个过程。落到遮光屏上的每个粒子,不是由位置和速度来表征而是用德布罗意-薛定谔波束来描述,这些描述概括了全部的事实和规律性。

物理学中的对称性

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 对称性 (1) 2.1镜像对称 (2) 2.2 转动对称 (2) 2.3平移对称 (2) 2.4置换对称性 (2) 3 物理定律的对称性 (3) 3.1物理定律的空间平移对称性 (3) 3.2物理定律的转动对称性 (3) 3.3物理定律对时间的平移对称性 (3) 3.4物理定律对于匀速直线运动的对称性 (3) 4 对称性与物理定律的关系 (3) 5 对称性在物理学中的应用 (4) 6结论 (5) 参考文献 (5)

物理学中的对称性 摘要:从自然界中的对称性开始,讲解了物理学中转动对对称性开始称,平移对称,置换对称;还讲解了物理定律中的空间平移对称性,转动对称性,时间平移对称性,匀速直线运动的对称性;进而说明了物理定律与对称性的关系和对称性在物理学中的应用,以及对称性导致物理问题发生和解决。 关键词:对称性;物理定律;守恒 Discuss the Symmetry Secondary Physics Abstract:From the nature of the symmetry of the begining, explain the physics rotation on symmetry started to call, translational symmetry, permutation symmetry; also explained the laws of physics in the spatial translational symmetry, rotational symmetry, time translation symmetry, the symmetry uniform motion in a straight line; then describes the physical laws and symmetry and symmetry in the application of Physics, as well as symmetry leads to physical problems and solutions. Key words:symmetrical; the laws of physicsl; conservation 1引言 对称性是自然界最普遍、最重要的特性[1]。近代科学表明,自然界的所有重要的规律均与某种对称性有关,甚至所有自然界中的相互作用,都具有某种特殊的对称性——所谓“规范对称性”。实际上,对称性的研究日趋深入,已越来越广泛的应用到物理学的各个分支:量子论、高能物理、相对论、原子分子物理、晶体物理、原子核物理,以及化学(分子轨道理论、配位场理论等)、生物和工程技术。 2对称性 什么是对称性?对称性首先来源于生活,对称式自然界中十分普片的现象,从总星系到星系团,从银河系到太阳系,地球,从原生物到各种动植物,都具有不同程度

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

量子信息论简介

量子信息论简介 一、什么是量子信息论? 近20年来,量子力学除了更深入地应用于物理学本身许多分支学科之外,还迅速广泛地应用到了化学、生物学、材料科学、信息科学等领域。量子理论这种广泛,深入应用的结果、极大地促进了这些学科的发展,从根本上改变了它们的面貌,形成了众多科学技术研究热点,产生了许多崭新的学科;与此同时,量子力学本身也得到了很大的丰富和发展。 热点之一就是已经诞生、正在形成和发展中的量子信息科学———量子通信和量子计算机,简称为量子信息论。它是将量子力学应用于现有电子信息科学技术而形成的交叉学科。量子信息论不但将以住的经典信息扩充为量子信息,而且直接利用微观体系的量子状态来表达量子信息。从而进入人为操控、存储和传输量子状态的崭阶段。 近10多年来,量子信息论从诞生到迅猛发展,显示出十分广阔的科学和技术应用前景。这种崭新的交叉结合已经并正在继续大量生長出许多科学技术研究热点,并逐渐形成一片新兴广阔的研究领域,不断取得引人瞩目的輝煌成就。 量子信息论的诞生和发展,在科学方面有着深远的意义。因为它反过来极大地丰富了量子理论本身的内容,并且有助于加深对量子理论的理解,突出暴露并可能加速解决量子理论本身存在的基础性问题。借助这一新兴交叉学科的实验技术,改造量子力学基础,加速变革现有时空观念,加深对定域因果律的认识也许是可能的。 量子信息论在技术方面也有着重大影响。因为它的发展前景是量子信息技朮(QIT)产业,它是更新换代目前庞大IT产业的婴儿,是推动IT产业更新换代的动力,指引IT技朮彻底变革的方向。在这方面大量、迅猛、有效的探索性研究正在逐步导致以下各色各样的新兴分支学科的诞生:量子比特和量子存储器的构造,人造可控量子微尺度结构,量子态的各类超空间传送,量子态的制备、存诸、调控与传送,量子编码及压缩、纠错与容错,量子中继站技朮,量子网络理论,量子计算机,量子算法等等。它们必将对国际民生和金融安全技朮以及国防技朮产生深刻的影响。 目前,一方面是寻求各色各样存取量子信息的载体———量子比特和量子信息处理器。相关的实验和理论研究正在蓬勃开展。实验中的量子信息载体,不仅包括自然的微观系统,更着重于形形色色的人造可控微尺度结构———也就是人造可控量子系统。在研制可控量子比特和量子存储器件时,必须考虑它们和传送环节的光场之间的可控耦合,以保证量子信息的有效写入和取出。这里最重要的是研究光场和人造原子系综的相互作用。 第二方面是关于量子信息的传送。量子通信是量子信息论领域中首先走向实用化的研究方向。目前量子通信主要以极化光子作为信息载体,釆用纠缠光子对作为传送的量子通道。量子通信可以分为光纤量子通信和自由空间量子通信两个方向。关于光纤量子通信方面,建立光纤量子通信局域网和延长光纤量子通信鉅离的时机已经到来。而利用纠缠光子实施自由空间量子通信,其最终目标是通过卫星实现全球化量子通信。量子通信要求长程、高品质、高強度的纠缠光源。这需要掌握包括纠缠纯化、纠缠交换与纠缠焊接的量子中继器技术。同时还需要展开各类量子编码(纠错码、避错码、防错码)研究,各类量子态超空间传送方式研究,进而逐步创立完善的量子网络理论。 第三方面是关于量子计算机。目前的经典计算机受到经典物理原理限制,己经接近其处理能力的极限。而由于量子态迭加原理和量子纠缠特性,量子计算机具有经典计算机无法比拟的、快速的、高保密的计算功能,所以,有必要研究量子计算机。制造量子计算机的核心任务是造出可控多位量子比特的量子信息处理器。这里的关键是寻求能够避免退相干、易于操控和规模化的多位量子比特。这正是制约量子计算机研制进度的主要困难。1994年,计算机专家Chair C.H.Bennett宣布,量子计算机的研制己进入工程阶段。根据近10年来各国量子计算机研制己报导的有关资料预计,量子计算机技术的长远发展,最终有赖于固体方案。关于量子计算机研制进度:乐观估计是到20l0年可以在硅片技朮基础上制造出10多位可控量子比特,从而造出简单的台式计算机; 较稳健的估计是可能在下一个l0年之內; 持悲观估计的人们有个比喻:现在不必做出发展量子计算机的“哈曼顿计划”,因为现在还没有发现“核裂变”。 二、国內外量子信息专业的发展状况 2006年9月1日~4日,来自世界21个国家和地区的近200名科技人员聚集在北京友谊宾馆,参加由中国科大量子信息国家重点实验室举办的亚洲量子信息科学会议。在这次会议中首次提出量子隐形传态思想、首次提出第一个量子密钥分配协议的IBM研究机构科学家Chair C.H.Bennett接受采访时说:“量子信息现在还是个婴儿!”但鉴于量子信息科学技术的巨大发展潜力,目前已受到各国政府、科技专家和公众的广泛关注。 1、国外量子信息的研究和进展: 国际上重要的西方国家(美、英、法、加拿大、以色列、日本、瑞典、奥地利、意大利、瑞士等),特别是美国和欧盟均投入大量人力物力于量子通讯和量子计算的理论和实验研究,量子信息已成为学术界的热门课题,其发展十分迅猛,参与研究的国家、机构和人员日益增多,有关国际会议连接不断。以美国为例,加州理工大学、MIT和南加州大学联合成立了量子信息和计算研究所,其长远目标就是

量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e α ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ?? 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a =?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-? ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率16 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量: =??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ω ==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

量子化学理论与软件介绍

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理与量子化学的标准之一。 主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论);③密度泛函理论。以下只介绍分子轨道法。 ①分子轨道法:分子体系中的电子用单电子波函数满足Pauli不相容原理的直积(如Slater 行列式)来描述,其中每个单电子波函数通常由原子轨道线性组合得到(类似于原子体系中的原子轨道),被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。 o HF方法:它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。分子轨道法的核心是哈特里-福克-罗特汉方程,简称HFR方程,它是以三个在分子轨道法发展过程中做出卓著贡献的人的姓命名的方程。1928年D.R. 哈特里提出了n个将电子体系中的每一个电子都看成是在由其余的n-1个电子所提 供的平均势场中运动的假设。这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为哈特里方程。使用自洽场迭代方式求解这个方程(见自洽场分子轨道法),就可得到体系的电子结构和性质。哈特里方程未考虑由于电子自旋而需要遵守的泡利原理。1930年,B.A.福克和J.C.斯莱特分别提出了考虑泡利原理的自洽场迭代方程,称为哈特里-福克方程。它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而斯莱特行列式波函数正是满足反对称化要求的波函数。将哈特里-福克方程用于计算多原子分子,会遇到计算上的困难。C.C.J.罗 特汉提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。使用LCAO-MO,原来积分微分形式的哈特里-福克方程就变为易于求解的代数方程,称为哈特里-福克-罗特汉方程,简称HFR 方程。 o CI方法:组态相互作用(Configuration Interaction)方法。用HF自洽场方法计算获得的波函数和各级激发的波函数为基展开体系波函数。完全的组态相互作用(Full-CI)是指定基组下最精确的方法,但其计算量约以基函数的阶乘规模增加,目前仅限于对小分子作为Benchmark以检测其他方法的可靠性,在实际应用中常采用截断CI方法,如

量子信息学

量子信息学 20世纪前半叶,自然学科诞生了最具影响力的两门学科,量子力学和信息学。前者成为目前研究微观粒子运动规律离不开的理论基础,使人类对自然界的认识发生了里程碑的突破,它解释和预言了大量奇妙的物理现象,如微观粒子的波粒二象性、隧道效应和纠缠现象等等。利用量子力学原理,不仅解释了原子结构、化学键、超导现象、基本粒子的产生和湮灭等重要物理问题,而且也促成了现代微电子技术、激光技术和核能利用技术等的出现。而后者已明显地改变了人们的生产和生活方式,提高了工作效率和生活质量。20世纪末叶,它们交汇在一起,产生了一门新的交叉学科——量子信息学。 鉴于量子信息学研究与应用的巨大潜力,特别是关系到国家信息安全的重大问题,许多国家投入了大量人力物力开展相关方面的研究工作,促进了这一学科在诞生后的10多年时间内飞速发展。目前主要在以下几个方面开展研究。下面简单介绍两个方面。 纠缠理论的研究:在量子信息学中,量子态是信息的载体,量子信息的许多技术是建立在量子态纠缠的基础之上

的。因此,量子纠缠是量子信息学中最重要的研究课题,在理论和实验上均有重要意义。但遗憾的是,对此问题的研究还处于初级阶段。现在只有2×3量子系统纠缠的充要判断|,而对一般量子体系仅有充分性或必要性判据。对于不同纠缠态,其内部的关联程度也是不同的。如果量子态之间纠缠,那么就要掌握其纠缠的程度(即纠缠度)。纠缠度是系统各个部分之间纠缠程度的量度,理想的纠缠度应满足3个条件:①对任意量子态,纠缠度大于零;对正交直积态,纠缠度等于零;②在子系统的么正变换下纠缠度不变;③在局域操作和经典通信条件下纠缠度不能增加。对对多粒子多维纠缠态的纠缠性质研究是目前量子信息学最重要、最活跃的研究方向之一。 量子计算机设计和硬件研究:由于量子计算机具有很高的商业价值,所以研制量子计算机从一开始就是各个国家关注的一个研究重点。目前,关于量子计算机的可行性问题已经解决,IBM公司在实验室中已经研制出7位量子计算机原型系统。由于量子计算机的信息媒介是量子比特,因此对它的储存、处理、提取所使用的方法与设备和经典计算机相比是完全不同的。虽然利用核磁共振、离子阱等物理技术已实现了量子态的纠缠与储存,但总的来说量子器件实现技术还处于实验研究阶段。由于量子态储存过程中,量子系统不可

量子力学科普:量子通信与波粒二象性

量子力学科普:量子通信与波粒二象性 从什么是量子开始。量子,本意是指微观世界中【一份一份】的不连续能量。这是本书中写明的定义,它的前提条件是微观世界。 接下来,他说明了一下关于光是波还是粒子的百年之争。粒派支持者包括牛顿、爱因斯坦、普朗克,认为光是一颗颗光滑的小球球构成的;波派支持者包括惠更斯、杨、麦克斯韦、赫兹,认为光是一圈一圈的水波纹构成的。 粒子和波二者区别: 1. 粒子可以分成一个最小单位,单个粒子不可再分;波是连续的能量分布,无所谓【一个波】或者【两个波】; 2. 粒子是直线前进的,波却能同时向四面八方发射; 3. 粒子可以静止在同一个固定的位置上,波却必须动态的在整个空间传播。 科学家们在思考为什么光不能两者都是呢?于是就有了著名的双缝干涉实验。双缝,就是在一块隔板上开两条缝。用一个发射光子的机枪对着双缝扫射,从中露出的光子,打在缝后面的屏上,就会留下一个光斑。 第一次实验,把光子发射机对准双缝发射,结果是标准的斑马线,证明光是纯波。第二次实验,把光子机枪切换到点射模式,保证每次只发射一个光子,结果依然还是斑马线。第三次实验,在屏幕前加装两个摄像头,一边一个左右排开。哪边的摄像头看到光子,就说明了光子穿过了哪条缝。同样还是点射模式,发射光子。结果,每次不是左边的摄像头看到一个光子,就是右边看到一个,从来没有发现哪个光子分裂成半个的情况。

这里先把书里的例子提上来。你在屏幕面前看球员起脚射门时,立马按了暂停键,那么你预测下一秒球是否会踢进?在球迷看来,球能否踢进跟射手是谁,对方门将状态有关;在科学家看来是否射进同射门的角度、速度、力度、方向、摩擦力等有关系。大家公认的,不管球最终是否射进,它和一件事情绝对无关,那就是你家的电视。常理来说,射球的动作和结果在你看视频之前就已经完成,它不受你家电视的影响。但双缝干涉实验的第三次实验则证明了,在其他条件完全相同的形况下,球进还是不仅,直接取决于射门的一瞬间,你看还是不看电视。 双缝干涉实验带来了观察者魔咒,引发了一些人的三观崩塌,许多科学家针对双缝干涉实验的结论产生了争议。尼尔斯玻尔认为,将宏观世界的经验常识套用到微观世界的科学研究上,纯属扯淡。他认为量子力学存在三大原则:态叠加原理、测不准原理和观察者原理。 态叠加原理:在量子世界,一切事物可以同时处于不同的状态(叠加态),各种可能性并存。 测不准原理:叠加态是不可能精确测量的。 观察者原理:虽然一切事物都是多种可能性的叠加,但我们永远看不到一个既左且右,又黑又白的量子物体,只要进行观察必然看到一个确定无疑的结果。 波尔认为,在实验观测的一瞬间,光子会蜕变成为多种可能中的一种,他将这个过程称为“坍缩”。 针对波尔的理论,薛定谔提出了假设进行反驳——著名的“薛定谔的猫”。 把一只猫关在封闭的箱子里。和猫同处一室还有个自动化装置,内含一个放射性原子,如果原子核衰变,就会激发α射线,射线触发开关,开关启动锤子,锤子落下打破毒药瓶,于是猫当场毙命。

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点 第一章:绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章:一维定态问题

一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、 第四章量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 (二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系

量子信息安全系统

量子信息安全系统 1、量子密码学的起源与发展 利用量子现象(效应)对信息进行保密是1969年哥伦比亚大学的科学家S. Wiesner首先提出的[1]。当时,Wiesner写了一篇题为“共辄编码(conjugate coding)”的论文,在该文中,Wiesner提出了两个概念:量子钞票(quantum bank notes)和复用信道(multiplexing channel)。Wiesner的这篇论文开创了量子信息安全研究的先河,在密码学史上具有重要的意义。但遗憾的是这篇论文当时没能获准发表。 在一次偶然的谈话中,Wiesner向IBM公司的科学家C. H. Bennett提及他10年前的思想,引起Bennett的注意。在1979年举行的第20次IEEE计算机科学基础大会上,Bennett 与加拿大Montreal大学的密码学家G. Brasard讨论了Wiesner的思想。但最初他们没能正确理解Wiesner的思想,在1983年发表的论文中他们利用量子态储存来实现量子密码并提出了量子公钥算法体制,而长时间储存量子态在目前的实验上不能实现,因此他们的论文没引起人们的共识,甚至有人认为他们的想法是天方夜谭。不久他们意识到在量子密码中量子态的传输可能比量子态的储存更重要,于是在1984年重新考虑了量子密码,并开创性地提出了量子密钥分发的概念,并提出了国际上第一个量子密钥分发协议(BB84协议)[3]。从此,量子密码引起了国际密码学界和物理学界的高度重视。在以后的十多年的研究中,量子密码学获得了飞速发展。目前,量子密码也引起了非学术界的有关部门(如军方、政府)等的注意。 2、量子密码的基本理论 2.1量子密码信息理论基础 密码学的发展经历了三千多年的历史,但直到升到科学的体系,成为一门真正的学科,因此,信息论是密码学的基础。事实上,在密码学中,信息理论是与安全性联系在一起的,Shannon信息论包括信息安全和计算安全。量子密码的安全属于信息安全,因此量子密码应建立在信息论的基础上。值得指出的是,量子密码的实现是以量子物理学为基础的,而S hannon信息论对应经典物理学。众所周知,量子物理学和经典物理学依赖于不同的法则,因此量子信息论不能简单地套用Shannon信息论,必须在Shannon信息论的基础上建立新的理论体系。 文献[5]从信息的角度提出了适合非正交量子态信道的信息理论,但他们的理论只能解释BB84协议以及改进版。文献[6]研究了量子相干性与量子保密性的关系。文献[7]做了较

(完整word版)量子力学所有简答题答案(2)

简答题 1 ?什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。这类光致电变的现象被人们统称为光电效应。或光照射到金属上,引起物质的电性质发生变 化。这类光变致电的现象被人们统称为光电效应。 光电效应规律如下: 1.每一种金属在产生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。 2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。 3.光电效应的瞬时性。实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。 4?入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电 子数目。 爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正 比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。逸出电子的动能、光子能量和逸出功之间的关系可以表示成: 1 2 h A -mv2这就是爱因斯坦光电效应方程。其中,h是普朗克常数;f是入射光子的 2 频率。 2. 写出德布罗意假设和德布罗意公式。 德布罗意假设:实物粒子具有波粒二象性。 h 德布罗意公式:E h P k 3. 简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。几率波满足的条件。 波函数在空间中某一点的强度和在该点找到粒子的几率成正比。因为它能根 据现在的状态预知未来的状态。波函数满足归一化条件。 4. 以微观粒子的双缝干涉实验为例,说明态的叠加原理。 答:设1和2是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说

量子通信的基本原理

量子通信的基本原理 量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置.按其所传输的信息是经典还是量子而分为两类.前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发.所谓隐形传送指的是脱离实物的一种“完全”的信息传送.从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品.但是,量子力学的不确定性原 理不允许精确地提取原物的全部信息,这个复制品不可能是完美的.因此长期以来,隐形传送不过是一种幻想而已.\x0d1993年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传态的方案:将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处.其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者.经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品.该过程中传送的仅仅是原物的量子态,而不是原物本身.发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上.在这个方案中,纠缠态的非定域性起着至关重要的作用.量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应.在量子力学中能够以这样的方式制备两个粒子态,

在它们之间的关联不能被经典地解释,这样的态称为纠缠态,量子纠缠指的是两个或多个量子系统之间的非定域非经典的关联.量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信. 1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输.这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上.实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输.最近,潘建伟及其合作者在如何提纯高品质的量子纠缠态的研究中又取得了新突破.为了进行远距离的量子态隐形传输,往往需要事先让相距遥远的两地共同拥有最大量子纠缠态.但是,由于存在各种不可避免的环境噪声,量子纠缠态的品质会随着传送距离的增加而变得越来越差.因此,如何提纯高品质的量子纠缠态是目前量子通信研究中的重要课题.近年,国际上许多研究小组都在对这一课题进行研究,并提出了一系列量子纠缠态纯化的理论方案,但是没有一个是能用现有技术实现的.最近潘建伟等人发现了利用现有技术在实验上是可行的量子纠缠态纯化的理论方案,原则上解决了目前在远距离量子通信中的根本问题.这项研究成果受到国际科学界的高度评价,被称为“远距离量子通信研究的一个飞跃”.\x0d参考资料:《科技日报》\x0d量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置.按其所传输的信息是经典还是量子而分为两类.前者主要用于量子密钥

量子力学专题二(波函数和薛定谔方程)

量子力学专题二: 波函数和薛定谔方程 一、波粒二象性假设的物理意义及其主要实验事实(了解) 1、波动性:物质波(matter wave )——de Broglie (1923年) p h =λ 实验:黑体辐射 2、粒子性:光量子(light quantum )——Einstein (1905年) h E =ν 实验:光电效应 二、波函数的标准化条件(熟练掌握)

1、有限性: A 、在有限空间中,找到粒子的概率是有限值,即有 =?ψψτ* d 有限值 有限空间 B 、在全空间中,找到粒子的概率是有限值,即有 =? ψψτ* d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续; 3、单值性:2 ψ是单值函数(注意:不是说ψ是单值!) 三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;

2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率); 四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解) 1、态叠加原理:设1ψ,2ψ是描述体系的态,则 2211ψψψC C += 也是体系的一个态。其中,1C 、2C 是任意复常数。 2、两种表象下的平面波的形式: A 、坐标表象中 r d e p r r p i 3/2/3)() 2(1)( ??=?πψ B 、动量表象中

p d e r p r p i 3/2/3)() 2(1)( ?-?=ψπ? 注意:2/3)2( π是热力学中,Maxwell 速率分布的一个常数,也可以使原子物理中,一个相空间的大小! 五、Schrodinger Equation (1926年) 1、Schrodinger Equation 的建立过程(熟练掌握) ψψH t i ?=?? 其中,V T H ???+=。 2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解) A 、定态:若某一初始时刻(0=t )

2量子力学与热力学中的随机性

2、量子力学与热力学中的随机性 戴维斯指出,在宇宙学情况下,初始奇点的随机性(即“分子混沌”)导致宇宙的时间不可逆性,混沌粒子运动是大爆炸过程中光滑宇宙流体的一个特点。如果宇宙重新收缩,终极奇点态是混沌的或随机的而不是高度有序的(块状的),这与安置在一个假想的霍金盒子中的黑洞的情形相反,在那里奇点的随机形成和随即消失带来的是时间的对称性,这种黑洞奇点的随机性是内在随机的。在宇宙学的情况下,终极奇点被赋予由宇宙动力学支配的奇点,所以塌缩到视界内的宇宙不是黑洞。但是,宇宙终极奇点如何不同于黑洞奇点,以及宇宙是否真的象戴维斯所期望的那样振荡不息,这是一个没有澄清的问题。我们认为,只有搞清各种势在决定量子波函数演化过程中如何影响从过去向未来演化的提供波ψ(t)和从未来像过去倒转演化的确认波ψ*(-t)的几率幅;特别是在各种奇点附近,由魏尔曲率决定的引力势如何影响量子波在时间两个方向上的演化几率,才能解决宇宙演化的最后结局。 引力论与量子论相统一的理论还遥遥无期,宇宙论和量子论的时间之矢已然浮现,但远未被澄清。但是,对热力学第二定律的理解却在进一步深化,这特别归功于以普里高津为首的布鲁塞尔学派的工作。普里高津提出的耗散结构论对热力学第二定律提出了新的理解:(1)热力学第二定律并不是在经典动力学基础之上的宏观近似,而是动力学的基本原理,可以从它开始建立动力学的更一般的形式体系;(2)热力学第二定律并不意味着热力学系统的单向退化,它也是进化的原动力,熵最大状态只是演化的终态,而在演化过程中,不可逆性导致自组织的出现。在远离平衡态的非线性体系中,通过耗散机制可以导致类似生命现象的复杂结构出现。走向复杂化的进化过程在一定范围内与热力学不可逆过程一致。 普里高津指出,不可逆理论的构建方式有:(1)存在着不可逆理论,它们出于描述观察到的宏观不可逆性的明显目的而被构建出来,如热力学,扩散理论等等。(2)通过引入隐含不可逆性的几率假定,从可逆的动力学方程中推导出不可逆性的理论。例如,在处理具有大数目的系统时,人们抛弃了动力学观点,而把碰撞事件或一系统状态的改变看作是马尔代夫类型的随机过程,即在某种瞬间发生的事件只依赖于那个瞬间的状态而根本不依赖于过去的历史。于是,粒子碰撞造成的不稳定性动力学关联在微观状态被打破,抹去了粒子过去运动的信息。分子运动论和统计力学就是这样构建出来的。(3)还有一些理论,它们基于时间反演不变的理论,但通过引入初始条件或通过t的拉普拉斯变换,从而成为不可逆理论,宇宙学的时间箭头就是这样引入的。 普里高津认为,几率分布允许我们在动力学描述的框架内把相空间复杂的微观结构包括进去。因此,它包含附加的信息,此种信息在个体轨道的层次上不存在。因为对于具有对初始条件敏感性的不稳定系统,个体轨道变得不可计算,只能给出多种运动形式的几率分布。于是,在分布函数ρ的层次上,我们得到一个新的动力学描述,它允许我们预言包含特征时间尺度的系统的未来演化,这在个体轨道层次上是不可能的。个体层次与统计层次间的等价性被打存了。而对于稳定体系,“个体”层次(对应于单个轨道)和“统计”层次(对应于系统)是等价的。在不可积动力学体系中,个体的某一轨道可以对应于不同的系统分布ρ,而同一系统分布ρ可以对应不同的个体轨道,过去和未来的不对称性在系统层面上涌现出来,它意味着时间反演的初始系统分布是低几率的。普里高津认为宏观的时间方向是一种突现现象,同时又主张寻求微观不可逆过程的理论描述。 概率随机性被引入物理学,第一次是热力学,第二次是量子力学。然而,这两次引入却被认为具有非常不同的含义。在热力学中,随机性被认为是主观引入的,而在量子力学中,随机性被认为是客观的,具有不可还原的终极意义。将热力学第二定律作为一个基本的事实,意味着微观层次的随机性也应该是客观而非主观的,终极的非表面的。普里高津坚决反对熵和

量子力学基础概念试题库完整

一、概念题:(共20分,每小题4分) 1、何为束缚态? 2、当体系处于归一化波函数ψ(,)?r t 所描述的状态时,简述在ψ(,)? r t 状态中测量力学量F 的可能 值及其几率的方法。 3、设粒子在位置表象中处于态),(t r ? ψ,采用 Dirac 符号时,若将ψ(,)? r t 改写为ψ(,)? r t 有何不 妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 4、简述定态微扰理论。 5、Stern —Gerlach 实验证实了什么? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1. 束缚态: 无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。 2. 首先求解力学量F 对应算符的本征方程:λλλφφφλφ==F F n n n ??,然后将()t r ,? ?按F 的本征态展开: ()?∑+=λφφ?λλd c c t r n n n ,? ,则F 的可能值为λλλλ,,,,n 21???,n F λ=的几率为2 n c ,F 在λλλd +~范围内 的几率为λλd c 2 3. Dirac 符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为?r ? 。 4. 求解定态薛定谔方程ψψE H =∧ 时,若可以把不显含时间的∧ H 分为大、小两部分∧ ∧ ∧ '+=H H H ) (0,其中(1) ∧) (H 0的本征值)(n E 0和本征函数)(n 0ψ 是可以精确求解的,或已有确定的结果)(n )(n )(n ) (E H 0000ψ ψ =∧,(2)∧ 'H 很 小,称为加在∧) (H 0上的微扰,则可以利用) (n 0ψ和) (n E 0构造出ψ和E 。 5. Gerlack Stein -实验证明了电子自旋的存在。 一、概念题:(共20分,每小题4分) 1、一个物理体系存在束缚态的条件是什么? 2、两个对易的力学量是否一定同时确定?为什么? 3、测不准关系是否与表象有关? 4、在简并定态微扰论中,如?()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 5、在自旋态χ12 ()s z 中,?S x 和?S y 的测不准关系(?)(?)??S S x y 22?是多少? 一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。 1、条件:①能量比无穷远处的势小;②能级满足的方程至少有一个解。 2、不一定,只有在它们共同的本征态下才能同时确定。 3、无关。 4、因为作为零级近似的波函数必须保证()()()()()()()()011 1 00E H E H n n n n ??φφ--=-有解。 5、16 4 η。

四应用量子化学计算方法进行分子结构优化

实验四 应用量子化学计算方法进行分子结构优化 以及异构化反应研究 Experiment 4. Study on Molecular Structure Optimization and Isomerization Reaction by Using Quantum Chemistry Method 4.1 目的要求 Purpose (1)了解量子化学计算的原理和用途以及几种常用的量子化学计算方法。 (2)熟悉常用量子化学计算软件Gaussian 03的基本使用方法和操作步骤。 (3)掌握如何使用Gaussian 03软件进行分子结构优化和异构化反应过渡态计算。 (4)本实验4学时。 4.2 背景介绍 Background Information 量子化学(quantum chemistry )以量子力学为理论基础,以计算机为工具,主要通过计算来阐述物质(化合物、晶体、离子、过渡态、反应中间体等)的结构、性质、反应性能及反应机理,研究物质的微观结构与宏观性质的关系,揭示物质和化学反应所具有的特性的内在本质及其规律性[1-4]。随着量子化学计算方法不断发展,计算量以及计算速度不断提高,所计算的体系越来越复杂,现在可以计算有机分子甚至较大分子量的生物分子。 目前常用的量子化学计算软件有Gaussian (https://www.360docs.net/doc/e86007209.html, )、GAMESS (https://www.360docs.net/doc/e86007209.html,/GAMESS )、Spartan (https://www.360docs.net/doc/e86007209.html, )和Molpro (https://www.360docs.net/doc/e86007209.html, )等。Gaussian 软件是使用最为广泛的量子化学计算软件,支持几乎所有的量子化学计算方法,可以计算得到分子的几乎一切性质,如稳定结构、能量、振动频率、红外和拉曼光谱、NMR 化学位移、轨道能级、静电势、极化率、电离能、电子亲和力、电子密度分布、过渡态和反应途径等。可以模拟在气相和溶液中的体系,模拟基态和激发态等问题。它最早的版本是1970年的Gaussian 70,最新的版本是Gaussian 09。本实验使用的版本为Gaussian 03。 4.3 实验原理 Experimental Principles 4.3.1 量子化学计算方法和特点 多体理论是量子化学的核心问题。n 个粒子构成的量子体系的性质原则上可通过求解n 粒子体系的薛定谔(Schr?dinger )方程得到体系的波函数来描述。 22 ,111122p q p p i p pq j pi P i p q i j p i Z Z Z E m R ri r ψψ<

相关文档
最新文档