【推荐下载】烧结烟气循环流化床-半干法脱硫工艺优化

【推荐下载】烧结烟气循环流化床-半干法脱硫工艺优化
【推荐下载】烧结烟气循环流化床-半干法脱硫工艺优化

[键入文字]

烧结烟气循环流化床-半干法脱硫工艺优化

:摘要:详细介绍了循环流化床-半干法脱硫工艺运行过程中存在的脱硫塔内壁易粘结、返灰循环量不足等导致的系统钙硫比偏高、脱硫效率低、运行不稳定等问题,并提出了相应的改进措施.通过对双流体喷枪的改造、返灰循环方式的调整等措施,实现了半干法脱硫工艺的稳定运行及烧结烟气的达标排放.

0 引言

随着环保形势的日益严峻,如何保证脱硫系统的安全稳定运行显得越来越重要。脱硫剂湿法消化、循环流化床-半干法脱硫工艺具有投资少、运行费用低等优点,但也同样存在脱硫塔内壁易粘结、返灰循环量低等造成的钙硫比偏高、脱硫效率低及运行不稳定等缺点。相对工艺技术较为成熟的湿法脱硫而言,通过技术改造及工艺优化解决上述问题显得尤为重要。

1 运行中存在的主要问题

1.1 脱硫塔粘结

该工艺采用双流体喷枪实现向塔内喷入消石灰浆液及冷却水。由于喷枪角度及位置不合理、脱硫塔入口烟气温度过高导致喷水量过大等原因,造成脱硫塔内壁粘结。粘结最厚处达3m 左右,严重影响了脱硫塔内的气流分布及烟气流速,造成脱硫效率急剧降低。粘结物脱落还会造成喷枪砸弯、脱硫塔底部锥斗堵塞等一系列问题,不利于脱硫的稳定运行。

1.2 返灰循环量不足

由于匹配增压风机能力偏小、烧结机漏风率过大等原因,造成脱硫塔文丘里下部压力过低,限制了返灰的循环量,且经常性发生塌床,返灰不能实现高倍率循环,造成资源浪费的同时,塌床易造成扬尘污染。

1.3 浆液泵磨损严重

1

循环流化床半干法脱硫工艺流化床的建立及稳床措施

循环流化床半干法脱硫工艺流化床的建立及稳床措施浙江洁达环保工程有限公司吴国勋、余绍华、傅伟根、杨锋 【摘要】 循环流化床半干法脱硫工艺技术要求高,建立和稳定流化床是两个关键点,只有做好恰当的流化床设计和配置合理的输送设备,才可保证脱硫系统的稳定高效运行。 【关键词】 循环流化床半干法脱硫床体 1、简介 循环流化床脱硫工艺技术是较为先进的运用广泛的烟气脱硫技术。该法以循环流化床原理为基础,主要采用干态的消石灰粉作为吸收剂,通过吸收剂的多次再循环,延长吸收剂与烟气的接触时间,以达到高效脱硫的目的,其脱硫效率可根据业主要求从60%到95%。该法主要应用于电站锅炉烟气脱硫,已运行的单塔处理烟气量可适用于6MW~300MW机组锅炉,是目前干法、半干法等类脱硫技术中单塔处理能力最大、在相对较低的Ca/S摩尔比下达到脱硫效率最高、脱硫综 合效益最优越的一种方法。 该工艺已经在世界上10多个国 家的20多个工程成功运用;最大业 绩项目烟气量达到了1000000Nm3/h, 最高脱硫率98%以上,烟尘排放浓度 30mg/Nm3以下,并有两炉一塔、三炉 一塔等多台锅炉合用一套脱硫设备 的业绩经验,有30余套布袋除尘器的业绩经验,特别是在奥地利Thesis热电厂300MW机组的应用,是迄今为止世界上干法处理烟气量最大的典范之作;在中国先后被用于210MW,300MW,50MW 燃煤机组的烟气脱硫。 但是很多循环流化床半干法脱硫项目由于未能建立稳定的床体,导致项目的失败,不能按原有计划完成节能减排的要求。因此很有必要在此讨论一下关于“循

环流化床半干法工艺流化床的建立及稳定措施”的相关问题。 2、循环流化床脱硫物理学理论 循环流化床脱硫塔内建立的流化床使脱硫灰颗粒之间发生激烈碰撞,使颗粒表面生成物的固形物外壳被破坏,里面未反应的新鲜颗粒暴露出来继续参加反应,从而客观上起到了加快反应速度、干燥速度以及大幅度提高吸收剂利用率的作用。另外由于高浓度密相循环的形成,塔内传热、传质过程被强化,反应效率、反应速度都被大幅度提高,而且脱硫灰中含有大量未反应吸收剂,所以塔内实际钙硫比远远大于表观钙硫比。 而建立稳定的流化床,就需要有分布均匀的流场和一定高度的床料。可见该技术的重点是:1、建立稳定的流化床;2、建立连续循环的脱硫灰输送系统。而这两个基本项的控制技术就成为了整个脱硫项目成功与否的关键。 首先我们先来了解下循环流化床的动力学特性。 脱硫循环流化床充分利用了固体颗粒的流化特性,采用的气固流化状态为快速流态化(Fast Fluidization)。快速流态化现象即细颗粒在高气速下发生聚集并因而具有较高滑落速度的气固流动现象,相应的流化床称为循环流化床。 当向上运动的流体对固体颗粒产生的曳力等于颗粒重力时,床层开始流化。 如不考虑流体和颗粒与床壁之间的摩擦力,根据静力分析,可得出下式,并通过式(2-1a 、1b)可以预测颗粒的最小流化速度。 ()12 12 3221R c g d c c u d e r p r p f mf p mf -??? ? ????-+= μρρρ=μ ρ (2-1a) ()2 3μρρρg d Ar r p r p -= (2-1b) 式中: c 1=33.7,c 2=0.0408 mf e R ——对应于mf u 的颗粒雷诺数; p ρ ——颗粒密度,kg/m 3; r ρ ——流体密度,kg/m 3;

锅炉烟气除尘脱硫工程工艺设计(精)

锅炉烟气除尘脱硫工程工艺设计 目前, 世界上烟气脱硫工艺有上百种, 但具有实用价值的工艺仅十几种。根据脱硫反应物和脱硫产物的存在状态可将其分为湿法、干法和半干法3 种。湿法脱硫工艺应用广泛, 占世界总量的85.0%, 其中氧化镁法技术成熟, 尤其对中、小锅炉烟气脱硫来说, 具有投资少, 占地面积小, 运行费用低等优点, 非常适合我国的国情。 采用湿法脱硫工艺, 要考虑吸收器的性能, 其性能的优劣直接影响烟气的脱硫效率、系统的运行费用等。旋流板塔吸收器具有负荷高、压降低、不易堵、弹性好等优点, 可以快速吸收烟尘, 具有很高的脱硫效率。 1 主要设计指标 1) 二氧化硫( SO2) 排放浓度<500mg/m3, 脱硫效率≥80.0%; 2) 烟尘排放浓度<150mg/m3, 除尘效率≥99.3%; 3) 烟气排放黑度低于林格曼黑度Ⅰ级; 4) 处理烟气量≥15000m3/h; 5) 处理设备阻力在800~1100 Pa之间, 并保证出口烟气不带水; 6) 出口烟气含湿量≤8.0%。 2 脱硫除尘工艺及脱硫吸收器比较选择 2.1 脱硫除尘工艺比较选择 脱硫除尘工艺比较选择如表1 所示 脱硫工艺 湿法半干法干法 石灰石石 膏法 钠法 双碱 法 氧化镁 法 氨法 海水 法 喷雾干 燥 炉内喷 钙 循环流化 床 等离子 体 脱硫效率/% 90~98 90~ 98 90~ 98 90~98 90~ 98 70~ 90 70~85 60~75 60~90 ≥90 可靠性高高高高一般高一般一般高高 结垢易结垢不结 垢 不结 垢 不结垢 不结 垢 不结 垢 易结垢易易不结垢 堵塞堵塞堵塞不堵 塞 不堵塞 不堵 塞 不堵 塞 堵塞堵塞堵塞不堵塞 占地面 积 大小中小大中中中中中 运行费 用 高很高一般低高低一般一般一般一般投资大小较小小大较小较小小较小大通过对脱硫除尘工艺———湿法、半干法、干法的对比分析: 石灰石- 石膏法虽然工艺非常成熟,但投资大, 占地面积大, 不适合中、小锅炉。相比之下, 氧化镁法具有投资少、占地面积小、运行费用低等优点, 因此, 本方案选用氧化镁法脱硫工艺。 2.2 脱硫吸收器比较选择

循环流化床半干法脱硫装置计算书编辑版

一、喷水量的计算(热平衡法) 参数查表: 144℃: ρ(烟气)=0.86112Kg/m 3; C p(烟气)=0.25808Kcal/Kg ·℃ 78℃: ρ(烟气)=1.0259Kg/m 3; C p(烟气)=0.25368Kcal/Kg ·℃ 144℃:C 灰=0.19696Kcal/Kg ·℃ 78℃: C 灰=0.19102Kcal/Kg ·℃;C 灰泥,石膏=0.2Kcal/Kg ·℃ C Ca(OH)2=0.246Kcal/Kg ·℃ 1.带入热量: Q 烟气, Q 灰,Q Ca(OH)2,Q 水 M 烟气 =ρ 烟气 ·V 烟=510453.286112.0??510112.2?=(Kg/hr ) Q 烟气=C P ·M ·t 5510489.7814410112.225808.0?=???=(Kcal/hr) M 灰253105694.4810453.2108.19?=???=-(Kg/hr ) Q 灰=C 灰?M 灰?t =52103775.1144105694.4819696.0?=???(Kcal /hr) Q Ca(OH)2=C Ca(OH)2?M ?20=20246.02)(??OH Ca M 当 Ca/S=1.3, SO 2浓度为3500mg/m 3时 Kg M OH Ca 244.151810743.185 .06410453.21035003532 )(=???????=-- ∴Q Ca(OH)2=76.746920244.1518246.0=??(Kcal/hr) Q 水=cmt=χχ20201=??(Kcal/hr) 其中χ为喷水量 2.带出热量:Q 灰3,Q 烟气,Q 灰2,Q 蒸汽,Q 散热 M 灰3=M Ca(OH)2=1518.244Kg ; Q 灰3=Q Ca(OH)2=7469.76(Kcal/hr) Q 烟气=cmt=551079.417810112.225368.0?=???(Kcal/hr); Q 灰2=264.7576810785694.482.02=???(Kcal/hr) Q 蒸汽=630.5χ(Kcal/Kg ) 热损失以3%计: Q 散=(Q 烟气+Q 灰) 03.0?03.0)103775.110489.78(55??+?= 3.系统热平衡计算: Q in =Q out ,即: 03 .0)103775.110489.78(5.630264.757681079.4176.74692076.7469103775.110489.785 5 5 55??+?+++?+=++?+?χχ ∴χ=5.72(t/hr)

烧结烟气联合脱硫脱硝工艺的比较

烧结烟气联合脱硫脱硝工艺的比较 陈妍 唐山钢铁集团有限责任公司河北唐山 063016 摘要:钢铁行业SO2和NOX的排放主要来自于烧结过程,传统脱硫脱硝技术会造成烟气净化系统复杂和治理成本提高,因此联合脱硫脱硝技术应运而生。鉴于烧结烟气的脱硫脱硝技术是目前国内外脱硫脱硝研究的一大热点,介绍了典型的可用于烧结烟气脱硫脱硝技术以及目前国内外新兴的烟气同时脱硫脱硝技术,并对各种技术的优缺点进行了分析。 关键词:烧结烟气;脱硫脱硝;氨法脱硫 中图分类号:C35 文献标识码: A 前言:钢铁联合企业中烧结生产的特点是物流量大、能耗高、污染严重,所产生的固体废弃物、烟气、噪音等对环境的破坏已引起社会的广泛关注。多年来,我国烧结厂在烟气除尘方面做了大量的工作,成果显著。但是对于烟气中的有害组分,如SO2、NOx、二英等的脱除有些尚处于起步阶段,而有的至今没有采取任何措施而直接排放。分析结果显示,在钢铁冶炼过程中约48%的NOx,及51%~62%的SOx来自铁矿烧结工艺,可见烧结厂已是SO2和NOx的最大产生源[1]。随着钢铁企业的快速发展,烧结矿产量大幅度增加,SO2和NOx排放量随之增大,烧结厂环境保护的压力也随之增加。 一、钢铁行业烧结烟气的概述和特点 钢铁工业是国民经济的重要支柱产业,其SO2和NOX排放量分别占全国总排放量的8.8%及8%,均仅次于电力行业,位居全国第二。钢铁企业中有约80%的SO2和50%的NOX来自铁矿烧结工艺,烧结烟气已成为钢铁企业SO2和NOX的最大产生源。 钢铁行业烧结过程是一个高温燃烧条件下的复杂物理、化学过程,在高温烧结过程中产生含有SO2、NOX、HCl、HF、CO2、CO、二噁英等多种污染物和粉尘的废气。由于烧结工艺及原料成分和配比的不稳定性,致使烟气成分复杂,烟气

年处理700万立方米烟气脱硫工艺设计

普通本科毕业设计(论文)说明书课题名称年处理700万立方米烟气脱硫工艺设计

摘要 此次设计通过对目前烟气除尘脱硫工艺的比较,因其具备脱硫效率高、系统运行稳定可靠、阻力低的特点,所以选取在工业上应用最广泛的湿式石灰石石膏法。 该工艺的脱硫吸收塔为喷淋空塔,此塔型为目前脱硫工艺的主流。烟气进口上方依次布置有冷却水管,喷淋层和两级除雾器。下方为浆液池,其内布置氧化空气管。 设计的主要内容为烟气除尘系统和烟气脱硫吸收系统的设计,重点是对这两个系统的设备进行设计计算及选型、设备的布置,并对该工艺进行简单的技术经济分析。 关键词:烟气脱硫、石灰石-石膏法、喷淋塔、设备计算

Abstract According to compare with different kinds of dust removal desulfurization methods, because of its high desulfurization efficiency, system runs stable and reliable, low resistance, so choose the wet limestone-gypsum process which is the most widely used in industry for this design. In the process, the desulfurization absorption tower is spray air tower, which is the main tower for the flue gas desulfurization. Above the flue gas desulfurization imports, decorate cooling water pipe, spray layer and two-level demister. Below is the slurry pond, there is oxidation air tube in it. The main content of this design: designing flue gas dust removal system and desulfurization absorption system, the focus is calculating and selecting the equipments for the two systems, and the arrangement of the equipments. In the last, makes some easily economic and technical analysis for the process. Keywords: Flue gas desulfurization limestone-gypsum method spray tower equipment calculation

烟气循环流化床(CFB-FGD)干法脱硫工艺

烟气循环流化床(CFB-FGD)干法脱硫工艺 gaojilu 发表于2006-2-20 20:40:31 工艺流程 从工艺流程图表明一个典型的 CFB-FGD 系统由吸收塔、除尘器、吸收剂制备系统、物料输送系统、喷水系统、脱硫灰输送及存储系统、电气控制系统等构成。 来自锅炉的空气预热器出来的烟气温度一般为 120~180℃左右,通过一级除尘器(当脱硫渣与粉煤灰须分别处理时),从底部进入吸收塔,在此处高温烟气与加入的吸收剂、循环脱硫灰充分预混合,进行初步的脱硫反应,然后通过吸收塔底部的文丘里管的加速,吸收剂、循环脱硫灰受到气流的冲击作用而悬浮起来,形成流化床,进行第二步充分的脱硫反应。在这一区域内流体处于激烈的湍动状态,循环流化床内的Ca/S值可达到40~50,颗粒与烟气之间具有很大的滑落速度,颗粒反应界面不断摩擦、碰撞更新,极大地强化了脱硫反应的传质与传热。 在文丘里出口扩管段设一套喷水装置,喷入的雾化水一是增湿颗粒表面,二是使烟温降至高于烟气露点20℃左右,创造了良好的脱硫反应温度,吸收剂在此与SO2充分反应,生成副产物CaSO3·1/2H2O,还与SO3、HF和HCl 反应生成相应的副产物CaSO4·1/2H2O、CaF2、CaCl2等。净化后的含尘烟气从吸收塔顶部侧向排出,然后进入脱硫除尘器(可根据需要选用布袋除尘器或电除尘器),通过引风机排入烟囱。由于排烟温度高于露点温度20℃左右,因此烟气不需要再加热,同时整个系统无须任何的防腐。 经除尘器捕集下来的固体颗粒,通过再循环系统,返回吸收塔继续反应,如此循环,少量脱硫灰渣通过物料输送至灰仓,最后通过输送设备外排。

3×160th 垃圾焚烧炉循环流化床半干法烟气脱硫方案设计

3×160t/h 垃圾焚烧炉循环流化床半干法烟气脱硫方案设计 摘要:本文根据某垃圾焚烧厂3×160 t/h 垃圾焚烧厂锅炉具体情况,进行了循环流化床半干法烟气脱硫工程的工艺设计。本工艺利用原有的静电除尘器作为预除尘系统,采用“一电场预除尘+循环流化床半干法烟气脱硫+布袋除尘器”的工艺流程,采用一炉一塔设计,单塔塔径3.1m,塔高22m。脱硫时,设计处理量约为260000 Nm3/h。预计脱硫效率90%,SO2 排放浓度≤80 mg/Nm3,烟尘排放浓度≤20 mg/Nm3。 关键词:烟气脱硫;循环流化床半干法;方案设计。 SDFGD engineering design program for 3×160t/h waste incineration boiler Abstract: In this paper, according to the 3×160t/h waste incineration plant boiler of a factory, a process design of the circulating fluidized bed semi-dry flue gas desulfurization project is proposed. In this program, the original electric field is retained as a pre-precipitator electrostatic precipitators, and the process can be described as “a pre-electric dust + SDFGD + bag filter”. The design is used the one-boiler-and-one-tower process. The single tower diameter is 3.1m. It’s height is 22 m. The capacity is designed for 260000 Nm3/h. Desulfurization effect is expected to 84%. SO2 concentration ≤80mg/Nm3, dust emission concentration≤ 20mg/Nm3. Key words: flue gas desulfurization; circulating fluidized bed semi-dry flue gas desulfurization; design program. 1引言 1.1 设计背景和意义 我国是燃煤大国,连续多年SO2 排放总量超过2000万t,已成为世界上最大的SO2排放国。烟气脱硫是控制SO2 排放最有效、最经济的手段。目前,我国大型火电厂烟气脱硫主要采用国外应用较成熟、业绩较多的石灰石/石膏湿法工艺,但由于湿法工艺系统复杂、投资较大、占地面积大、耗水较多、运行成本较高。而国内诸多中小型企业迫切需要投资少、运行成本低、效率高的脱硫技术。德国鲁奇能捷斯集团(LLAG)公司在上世纪70年代末率先将循环流化床工艺用于烟气脱硫,开发了一种循环流化床烟气脱硫工艺(Circulating Fluidized Bed Flue Gas Desulfurization,简称CFB-FGD;)。经过近30年的不断改进(主要是在90

烧结烟气脱硫技术的研究与发展

第19卷第2期  2009年2月 中国冶金China Metallurgy  Vol.19,No.2 February 2009 烧结烟气脱硫技术的研究与发展 刘征建, 张建良, 杨天钧 (北京科技大学冶金与生态工程学院,北京100083) 摘 要:从中国烧结烟气SO 2排放的严峻形势出发,论述了烧结烟气的特点及SO 2的控制方法,介绍了石灰2石膏法、氨2硫酸铵法、密相塔法、循环流化床法、M EROS 法和活性炭法等几种典型烧结烟气脱硫技术的工艺原理,分析了中国烧结烟气脱硫技术的发展,通过研究提出了选择性脱硫方法与实施方案,并论述了烧结烟气脱硫技术的选定原则与发展方向。 关键词:钢铁冶金;烧结;节能减排;脱硫 中图分类号:X756 文献标识码:A 文章编号:100629356(2009)022******* R esearch and Development of Sintering Flue G as Desulphurization T echnology L IU Zheng 2jian , ZHAN G Jian 2liang , YAN G Tian 2jun (School of Metallurgical and Ecological Engineering ,University of Science and Technology Beijing , Beijing 100083,China ) Abstract :Based on the severe situation of sintering flue gas SO 2emission in China ,features of sintering flue gas and SO 2control method are discussed.Process principles of some typical sintering flue gas desulphurization technolo 2gies ,such as limestone/lime 2plaster ,ammonia 2ammonium sulfate ,dense flow absorber ,CFB ,M EROS ,active car 2bon ,et al ,are described ,development of China sintering flue gas desulphurization technology is analyzed ,selective sintering flue gas desulphurization technology and its implementation scheme are proposed by research ,and the se 2lect principle and development trend of sintering flue gas desulphurization technology are demonstrated.K ey w ords :metallurgy ;sintering ;energy 2saving and emission 2reducing ;desulphurization 基金项目:国家科技支撑计划资助项目(2006BA E03A01) 作者简介:刘征建(19822),男,博士研究生; E 2m ail :liuzhengjian @https://www.360docs.net/doc/e91594195.html, ; 修订日期:2008210216 1 烧结烟气脱硫势在必行 2008年1月3日发布的《国家酸雨和二氧化硫 污染防治“十一五”规划》要求:确保到2010年全国SO 2排放总量比2005年减少10%,控制在229414 万t 以内。中国工业SO 2排放大部分来自于燃煤电厂,但随着电厂脱硫改造的快速发展,钢铁工业SO 2的排放量形势严峻,仅次于火电行业和建材业,而烧结工序又是钢铁工业产生SO 2的主要污染源,因此钢铁工业烧结工序成为国家控制SO 2减排的重点区域。 2007年10月15日颁布的《钢铁工业大气污染物排放标准烧结(球团)》 (征求意见稿),明确规定:现有企业自2008年7月1日实施之日起执行现有企业SO 2排放限值(600mg/m 3),自2010年7月1 日起执行新建企业SO 2排放限值(100mg/m 3)。新建企业自标准实施之日起执行新建企业SO 2排放 限值(100mg/m 3)。 2008年4月8日颁布的《清洁生产标准钢铁行 业(烧结)》,于2008年8月1日正式实施,明确了烧结机头SO 2产生量标准:一级≤019kg/t ,二级≤115kg/t ,三级≤310kg/t 。 由此可见,国家已经从排放总量与排放浓度两个方面对烧结烟气SO 2排放进行了控制,标准非常严格,无论是现有企业还是新建企业都应建设烟气脱硫装置,才能达到SO 2排放国家标准,而目前中国已投产的烧结烟气脱硫装置不多,钢铁工业减排压力巨大,加速烧结烟气脱硫意义重大,势在必行。 2 烧结烟气的特点及SO 2排放的控制 2.1 烧结烟气的特点 烧结烟气特点分以下几个方面[1]。 (1)烟气量大。每生产1t 烧结矿,大约产生4000~6000m 3烟气。

烧结烟气分段式综合处理工艺

烧结烟气分段式综合处理工艺 烧结是钢铁冶炼过程中SO2和NO x最大的产生源,约有51%~62%的SO2及48%的NO x来自烧结工序,因此烧结厂成为钢铁企业环境治理的重中之重。目前烧结烟气中污染物的脱除基本采取单一末端处理工艺。这种处理工艺存在烟气处理量大、污染物浓度偏低、受生产过程波动影响较大等弊端。随着国家对烟气中污染物限制排放种类的增多及排放量的要求越发严格,单一污染物的末端处理工艺设备配置越来越复杂,占地越来越大,势必造成建设投资及生产运行成本不断攀升。 根据研究成果显示,在不同的烧结区段,随着烧结气氛中O2和CO x浓度的变化,烟气中SO2和NO x 的浓度随着料温不断升高也产生相应变化。据此类研究结论,并结合有关烧结机尾烟气热风烧结的实践,本文以210m2烧结机为例,设计一种选择性的烧结烟气分段式综合处理工艺。该工艺是将热风烧结生产工艺与烟气脱硫脱硝分段治理工艺有机结合的烧结烟气环保减排综合处理工艺。 一、烧结烟气中SO2、NO x、CO x浓度在烧结过程中分布特点 1、烧结过程中SO2的形成及分布特点 烧结烟气中的SO2主要是由含铁原料中的FeS2,FeS和燃料中的有机硫,FeS2或FeS氧化生成,还有部分来自硫酸盐的高温分解。 SO2的产生存在于烧结生产的整个过程。在烧结生产过程中,烟气温度快速升高之前(即过湿带完全消失之前),烟气中SO2浓度一直处于较低且较稳定状态;当烟气温度开始快速升高(即干燥带接近烧结料底层时),料层原先吸附的SO2快速释放导致SO2浓度迅速升高;当燃烧带接近烧结料底层和达到烧结终点之前,SO2浓度达到最大值。由此可以看出,烧结生产过程中的SO2浓度与烟气温度存在对应关系,但SO2浓度最大值出现的时间点比烟气温度最高点的时间要提前一些。

烧结机烟气脱硫技术

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 烧结机烟气脱硫技术 空气净化技术:2006年,全国SO2排放量为 2 588.8万t,比2005年增长1.5%,2007年全国SO2排放总量分别比2006年下降 3.18%,但总排放量依然惊人。因此,在十一五期间,SO2减排依然是环保工作的重点。钢铁 是SO2排放的主要之一,特别是烧结生产工序的SO2排放总量占到钢铁SO2排放总量的70%左右[1],解决好烧结工序的SO2减排,就是抓住了钢铁 行业SO2减排工作的重点,将为钢铁行业完成十一五规划中要求的SO2减排任务打下坚实的基础。 1 烧结机技术现状 技术主要分为干/半干法和湿法技术。干/半干法烟气脱硫技术主要包括喷 雾旋转干燥吸收工艺(SDA)、循环流化床烟气脱硫工艺(CFB)等;湿法主要包括:石灰石-石膏湿法工艺、氨法烟气脱硫工艺、氧化镁湿法工艺等。 钢铁行业的烧结机烟气脱硫起步较晚,相比于电厂广泛采用石灰石-石膏湿法烟气脱硫技术而言,钢铁行业采用的烟气脱硫技术可谓百花齐放,百家 争鸣。 宝钢、梅钢采用石灰石-石膏湿法烟气脱硫技术[2];三钢、济钢采用循环 流化床烟气脱硫技术[3];攀成钢、柳钢采用氨法烟气脱硫技术;五矿营口中板、韶钢采用氧化镁法烟气脱硫技术等。烧结机烟气脱硫多借鉴于电厂 的烟气脱硫技术,但何种技术更适合烧结机烟气脱硫,各钢铁仍在摸索前 进中。 2 烧结机烟气的特点 烧结烟气是烧结混合料点火后,随台车运行,在高温烧结成型过程中产生 的含尘,烧结烟气的主要特点是:(1)烧结机年作业率较高,达90%以上,烟气排放量大;(2)烟气成分复杂,且根据配料的变化存在多变性;(3)

烧结烟气NOx生成机理及减排方法分析

烧结烟气NOx 生成机理及减排方法分析 李东升,周 峰,向小平,刘武杨,丘远秋 (柳州钢铁股份有限公司烧结厂,广西柳州 505001) 摘 要:烧结生产过程中产生的NO X 是我国NO X 排放的主要来源之一,对人体健康和生态环境危害极大,已成 为各大钢铁企业亟待解决的难题。文章主要阐述烧结过程中NO X 的生成机理和主要减排手段,并针对柳钢目前烧结生产现状,建议可以从烧结燃料角度出发,对烧结燃料进行预处理,再结合SCR 脱硝末端烟气治理工艺来治理烧结生产过程中产生的NO X ,达到双重脱硝的目的,满足环保新要求。关键词:铁矿烧结;氮氧化物;减排措施 Metallurgy and materials 作者简介:李东升(1992-),男,黑龙江大庆人,硕士,主要从事烧结、球团工艺技术方面工作。 NOx 是常见的大气污染物,是造成酸雨、臭氧层空洞和光化学烟雾等污染的根由物质之一,严重危害生态环境和人体健康,已被列入我国大气污染物的重点防治对象。 近年来,钢铁工业发展迅速,巨大的钢铁产量带来了严重的环境污染问题,已成为我国大气污染物的主要来源之一。烧结工序作为钢铁生产的重要组成部分,烟气中的污染物成分复杂、种类繁多,主要污染物有二噁氧化硫、氮氧化物、二英、微细颗粒物等,其中氮氧化物的排放量占钢铁工序总排放量的一半以上。目前,烧结烟中的二氧化硫和粉尘等污染物已得到了有效的治理,但是对NOx 的治理才刚刚起步,在环保政策逐渐加码的背景下,在烧结生产过程中有效实施NOx 减排至关重要。 图1钢铁工序主要生产工序NOx 排放比例 11.80 14.29 14.91 4.35 54.66 706050403020100 1烧结烟气NOx 的生成机理 烧结烟气中的NOx 主要是烧结燃料和含铁原料中的N 与空气中的O 在高温反应时产生的。按照生成途径的不同,主要包括热力型NOx 、快速型NOx 和燃料型 NOx 三类。 1.1 热力型NOx 热力型NOx 是在高温状况下,空气中的N 2与O 2发 生反应生成的NOx ,该类型NOx 的生成速率与温度成正比例关系,即反应的温度越高,NOx 的生成速率越大。当温度在1500℃以下时,NOx 的生成量极少,当温度高于1500℃时,NOX 的生成量急剧增加。但是,目前我国大型钢铁企业主要采用低温烧结技术,烧结温度一般都控制在1300℃以下。因此,该类型NOx 的生成量可以忽略不计。1.2 快速型NOx 快速型NOx 主要是在低温富氧的条件下,尤其是过量空气系数小时,由碳氢化合物与N 2反应,易于生成快速型NOx ,其生成量远小于热力型NOx 。1.3 燃料型NOX 燃料型NOX 是指烧结燃料燃烧过程中,燃料中的N 与O 2反应生成的NOX 。烧结过程产生的NOX 主要是燃料型NOX 。燃料中的含N 有机物的N-C 和N-H 键能比空气中N 2的N ≡N 键能小的多,从NOX 生成角度看,氧容易先破坏N-C 和N-H 键而与其中氮原子生 成NOX 。 在烧结生产过程中生成的NOx 主要为燃料型 NOx ,其他两种类型NOx 的生成量很少,基本可以忽略不记,同时生成的NOx 主要以NO 为主,NO 2仅有5%左 右。 2烧结烟气NOx 减排研究 根据烧结工艺特点,烧结烟气氮氧化物可以从以下3个方面控制:原料控制、过程控制及末端控制。2.1 原料控制 从源头出发控制NOx 的排放量,一方面要减少原 料带入的N ,原料中N 的含量越高,烧结烟气中NOx 的含量就越多,但这也提高了对原料品质的要求,氮含 24

【CN209726840U】一种多台烧结烟气循环共用循环风机的装置【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920436268.8 (22)申请日 2019.04.02 (73)专利权人 中天钢铁集团有限公司 地址 213000 江苏省常州市中吴大道1号 (72)发明人 裴元东 张俊杰 陈军召 李国良  刘桐 张天啸 宋亚龙 李乾坤  周晓冬 夏强 殷国富  (74)专利代理机构 常州市英诺创信专利代理事 务所(普通合伙) 32258 代理人 郑云 (51)Int.Cl. F27D 17/00(2006.01) (54)实用新型名称 一种多台烧结烟气循环共用循环风机的装 置 (57)摘要 本实用新型提供了一种多台烧结烟气循环 共用循环风机的装置。 将两台烧结机的废气循环工艺相耦合,两台机的烟气循环工艺共用一台循 环风机和一台旋风除尘,循环废气量经过分配后 分别到两台烧结机料面。当两台机废气量发生变 化时,既可以对选择循环的风箱支管进行切换, 又可将循环废气量在两台机的料面进行分配。本 实用新型烟气循环工艺的另一个特点是循环中 后部烧结废气给尾部料面烧结。该实用新型较目 前单台烧结机分别采用烟气循环工艺的投资少, 循环废气量的调节余地更大。权利要求书1页 说明书3页 附图1页CN 209726840 U 2019.12.03 C N 209726840 U

权 利 要 求 书1/1页CN 209726840 U 1.一种多台烧结烟气循环共用循环风机的装置,其特征在于:包括: 至少2台烧结机(1),所述烧结机(1)的尾部设有烟气循环罩(2),烧结机底部沿着烧结机头部至尾部设有多个风箱支管(3),所述烧结机还包括排烟罩,所述排烟罩与风箱支管(3)连接; 还包括除尘输送装置,所述除尘输送装置包括除尘器(5)和与除尘器连接的循环风机(6),所述除尘输送装置的进气端连接各烧结机排烟罩的出气口,所述除尘输送装置的出气端连接各烧结机烟气循环罩(2)。 2.根据权利要求1所述的多台烧结烟气循环共用循环风机的装置,其特征在于:所述排烟罩可在烧结机(1)的头部和尾部之间移动,且包括排烟总管(4-1)和至少1个与排烟总管连接的排烟支管(4-2),所述排烟支管(4-2)与风箱支管(3)可拆卸连接,所述排烟支管(4-2)的数量可根据烧结机废气产生量进行增减,所述排烟总管的出气口即为排烟罩的出气口。 3.根据权利要求1所述的多台烧结烟气循环共用循环风机的装置,其特征在于:所述烧结机还包括循环送风管(7),所述循环送风管的进风口与所述除尘输送装置的出气端连接,所述循环送风管(7)的出风口与烟气循环罩(2)连接,所述循环送风管上设有控制阀门。 4.根据权利要求1所述的多台烧结烟气循环共用循环风机的装置,其特征在于:所述烟气循环罩(2)可在烧结机(1)的顶部移动,且可增减覆盖面积。 5.根据权利要求1所述的一种多台烧结烟气循环共用循环风机的装置,其特征在于:所述排烟罩与烧结机中后部的风箱支管连接。 2

循环流化床锅炉原理说明

一、循环流化床锅炉及脱硫 1、循环流化床锅炉工作原理 煤和脱硫剂被送入炉膛后,迅速被炉膛内存在的大量惰性高温物料(床料)包围,着火燃烧所需的的一次风和二次风分别从炉膛的底部和侧墙送入,物料在炉膛内呈流态化沸腾燃烧。在上升气流的作用下向炉膛上部运动,对水冷壁和炉内布置的其他受热面放热。大颗粒物料被上升气流带入悬浮区后,在重力及其他外力作用下不断减速偏离主气流,并最终形成附壁下降粒子流,被气流夹带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛循环燃烧直至燃尽。未被分离的极细粒子随烟气进入尾部烟道,进一步对受热面、空气预热器等放热冷却,经除尘器后,由引风机送入烟囱排入大气。 燃料燃烧、气固流体对受热面放热、再循环灰与补充物料及排渣的热量带入与带出,形成热平衡使炉膛温度维持在一定温度水平上。大量的循环灰的存在,较好的维持了炉膛的温度均化性,增大了传热,而燃料成灰、脱硫与补充物料以及粗渣排除维持了炉膛的物料平衡。 煤质变化或加入石灰石均会改变炉内热平衡,故燃用不同煤种的循环流化床锅炉在设计及运行方面都有不同程度的差异。循环流化床锅炉在煤种变化时,会对运行调节带来影响。试验表明,各种煤种的燃尽率差别极大,在更换煤种时,必须重新调节分段送风和床温,使燃烧室适应新的煤种。 加入石灰石的目的,是为了在炉内进行脱硫。石灰石的主要化学成份是CaO .而煤粉燃烧后产生的SO2、SO3等,若直接通过烟囱排入大气层,必然会造成污染。加入石灰石后,石灰石中的的Cao 与烟气中的SO2、SO3等起化学反应,生成固态的CaSO3 、CaSO4 (即石膏),从而减少了空气中的硫酸类的酸性气体的污染。另外,由于流化床锅炉的燃烧温度被控制在800-900 ℃范围内,煤粉燃烧后产生的NOx 气体也会大大减少硝酸类酸性气体。 2、循环流化床锅炉的特点 可燃烧劣质煤 因循环流化床锅炉特有的飞灰再循环结构,飞灰再循环量的大小可改变床内(燃烧室)的吸收份额,即任何劣质煤均可充分燃烧,所以循环流化床锅炉对燃料的适应性特别好。

最新烟气脱硫 设计工艺实例

烟气脱硫工艺设计说明书

目录 1 概述 1.1 工程概况 1.2 脱硫岛的设计范围 2 设计基础数据及主要设计原则 2.1 设计基础数据 2.2 吸收剂分析资料 2.3 脱硫用水资料 2.4 主要工艺设计原则 2.5 脱硫工艺部分设计接口 3 吸收剂供应和脱硫副产物处置 3.1 吸收剂来源 3.2 脱硫副产物 4 工艺系统及主要设备 4.1 工艺系统拟定 4.2 吸收剂系统 4.3 烟气系统 4.4 SO2吸收系统 4.5 排放系统 4.6 石膏脱水系统 4.7 工艺水系统

4.8 压缩空气系统 4.9 物料平衡计算(二台锅炉BMCR工况时烟气量) 4.10 主要设备和设施选择 5 起吊与检修 6 保温油漆及防腐 6.1 需要保温、油漆的设备、管道及设计原则 6.2 防腐 7 脱硫装置的布置 8 劳动安全及职业卫生 8.1 脱硫工艺过程主要危险因素分析 8.2 防尘、防毒、防化学伤害 8.3 防机械伤害及高处坠落 8.4 防噪声、防震动 8.5 检修安全措施 8.6 场地安全措施 9 烟气脱硫工艺系统运行方式 9.1 FGD启动 9.2 FGD系统整组正常停运 9.3 FGD紧急停运 9.4 FGD装置负荷调整 9.5 FGD停运措施

1 概述 1.1 工程概况 锅炉:华西能源工业股份有限公司生产的超高压自然循环汽包炉,单炉膛,一次中间再热,固态排渣,受热面采用全悬吊方式,炉架采用全钢结构、双排布置。 汽轮机:东方电气集团东方汽轮机有限公司公司生产的超高压参数、一次中间再热、单轴、双缸双排汽、6级回热、直接空冷抽汽凝汽式汽轮机。 发电机:山东济南发电设备厂生产的空冷却、静止可控硅励磁发电机。 本期工程需同步建设烟气脱硫装置,因有大量石灰石资源,且生产电石亦需要大量石灰石,故暂定采用石灰石—石膏湿法烟气脱硫装置(以下简称FGD),不设GGH,脱硫装置效率不低于95%,设备可用率不低于95%,按照《GB13223-2003 火电厂大气污染物排放标准》执行。 本章所述采用的环境保护标准、脱硫方式、脱硫效率等环保措施均以批复的环境影响报告书为准。 1.2 脱硫岛的设计范围 本工程脱硫岛设计范围包括:烟气脱硫工程需要的工艺、电气、控制、供水、消防、建筑、结构、暖通等,本卷册说明中包括的内容为工艺、起吊检修、保温防腐方面内容,其它见相关专业说明书中内容。脱

莱烧结烟气脱硫脱硝工艺的比较(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 莱烧结烟气脱硫脱硝工艺的比较 (标准版)

莱烧结烟气脱硫脱硝工艺的比较(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:烧结机头是钢铁行业SO2和NOx主要排放源。随着环境保护的压力不断加大,烧结烟气脱硫脱硝工艺的选择就显得尤为重要。本文主要介绍了目前国内外主流的烧结烟气脱硫脱硝工艺,并对各种工艺的优缺点进行比较分析。 钢铁生产在国民经济中具有重要作用,同时污染也较为严重。为了降低钢铁行业的污染物排放水平,生态环境部等五部门于2019年4月联合发布了《关于推进实施钢铁行业超低排放的意见》(环大气[2019]35号),在全国范围内推动钢铁行业超低排放改造。钢铁行业是SO2和NOx的排放大户,而烧结机头烟气是SO2和NOx的主要排放源。钢铁行业的超低排放要求烧结烟气SO2和NOx的排放质量浓度小时均值不高于35mg/m3和50mg/m3。因此,钢铁企业烧结烟气为满足达标排放的要求,必须采取脱硫脱硝措施。 1我国烧结烟气脱硫脱硝现状 目前,我国烧结烟气采取脱硫措施较为普遍,大部分烧结机均采

钢铁冶炼中烧结烟气污染物的特征及处理方法

钢铁冶炼中烧结烟气污染物的特征及处理方法 在钢铁冶炼工序中,烧结过程所排放的烟气是体量最大、污染物种类较为集中且浓度较高的一种工业废气。烧结烟气中包含的主要大气污染物有SO2、NO、Hg等重金属以及二噁英等有机污染物,据统计,每生产1t烧结大约产生4000-6000ml的烟气,其携带粉尘量较大,一般含尘量为0.5-15g/m3,且含有SO x、NOx等酸性气态污染物。因此烧结烟气的治理与净化是冶金行业大气污染物节能减排的重点。 一、烧结烟气的特征 1、烧结烟气量大且分布不均匀 由于漏风率高(40%-50%)和固体料循环率高,有相当一部分空气没有通过烧结料层,使烧结烟气量大大增加。每产生一吨烧结矿大约产生4000-6000m3烟气。由于烧结料透气性的差异及辅料不均等原因,造成烧结烟气系统的阻力变化较大,最终导致烟气量变化大,变化幅度可高达40%以上。 2、二氧化硫浓度变化大 SO2排放浓度的波动范围较宽,受矿石和燃料中S含量和烧结工况决定,随着原燃料供需矛盾的不断变化和钢铁企业追求成本的最低化。钢铁企业所使用原燃料的产地、品种变化很大,由此造成其质量、成分(包括含硫率)等的差异波动很大,使得烧结生产最终产生的二氧化硫的浓度变化范围较大。 3、烧结烟气成分复杂 由于使用铁矿石为原料,因此烧结烟气的成分相对比较复杂,除二氧化硫外,含有多种腐蚀性气体和重金属污染物。包括HCI、HF、NOx等腐蚀性气体,以及铅、汞、铬、锌等有毒重金属物。 4、烟气温度变化范围大、含氧量与含湿量高 随着生产工艺的变化,烧结烟气的温度变化范围一般在120-180℃,但有些钢厂从节约能源消耗、降低运行成本考虑,采用低温烧结技术后,使烧结烟气的温度大幅下降,可低至80℃左右。烟气含湿量大,为了提高烧结混合料的透气性,混合料在烧结前必须加适量的水制成小球,所以烧结烟气的含湿量较大,按体积比计算,水分含量一般在10%左右。含氧量一般为15%-18%。烧结机头烟气氧含量为15%-18%。 二、烧结烟气污染物处理措施 1、烧结烟气污染物减量化技术

循环流化床烧结烟气工艺设计

循环流化床烧结烟气工艺设计 1概述 1.1SO2的污染和控制现况 1.1.1 SO2污染状况 20世纪60、70年代以来,随着世界经济的发展和矿物燃料消耗量的逐步增加,矿物燃料燃烧中排放的二氧化硫、氮氧化物等大气污染物总量也不断增加,导致了大X围的酸雨的出现,酸雨中绝大部分物质是硫酸和硝酸。我国酸雨中硫酸根和硝酸根的当量浓度之比约为64:1,这表明大量SO2的排放是降水成酸雨的主要原因。 污染最早发生在挪威、瑞典等北欧国家,直至几乎覆盖整个欧洲。美国和加拿大东部也是一大酸雨区,美国是世界上能源消费量最多的国家,消费了全世界近1/4的能源,美国每年燃烧的矿物燃料排出的二氧化硫和氮氧化物也在世界前位。亚洲国家,尤其是中国,已成为全球SO2排放最多的国家和地区之一,1995年我国SO2排放量达2341万吨,超过美国当年的2100万吨,成为世界排放SO2第一大国。冶金行业是我国排放SO2的重点来源之一,约占全国SO2排放总量的5%~6%,烧结工艺过程产生的SO2排放量约占钢铁企业年排放量40%~60%,控制烧结机生产过程SO2的排放,是SO2污染控制的重点。 1.1.2SO2控制现状 为综合控制SO2的污染,国际社会提倡包括煤炭加工、燃烧、转换和烟气净化各个方面技术在内的清洁煤技术。这是解决二氧化硫排放的最为有效的一个途径。美国能源部在20世纪80年代就把开发清洁能源和解决酸雨问题列为中心任务,从1986年开始实施清洁煤计划。日本、西欧国家则比较普遍的采用了烟气脱硫技术。我国是发展中国家,随着全国燃煤和燃油电厂的持续增长,SO2排放量的不断增加。《中国环境保护21世纪议程》颁布后,对其中的固定源大气污染的控制,建议采取如下以行动方案。 (1)推广应用循环流化床燃烧脱硫成套技术和火电厂烟气脱硫技术; (2)发展燃煤电站SO2控制技术,其中包括大型流化床;燃烧脱硫技术、

相关文档
最新文档