2018届九年级数学上学期期末试题 (新人教版 第23套)
初中数学九年级数学试题及答案

九年级数学综合试题题目 一 二 三 四 五 六 总 分 分数一、填空(每小题3分,共30分)1、已知m 是方程210x x --=的一个根,则代数式2m m -=2、一名同学在掷骰子,连续抛了9次都没有点数为6的面朝上,当他掷第10次时,点数为6的面朝上是 事件。
3、已知231,3,a b ab -=-=则(1)(1)a b +-=4、如图,⊙O 是ABC ∆的外接圆,030C ∠=,2AB cm =, 则⊙O 的半径为 cm 。
5、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______. 6、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_______cm 。
7、如图,将一块斜边长为12cm ,60B ∠=°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至A B C '''△的位置,再沿CB 向右平移,使点B '刚好落在斜边AB上,那么此三角板向右平移的距离是 cm .8、如图,A 是第一象限里的点,点B 是点A 关于原点的对称点, 点C 是点A 关于x 轴的对称点,则以点A ,B ,C 为顶点的三角 形是 三角形。
9、如图是44⨯正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形. 10、已知:关于x 的一元二次方程221()04x R r x d -++=没有实数 根,其中R 、r 分别为⊙O 1和⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1和⊙O 2的位置关系为 。
二、选择题(每小题3分,共18分)11、下列图形中既是轴对称图形又是中心对称图形的是( )A B C D12、如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ).A 、32B 、21C 、31D 、4113、已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p ( )A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数14、如图,⊙O 内切于ABC ∆,切点分别为D ,E ,F ,已知050B ∠=,060C ∠=,连接OE 、OF 、DE 、DF ,那么EDF ∠等于( )A 、055B 、040C 、065D 、07015、为执行“一免一补”政策,我市2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=16、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好 经过圆心O ,则折痕AB 的长为( ) A.2cm B.3cm C.23cmD.25cm三、解答题(第17题6分,18、19题7分共20分) 17、计算:127122(2)23-⨯+-OABA B A '()C C 'B 'A B C18、如图,ABC ∆中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .19、小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为: ①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A 棋胜B 棋、C 棋;B 棋胜C 棋、D 棋;C 棋胜D 棋;D 棋胜A 棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C 棋的概率是多少?(2)已知小玲先摸到了C 棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?四、每小题8分,共16分。
2013-2014学年高一数学上学期期末模拟考试及答案(新人教A版 第23套)

嘉祥一中2013—2014学年高一上学期期末模拟考试数学一、选择题(每小题5分,12小题,共60分。
每小题均只有唯一正确答案) 1. 已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A . ∅B. {x |0<x <3}C. {x |-1<x <3}D. {x |1<x <3}2.下列各组函数中,表示同一函数的是( ) A .01,y y x ==B.y y x ==C .33,x y x y ==D .2)(|,|x y x y ==3.有以下四个结论 ① lg10=1;②lg(ln e )=0;③若10=lg x ,则x =10;④ 若e =ln x ,则x =e 2,其中正确的是( ) A. ①③ B.②④ C. ①② D. ③④ 4.函数x xx y +=的图象是( )5.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),6.已知直线l 上两点,A B 的坐标分别为(3,5),(,2)a ,且直线l 与直线3450x y +-=垂直,则a 的值为( )A .34-B .34C .43-D .437.函数()1xf x =-e 的图象大致是 ( )A B C D8.函数1()ln 2f x x =+的零点所在的区间是( ) A.42(,)e e -- B.2(,1)e - C.2(1,)e D.24(,)e e 9.下列函数中既是奇函数又是(1,)+∞上的增函数的是 A. ()22x x f x -=+ B.()22x x f x -=- C.()ln f x x x =+ D.()ln ||f x x x =10.经过点(-3,2),倾斜角为60°的直线方程是( ). A .y +2=3(x -3) B .y -2=33(x +3)C .y -2=3(x +3)D .y +2=33(x -3) 11.若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为( ). A .-1或 3 B .1或3 C .-2或6 D .0或412.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A.4B1C.6-D二、填空题(每小题5分,4小题,共20分。
九年级上数学试题试卷分析

九年级上数学试题质量分析报告2014——2015学年上学期韩寺二中马凤伟一、基本情况我班参考学生61人,其中最高分110分,及格28人,及格率为45.45%,优秀12人,优秀率21.82%二、试卷重点考查内容本次考试的内容涵盖了九年级数学全册内容,重点考查了圆、旋转、二次函数、反比例函数、一元二次方程、锐角三角函数、相似三角形等章节知识。
试卷在保持对基础知识的考察力度上,更加重视对数学思想方法和学生综合素质能力的考察,体现了“实践与操作,综合与探究,创新与应用”的命题特点,与中考考试说明中C级要求相呼应。
本份试题从整体来看,我们认为是一份很成功的试题,具有很强的指导性,主要体现在以下几个方面:1、注重对数学核心内容的考查本试题重视基础知识和基本技能的考查,不避重点。
如:第一大题中的1,2,3,4,5,6,8,9,10小题,第二大题中的15,16小题,第三大题中的19,21,23小题都是课程标准中要求学生掌握或灵活运用的。
2、抓住新课标的特点,重点内容重点考查,难点内容化难为易,分散考查。
试题不仅紧扣教材,而且重难点内容把握得很有分寸。
整份试卷中考查的内容比例、分值大小和层次要求都有明显体现。
注重对学生应用数学能力的考查3、数学来源于生活,又应用于生活,能运用数学的思维方式观察、分析、解决日常生活中相关问题,是新课程改革的一项重要内容,试题中的第6题、第15题、第18题、第23题等都是生活中常需解决的问题,使学生经历知识的形成与应用过程,提高学生用数学的意识和能力。
4、试题形式多样,渗透数学思想,一方面考查学生的能力,另一方面注意对新课程教学的导向性。
通过识图来解答计算题或应用题,这类题都渗透了数形结合思想。
要求考生能对实际的具体问题进行独立分析,考查他们是否真正理解所学知识。
此外还有一类题(10题)对知识点的具体要求并不高,但要求学生将数学知识与生活实际相融合,并具备较强的理解能力,将实际背景问题转化成数学问题,二、试卷分析(1)基础知识的落实不到位如第6题,求飞镖击中圆面部分的概率学生求错的站到25%。
人教版九年级上册数学 第二十四章 圆 单元测试题(含多套试题)

第二十四章圆含多套试题一、选择题1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定2.下列说法正确的是( )A. 同圆或等圆中弧相等,则它们所对的圆心角也相等B. 0°的圆心角所对的弦是直径C. 平分弦的直径垂直于这条弦D. 三点确定一个圆3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O 外D. 无法确定4.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A. 70°B. 60°C. 50°D. 30°5.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A. 16B. 10C. 8D. 66.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A. 3 cmB. 6cmC. 8cmD. 9 cm7.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°8.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A. 20°B. 30°C. 35°D. 70°9.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 6010.如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A. 5﹕3B. 4﹕1C. 3﹕1D. 2﹕111.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF 等于()A. 80°B. 50°C. 40°D. 20°12.如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A. 倍B. 倍C. 2倍D. 4倍二、填空题13.在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.14.半径为4cm,圆心角为60°的扇形的面积为________ cm2.15.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.16.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是________.17.⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为________.18.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________19.如图,AB是圆O的弦,若∠A=35°,则∠AOB的大小为________度.20.如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.21.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为________22.如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为________.三、解答题23.如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.25.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.26.如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.27.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为3,求弧BC的长.28.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.参考答案一、选择题1. A2.A3. C4. B5.A6. A7. C8. C9. A 10. D 11. D 12. B二、填空题13.4π14. π 15.10 16.相切17. 50°18.819.110 20.3 21.2π 22.8三、解答题23.证明:= ,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OB.在△COD与△COE中,∵,∴△COD≌△COE(SAS),∴CD=CE24.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.25.解:(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B=∠OPB,∴∠OPB=∠C,∴OP∥AC,∵PD⊥AC,∴OP⊥PD,∴PD是⊙O的切线;(2)解:连结AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在RtBAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.26.(1)证明:连接OC,∵CA=CD,∠ACD=120°,∴∠A=∠D=30°,∴∠COD=2∠A=2×30°=60°,∴∠OCD=180°-60°-30°=90°,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形OBC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.27.(1)解:∵AB=AC,∴弧AB=弧AC,∵D是弧的中点,∴,∴,∴∠ACB=2∠ACD,∵四边形ABCD内接于⊙O,∴∠BCD=∠EAD=105°∴∠ACB+∠ACD=105°,即3∠ACD=105°,∴∠CAD=∠ACD=35°(2)解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=40°,连结OB,OC,则∠BOC=2∠BAC =80°,∴的长.28.(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.圆(A)卷一、 填空题(每题3分,共33分)1、已知△ABC 中,∠C=90°,AC=4㎝,AB=5㎝,CD ⊥AB 于D ,以C 为圆心,3㎝为半径作⊙C ,则点A 在⊙C_______,点B 在⊙C_______,点D 在⊙C_________(填“上”或“内”或“外”)。
吉林省长春市二道区公平中学2022-2023学年九年级上学期期末数学试题(含解析)

长春市二道区公平中学 2022-2023 学年九年级上学期期末试题数学考试范围:初中所有内容;考试时间:90 分钟; 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一.选择题(共 8 小题,满分 24 分,每小题 3 分) 1.(3分)下列各数在数轴上与-1最近的为( ) A .-5 B .6 C .3 D .-42.(3分)吉林省突如其来的新冠疫情牵动着亿万人民的心,截至到2022年4月28日16时,全省慈善系统共接收疫情防控捐赠款物约 486680000元,486680000 用科学记数法可表示为( ) A .848.66810⨯B .74.866810⨯C .84.866810⨯D .94.866810⨯3.(3分)一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“欢”相对的字是( )A .英B .雄C .凯D .旋4.(3分)不等式36x -≥-的解集在数轴.上表示正确的是( )A .B .C .D .5.(3分)如图,两条直线AB 、CD 相交于点O ,OE 平分∠AOD ,若∠AOE =54°,则∠BOD 的大小为( )A .46°B .54°C .72°D .82°6.(3分)如图,数学兴趣小组用测角仪和皮尺测量一座信号塔CD 的高度,信号塔CD 对面有一座高15米的瞭望塔 AB ,从瞭望塔顶部 A 测得信号塔顶 C 的仰角为 53°,测得瞭望塔底 B 与信号塔底 D 之间的距离为 25 米,设信号塔 CD 的高度为 x 米,则下列关系式中正确的是( )A .15sin 5325x -︒=B .15cos5325x -︒=C .15tan 5325x -︒=D .25tan 5315x ︒=-7.(3分)如图,在ABC △中,∠BAC =90°,∠B =60°.用无刻度的直尺和圆规在BC 边上找一点D ,使ABD △为等边三角形,下列作法不正确的是( )A .B .C .D .8.(3分)如图,正比例函数()0y mx m =>与反比例函数ky x=的图象交于A ,B 两点,BC x ∥轴,交y 轴于点C ,在射线BC 上取点D ,且BD =3BC ,若8ACD S =△,则k 的值为( )A .2B .4C .6D .8二.填空题(共 6 小题,满分 18 分,每小题 3 分) 9.(3分)分解因式:244m n n -=______.10.(3分)若点()39,1P a a --在第三象限内,且a 为整数,则a 的值是______.11.(3分)如图,在平面直角坐标系中,OAB △的顶点为O (0,0),A (4,3),B (3,0),以点O 为位似中心,在第三象限内作与OAB △的位似比为13的位似图形OCD △,则边CD 的长为______.12.(3分)如图,ABC △是等边三角形,两个锐角都是45°的三角尺的一条直角边在BC 上,则∠1的度数______.13.(3分)如图,点A (2,0),B (0,4),点C 是OB 一点,若∠1=∠2,则ABC △的面积为______.14.(3分)在平面直角坐标系xOy 中,点(-2,0),()11,y -,()21,y ,()32,y 在抛物线2y x bx c =++上.若123y y y <<,则3y 的取值范围是______.三.解答题(共10小题,满分78分)15.(6分)先化简,再求值:()()213a a a ---,其中51a =-.16.(6分)现有甲、乙两个不透明的袋子,甲袋里装有2个红球,1个黄球;乙袋里装有1个红球,1个白球.这些球除颜色外其余完全相同.(1)从甲袋里随机摸出一个球,则摸到红球的概率为______;(2)从甲袋里随机摸出一个球,再从乙袋里随机摸出一个球,请用画树状图或列表的方法,求摸出的两个球颜色相同的概率.17.(6分)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出 2 件.问:该商品打折前每件多少元?18.(7分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,BE AC ∥,AE BD ∥.(1)求证:四边形AOBE是菱形;若∠AOB=60°,AC=4,求菱形AOBE的面积.19.(7分)本学期开学初,某校初三年级进行了数学学科假期作业验收测试(满分为120分),随机抽取了甲、乙两班各46 名同学的成绩,并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息:a.甲、乙两班各46 名同学测试成绩的频数分布统计表如下:b.乙班成绩在80≤x<100 这一组的数据是:81,84,85,86,89,91,92,93,95,97,99,99 c.甲、乙两班成绩的平均分、中位数、众数如下:根据以上信息,回答下列问题:(1)表中n的值为______.(2)在此次测试中,某学生的成绩是93分,在他所属班级排在前23名,由表中数据可知该学生是______班的学生(填“甲”或“乙”),理由是______.(3)若成绩100分及以上为优秀,按上述统计结果,估计该校初三年级1150名学生成绩优秀的学生人数.20.(7分)图①、图②、图③均为6×6的正方形网格,每个小正方形的顶点称为格点,点P、A、B均在格点上.分别在图①、图②、图③中,只用无刻度的直尺按要求画图.不要求写出画法,但要保留必要的痕迹.∥.(1)在图①中,过点P画直线PC AB(2)在图中,过点P画直线PD⊥AB.(3)在图③中,画线段AB的垂直平分线MN.21.(8分)如图中的折线ABC 表示某汽车的耗油量y (单位:L /km )与速度x (单位:km /h )之间的函数关系(30≤x ≤120),已知线段BC 表示的函数关系中,该汽车的速度每增加1km /h ,耗油量增加0.002L /km . (1)当速度为50km /h 、100km /h 时,该汽车的耗油量分别为______L /km 、______L /km . (2)求线段 AB 所表示的 y 与 x 之间的函数表达式. (3)速度是多少时,该汽车的耗油量最低?最低是多少?22.(9分)【感知】如图①,在正方形 ABCD 的内部,作∠DAE =∠ABF =∠BCG =∠CDH ,且点 E 、F 、G 、H 分别在 DH 、AE 、BF 、CG 上,根据三角形全等的判定方法,易证:ABF BCG CDH DAE ≌≌≌△△△△.(不需证明) 【类比】如图②,在等边三角形ABC 的内部,作∠ABF =∠BCE =∠CAD ,AD 、CE 、BF 两两相交于 D 、E 、F 三点. (1)求证:ABF BCE ≌△△. (2)判断:DEF △的形状为 .【拓展】在图②中,若AB =3,CE =2,则DF 的长为 .23.(10分)如图,在Rt ABC △中,∠ACB =90°,AB =10,BC =6,点D 是AB 中点,点P 从点A 出发,沿 AC 方向以每秒 1个单位长度的速度向终点 C 运动,点 Q 以每秒2个单位长度的速度沿折线 AB -BC 向终点 C 运动,连结 PQ ,取 PQ 的中点 E ,连结 DE ,P 、Q 两点同时出发,设点 P 运动的时间为 t 秒. (1)点P 到AB 的距离为______.(用含t 的代数式表示) (2)当点 Q 在 AB 上运动时,求 tan ∠PQA 的值. (3)当 DE 与ABC △的直角边平行时,求 DQ 的长. (4)当DEQ △为直角三角形时,直接写出 t 的值.24.(12分)对于二次函数()20y ax bx c a =++≠,我们称函数()()2211111222ax bx c x m y ax bx c x m ⎧++-≥⎪=⎨---+<⎪⎩为它的“和谐函数“(其中m 为常数).设函数222y x mx m =--+的“和谐函数”图象为G . (1)直接写出图象 G 的函数表达式. (2)若点(2,3)在函数图象上,求 m 的值.(3)当x m ≥时,已知点()11,A m y --关于函数对称轴的对称点A '在函数图象上,若点 ()222,C m y +也在函数图象上,当12y y >时,求 m 的取值范围.(4)当 m >0时,若图象 G 到 x 轴的距离为 2m 个单位的点有三个,直接写出 m 的取值范围.长春市二道区公平中学2022—2023学年九年级上学期期末试题·数学参考答案与试题解析一、选择题(共8小题,满分24分,每小题3分)1.【解答】解:∵5436-<-<<,∴413-<-<,∵()143---=,()314--=,∴离1-最近的数是4-,故选:D .2.【解答】解:8486680000 4.866810=⨯.故选:C .3.【解答】解:由图知该正方体中,和“欢”相对的字是“凯”,故选:C .4.【解答】解:不等式36x -≥-,系数化为1得:2x ≤,解集表示在数轴上,如图所示:故选:A .5.【解答】解:∵OE 平分AOD ∠,54AOE ∠=︒,∴54AOE DOE ∠=∠=︒,∴108AOD ∠=︒,∴18010872BOD ∠=︒-︒=︒.故选:C .6.【解答】解:过点A 作AE CD ⊥,垂足为E ,则15AB DE ==米,25AE BD ==米,∵CD x =米,∴()15CE CD DE x =-=-米,在Rt ACE △中,53CAE ∠=︒,∴15tan 5325CE x AE -︒==,故选:C .7.【解答】解:A .由作法得D 点为AC 的垂直平分线与BC 的交点,则DA DC =,所以30DAC C ∠=∠=︒,则60BAD ∠=︒,所以ABD △为等边三角形,所以A 选项不符合题意;B .由作法得BA BD =,而60B ∠=︒,所以ABD △为等边三角形,所以B 选项不符合题意;C .由作法得D 点为AB 的垂直平分线与BC 的交点,则DA DB =,而60B ∠=︒,所以ABD △为等边三角形,所以C 选项不符合题意;D .由作法得AD 平分BAC ∠,则45BAD ∠=︒,所以ABD △为不是等边三角形,所以D 选项符合题意.故选:D .8.【解答】解:∵正比例函数()0y mx m =>与反比例函数ky x=的图象交于A ,B 两点,∴OA OB =, ∵BC x ∥轴,∴12BOC S k =△,∴2ABC BOC S S k ==△△,∵3BD BC =,∴2CD BC =, ∴22ACD ABC S S k ==△△,∵8ACD S =△,∴28k =,∵0k >,∴4k =,故选:B . 二、填空题(共6小题,满分18分,每小题3分)9.【解答】解:244m n n -()241n m =-()()411n m m =+-.故答案为:()()411n m m +-. 10.【解答】解:由题意知39010a a -<⎧⎨-<⎩,解得13a <<,∵a 为整数,∴2a =,故答案为:2.11.【解答】解:过点A 作AH x ⊥轴于H ,∵()4,3A ,()3,0B ,∴431BH =-=,3AH =,由勾股定理得:AB ==,∵OCD △与OAB △位似,且位似比为13,∴3CD =,故答案为:3.12.【解答】解:如图,∵ABC △是等边三角形,∴60B ∠=︒,∴131802180456075B ∠=∠=︒-∠-∠=︒-︒-︒=︒,故答案为:75°.13.【解答】解:由题意可知,4OB =,2OA =,tan 1tan 2∠=∠ ∴OA OCOB OA=,∴1OC =, ∴413BC OB OC =-=-=,∴1132322ABC S BC OA =⋅=⨯⨯=△.故答案为:3. 14.【解答】解:将()2,0-代入2y x bx c =++得420b c -+=,将()21,y 代入2y x bx c =++得21y b c =++,将()11,y -代入2y x bx c =++得11y b c =-+,∵12y y <,∴11b c b c ++>-+,∴0b >,将()32,y 代入2y x bx c =++得342y b c =++,∵13y y <,∴142b c b c -+<++,∴1b >-,∵420b c -+=,∴34240y b c b =++=>,故答案为:30y >.三、解答题(共10小题,满分78分)15.【解答】解:原式22213a a a a =-+-+1a =+,当1a =时,原式11=+=16.【解答】解:(1)∵甲袋里装有2个红球,1个黄球,共有3个球,∴摸到红球的概率为23;故答案为:23; (2)根据题意画图如下:共有6种等可能的结果,摸出的两个球颜色相同的结果有2种,则摸出的两个球颜色相同的概率为2163=. 17.【解答】解:设该商品打折前每件x 元,则打折后每件0.8x 元, 根据题意得,40040020.8x x+=,解得,50x =,检验:经检验,50x =是原方程的解. 答:该商品打折前每件50元.18.【解答】(1)证明:∵BE AC ∥,AE BD ∥,∴四边形AOBE 是平行四边形,∵四边形ABCD 是矩形,∴AC BD =,12OA OC AC ==,12OB OD BD ==,∴OA OB =,∴四边形AOBE 是菱形; (2)解:作BF OA ⊥于点F ,∵四边形ABCD 是矩形,4AC =,∴4AC BD ==,12OA OC AC ==,12OB OD BD ==,∴2OA OB ==,∵60AOB ∠=︒,∴sin 22BF OB AOB =⋅∠=⨯=,∴菱形AOBE 的面积是:2OA BF ⋅==19.【解答】解:(1)这组数据的中位数是第23、24个数据的平均数,所以中位数919291.52n +==,故答案为:91.5;(2)这名学生的成绩为93分,小于甲班样本数据的中位数94,大于乙班样本数据的中位数91.5分,说明这名学生是乙班的学生,故答案为:乙;这名学生的成绩为93分,小于甲班样本数据的中位数94分,大于乙班样本数据的中位数91.5分,说明这名学生是乙班的学生; (3)171911504504646+⨯=+(人), 答:学校1200名学生中成绩优秀的大约有450人. 20.【解答】解:(1)如图①中,直线PC 即为所求; (2)如图②中,直线PD 即为所求;(3)如图③中,直线MN 即为所求.21.【解答】解:(1)设AB 的解析式为:y kx b =+,把()30,0.15和()60,0.12代入y kx b =+中得:300.15600.12k b k b +=⎧⎨+=⎩ 解得110000.18k b ⎧=-⎪⎨⎪=⎩∴:0.0010.18AB y x =-+,当50x =时,0.001500.180.13y =-⨯+=,由线段BC 上一点坐标()90,0.12得:()0.12100900.0020.14+-⨯=,∴当100x =时,0.14y =,故答案为:0.13,0.14;(2)由(1)得:线段AB 的解析式为:0.0010.18y x =-+;(3)设BC 的解析式为:y kx b =+,把()90,0.12和()100,0.14代入y kx b =+中得:900.121000.14k b k b +=⎧⎨+=⎩解得0.0020.06k b =⎧⎨=-⎩∴:0.0020.06BC y x =-,根据题意得0.0010.180.0020.06y x y x =-+⎧⎨=-⎩ 解得800.1x y =⎧⎨=⎩,答:速度是80/km h 时,该汽车的耗油量最低,最低是0.1/L km .22.【解答】【类比】(1)证明:∵ABC △为正三角形,∴CAB ABC BCA ∠=∠=∠,AB BC CA ==.又ABF BCE CAD ∠=∠=∠,∴CBE ACD BAF ∠=∠=∠,在ABF △和BCE △中,BAF CBEAB BCABF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABF BCE ASA ≌△△;(2)解:结论:DEF △是等边三角形.理由:∵ABF BCE ≌△△,同法可得BCE CAD ≌△△,∴AFB BEC CDA ∠=∠=∠,∴60FDE DEF EFD ∠=∠=∠=︒,∴DEF △是正三角形.故答案为:等边三角形;【拓展】如图②中,过点C 作CH BE ⊥于点H .∵3AB BC ==,2CE =,60CEH ∠=︒,90H ∠=︒,∴cos601EH EC =⋅︒=,CH ==,∴BH ===,∵2BF CE ==,∴2FH =-,∴)123EF EH FH =-=-=,∵DEF△ 是等边三角形,∴3DF EF ==-323.【解答】解:(1)过点P 作PF AB ⊥于点F ,如图:则90PFA ACB ∠=︒=∠,∴sin PF BC A AP AB ==,即610PF t =,解得:35PF t =,故答案为:35t ;(2)在Rt ABC△中,由勾股定理得8AC ===,∴63tan 84PF BC A AF AC ====,∴44343355AF PF t t ==⨯=,∴46255QF AQ AF t t t =-=-=,∴315tan 625tPF PQA QF t ∠===;(3)分情况讨论:①如图,当DE BC ∥时,过P 作PF AB ⊥于点F ,过E 作EG AB ⊥于点G ,∵DE BC ∥,∴B ADE ∠=∠,∴84tan tan 63EG AC ADE B GD BC ∠=====,∴34GD EG =,∵点E 为PQ 中点,EG PF ∥,∴13210EG PF t ==,∴39440GD EG t ==,∵65QF AQ AF t =-=,25DQ t =-,∴1325GQ QF t ==,∴()3725555GD GQ DQ t t t =-=--=-,即975405t t =-,解得:4013t =,∴4015251313DQ =⨯-=; ②当DE AC ∥时,如图,点Q 与B 重合,∴152DQ DB AB ===;综上所述,DQ 的长为1513或5; (4)分情况讨论: ①90EDQ ∠=︒,如图:过P 作PF AB ⊥于F ,则PF ED ∥,∵E 为PQ 的中点,∴D 是FQ 的中点,∴DF DQ =,由(2)可知,45AF t =,∴455DF AD AF t =-=-,∵25DQ AQ AD t =-=-,∴45255t t -=-,解得:257t =; ②当Q 在AB 上,90DEQ ∠=︒时,连接DP ,如图:则DE PQ ⊥,∵E 是PQ 的中点,∴DP DQ =,过P 作PF AB ⊥于F ,由①得:455DF AD AF t =-=-,∵222DP DF PF =+,25DQ t =-,∴()2224352555t t t ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭,解得:4t =或0t =(舍去),∴4t =; ③当Q 在BC 上,90DEQ ∠=︒时,连接DP ,如图:则DE PQ ⊥,∵E 是PQ 的中点,∴DP DQ =,过P 作PF AB ⊥于F ,过Q 作QM AB ⊥于M ,∵210BQ t =-,84sin 105QM AC B BQ AB ====,63cos 105BM BC B BQ AB ====,∴()4482108555QM BQ t t ==⨯-=-,()3362106555BM BQ t t ==⨯-=-,∴66561155DM BD BM t t ⎛⎫=-=--=- ⎪⎝⎭,∵222DP DF PF =+,222DQ QM DM =+,∴2222348658115555t t t t ⎛⎫⎛⎫⎛⎫⎛⎫+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得:203t =或8t =(舍去),∴203t =; ④90DQE ∠=︒,如图:过D 作DN BC ⊥于N ,则DN AC ∥,∵D 是AB 的中点,∴N 是BC 的中点,∴132CN BN BC ===,DN是ABC△的中位线,∴142DN AC ==,∵90ACB DQE ∠=∠=︒,90CQP CPQ CQP NQD ∠+∠=∠+∠=︒,∴CPQ NQD ∠=∠,∵90ACB QND ∠=∠=︒,∴CPQ NQD ∽△△,∴PC CQ QN ND =,即816221034t t t --=--,解得:152t =; 综上所述,当DEO △为直角三角形时,t 的值为257或4或203或152.24.【解答】解:(1)()()22221112x mx m x m y x mx m x m ⎧--+-≥⎪=⎨+-+<⎪⎩.(2)当2m ≤时,将()2,3代入2221y x mx m =--+-得34421m m =--+-,解得4m =-,当2m >时,将()2,3代入2112y x mx m =+-+得3221m m =+-+,解得0m =(不符合题意,舍去),∴4m =-.(3)当x m ≥时,2221y x mx m =--+-,抛物线2221y x mx m =--+-的对称轴为直线22mx m -=-=--,∴点()11,A m y --关于直线x m =的对称点为()11,A m y '-+,∴1m m -+≥,解得:12m ≤,∵点C 在抛物线上,∴22m m +≥,解得2m ≥-,∵抛物线开口向下,12y y >,∴点C 在点A 左侧或点A '右侧,∴221m m +<--或221m m +>-+,解得1m <-或13m >-,∴21m -≤≤-或1132m -<≤.(4)把x m =代入2221y x mx m =--+-得2321y m m =-+-,∴抛物线2221y x mx m =--+-与直线x m =交点坐标为()2,321m m m -+-,把x m =代入2112y x mx m =+-+得2312y m m =-+,∴抛物线2112y x mx m =+-+与直线x m =交点坐标为23,12m m m ⎛⎫-+ ⎪⎝⎭,把x m =-代入2112y x mx m =+-+得2112y m m =--+,∴抛物线2112y x mx m =+-+顶点坐标为21,12m m m ⎛⎫---+ ⎪⎝⎭,如图,抛物线2112y x mx m =+-+有2个点满足题意,抛物线2221y x mx m =--+-有1个点满足题意,可得2221212231223212m m m m m m m m m m ⎧-<--+<⎪⎪⎪-+>⎨⎪⎪-+-≥-⎪⎩,解得13m ≤<如图,抛物线2112y x mx m =+-+顶点落在直线2y m =-上,可得2211223122m m m m m m ⎧--+=-⎪⎪⎨⎪-+>⎪⎩,解得1m =1333m ≤<或1m =+。
浙江省宁波市慈溪市2022-2023学年九年级上学期期末数学试卷(含答案)

慈溪市2022学年第一学期九年级期末测试数学学科试卷温馨提示:1.本试卷分试题卷和答题卷两部分.满分150分,考试时间120分钟.2.所有答案都必须做在答题卷规定的位置上,务必注意试题序号和答题序号相对应. 3.考试期间不能使用计算器.试题卷I一、选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.美丽的冬奥雪花呈现出浪漫空灵的气质.如图,雪花图案是一个中心对称图形,也可以看成自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是( )A .30°B .45°C .60°D .90°2.抛物线()213y x =+-的对称轴是( ) A .直线1x =- B .直线1x = C .直线3x =- D .直线3x = 3.下列诗句所描述的事件属于不可能事件的是( )A .黄河入海流B .大漠孤烟直C .汗滴禾下土D .手可摘星辰 4.已知O 的半径为3,点P 到圆心O 的距离为d ,若点P 在圆外,则d 的取值范围为( )A .3d ≤B .3d =C .3d >D .03d ≤<5.如图,正六边形ABCDEF 内接于O ,正六边形的周长是12,则O 的半径是( )A .1BC .2D .6.如图,已知直线a b c ∥∥,直线1l ,2l 分别交直线a ,b ,c 于A ,B ,C 和D ,E ,F ,3DE =,6EF =,4AB =,则AC 的长为( )A .15B .12C .10D .87.如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan ADC ∠=( )A .32B .43C .2D .18.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为O 的直径,弦AB CD ⊥,垂足为E ,1CE =寸,6AB =寸,求直径的长?”依题意得CD 的长为( )A .4寸B .5寸C .8寸D .10寸9.二次函数222y mx m x n =-+图象经过点()13,A y -,()27,B y ,且12y y >,则m 的取值范围是( )A .02m <<B .0m <或2m >C .30m -<<D .3m <-或7m >10.一个大矩形按如图方式分割成五个小矩形后仍是中心对称图形,且矩形ABCD ∽矩形BEFG .设矩形ABCD 与矩形AHIE 的面积分别为m 和n ,则这个大矩形的面积一定可以表示为( )A .4mB .23m n +C .3m n +D .3m n +试题卷II二、填空题(每小题5分,共30分) 11.若34x y =,则:x y =________.12.写出一个二次函数,满足图象开口向下,顶点在y 轴上,且与x 轴有两个交点:________. 13.已知四边形ABCD 内接于O ,若130A ∠=︒,则∠C 的度数为________.14.某学校劳动教育“兴趣小组”在研究水稻种子发芽率实验时有如下结果记录表:则可估计这批种子发芽的概率是________.(结果保留到0.01)15.如图,正方形ABCD 的边长为6,点F 为AB 的中点,点E 在AD 上,且2ED AE =,在边CD 上找一点P ,使以E ,D ,P 为顶点的三角形与△AEF 相似,则DP 的长为________.16.如图,△ABC 内接于O ,BC AC >,AC =连结CO 并延长至点E ,使60EAC ABC ∠=∠=︒.(1)O 的半径为________.(2)若BC =BE 的长为________.三、解答题(第17、18、19题各8分,第20、21、22题各10分,第23题12分,第24题14分,共80分)17.(1)计算:2sin304cos60tan 45︒-︒+︒.(2)已知二次函数2y x bx c =++的图像过点()1,0和()3,0,求b ,c 的值.18.宁波方特东方欲晓是一座以红色文化为主题的大型主题公园,公园精心策划了多个历史主题区域,其中最有特色的三个游玩项目如下表所示.小慈和小溪两名同学去景区游玩,他们各自在这3个项目中任选一个进行游玩,每个项目被选择的可能性相同. (1)求小慈选择《致远 致远》的概率是多少?(2)用画树状图或列表的方法,求小慈和小溪选择不同项目的概率.19.如图是由边长为1的小正方形构成的86⨯的网格,△ABC 的顶点A ,B ,C 均在格点上.(1)将△ABC 绕C 点按顺时针方向旋转90°,得到11A B C △,请在图1中作出11A B C △. (2)在图2中,仅用无刻度直尺(不使用直角)在线段AC 上找一点M ,使得25AM AC =. (3)在图3中,在三角形内寻找一格点N ,使得2BNC A ∠=∠.(请涂上黑点,注上字母) 20.如图,CD 是Rt △ABC 的中线,90ACB ∠=︒,过点A 作AE CD ⊥,垂足为点E .(1)求证:ABC CAE ∽△△.(2)若8AC =,10AB =,求AE 的长.21.如图,在△ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,交CA 的延长线于点E .(1)求证:点D 为线段BC 的中点.(2)若BC =3AE =,求O 的半径及阴影部分的面积.22.如图1,一种手机支架可抽象成如图2的几何图形,水平底座长10cm AD =,伸缩臂AB 长度可调节()10cm 15cm AB ≤≤,并且可绕点A 上下转动,转动角α变动范围是090α︒<≤︒,手机支撑片EC 可绕点B 上下转动,10cm BC =,转动角β变动范围是090β︒<≤︒.小明使用该支架进行线上学习,当30β≥︒,且点C 离底座的高度不小于7cm 时,他才感觉舒适.(1)如图3,当90α=︒,50β=︒,12cm AB =时,求托片底部点C 离底座的高度,并判断是否符合小明使用的舒适要求.(参考数据sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)(2)如图2,当6α=︒,90β=︒的情况下,AB 至少要伸缩到多少cm 时才能恰好满足小明使用的舒适要求?(精确到1cm 1.73≈)23.如图1,抛物线()()2330y ax a x a =+++≠与x 轴交于点()4,0A ,与y 轴交于点B ,在x 轴上有一动点()(),004E m m <<,过点E 作x 轴的垂线交直线AB 于点N ,交拋物线于点P ,过点P 作PM AB ⊥于点M .(1)求a 的值及cos BAO ∠. (2)求PN 的最大值.(3)设△PMN 的面积为1S ,△AEN 的面积为2S ,若123625S S =,求此时m 的值. 24.如图,O 的两条弦AB ,CD 互相垂直,垂足为E ,直径CF 交线段BE 于点G ,且AC AF =.(1)求证:AD BF =.(2)若O 的半径为4,6AB =,求AG 的长. (3)设()12BGx x AE=<<. ①若点E 为AG 中点,求x . ②若FGy CG=,求y 与x 的函数表达式. 九年级期末测试参考答案及评分标准一、选择题(每小题4分,共40分)二、填空题(每小题5分,共30分)三、解答题(本大题有8小题,共80分) 注:1.阅卷时应按步计分,每步只设整分;2.如有其他解法,只要正确,都可参照评分标准,各步相应给分. 17.解:(1)原式11241022=⨯-⨯+= (2)二次函数的表达式为()()13y x x =--即243y x x =-+,∴4b =-,3c =或由题意得:139b c b c +=-⎧⎨+=-⎩解得:43b c =-⎧⎨=⎩18.解:(1)13P =∴3P =19.20.解:(1)∵CD 是Rt △ABC 的中线,90ACB ∠=︒,∴CD AD =,∴CAB ECA ∠=∠, ∵AE CD ⊥,∴90CEA ACB ∠=∠=︒,∴CAE ABC ∽△△,(2)∵8AC =,10AB =,90ACB ∠=︒,∴6BC ==∵CAE ABC ∽△△∴AE AC BC AB =∴245AE =21.解:(1)连结AD ,∵AB 为O 的直径,∴90ADB ∠=︒,∵AB AC =,∴BD CD =,即点D 为线段BC 的中点.(2)∵B E ∠=∠,C C ∠=∠,∴ABC DEC ∽△△.∵AB AC =,∴B C ∠=∠,∴C E ∠=∠,∴ED DC BD ==, 由(1)②得ED EC AB BC=∴22BD AB EC =⋅,设AB x =,则(()223x x =+,解得:19x =-(舍去),26x =,∴O 的半径为3.连OE ,∴60AOE ∠=︒,∴3π2S =阴. 22.解:(1)过点C 作CF AB ⊥于F ,在Rt △BCF 中,cos 10cos50 6.4cm BF BC β==︒≈5.6cm 7cm AF AB BF =-=<即托片底部点C 离底座的高度为5.6cm ,不符合小明的舒适要求.(2)过点B 作BH AD ⊥于点H ,点C 作CM BH ⊥于点M . 在Rt △ABH 与Rt △BCM 中,1cos60105cm 2BM BC =⋅︒=⨯=,令7cm MH =,则12cm BH =,13.8414cm sin 60BHAB ==≈≈︒,∴至少要将AB 伸缩至14cm 时才能符合小明的舒适要求23.解:(1)∵抛物线()()2330y ax a x a =+++≠与x 轴交于点()4,0A ,∴34a =-.4cos 5BAO ∠= (2)由点()4,0A ,()0,3B 可得直线AB 解析式为:334y x =-+ ∵抛物线解析式为239344y x x =-++,∴2239333334444PN m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭,当2m =时,PN 有最大值为3(3)如图中,∵PM AB ⊥,PE OA ⊥,∴PMN AEN ∠=∠,∵PNM ANE ∠=∠,∴PNM ANE ∽△△,∴65PN AN ==,∵4cos 5AE BOA AN ∠==∴()544AN m =-, 由(2)可知2334PN m m =-+,∴()233645544m m m -+=-,解得2m =,4m =(舍去).24.解:(1)证明:连结DF ,AF ,∵直径CF ,∴90CDF ∠=︒,∵AB CD ⊥,∴AB DF ∥ ∴BAF AFD ∠=∠,∴AD BF =(2)连结BF ,AC ,∵直径CF ,∴90CAF ∠=︒,∵AC AF =,∴AC AF === ∴45CFA ACF ∠=∠=︒,∴45B ACF ∠=∠=︒,∴B AFC ∠=∠, ∵BAF FAG ∠=∠,∴ABF AFG ∽△△,∴2AF AG AB =⋅,∴163AG =. (3)①连结AD 交CE 于P ,∵点E 为AG 中点,AB ,CD 互相垂直, ∴CA CG =,∴CAG CGA BGF BFG ∠=∠=∠=∠,∴BG BF AD ==, ∵AD BF =,∴CD AB =,∴CD AB =,由对称性知,AE ED =,∴AD =,∴BG =,∴x =②连结AO ,设1AE =,则BG x =,设EG t =,∵AC AF =,∴AO CF ⊥,∵CA CO =, ∴CPO AGO ≌△△,∴1CP AG t ==+,由①知CE EB t x ==+,∴1PE x =-,∵APE CGE ∽△△,∴PE AE EG CE =,即11x t t x-=+,得22x xt x -=- ∵AB DF ∥∴211212FG ED y x x CG CE t x xx x=====--++-即21y x =-。
(教研室提供)山东省聊城市临清市2023-2024学年九年级上学期期末考试数学试题
2023~2024学年第一学期期末调研九年级数学试题(时间120分钟满分120分)一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)第1题图第4题图第5题图.如图,由边长为1的小正方形构成的网格中,点C都在格点上,以AB为直径∠的值为sin ADC6.如图,操场上有一根竖直的旗杆AB ,它的一部分影子(BC )落在水平地面上,另一部分影子(CD )落在操场的墙壁上,经测量,墙壁上的影高为1.2m ,地面的影长为2.6m ,同时测得一根高为2m 的竹竿OM 的影长是 1.6m ON =,请根据以上信息,则旗杆的高度是A .3.25mB .4.25mC .4.45mD .4.75m7.将方程221210x x -+=配方成()2x m n -=的形式,下列配方结果正确的是A .()2317x +=B .()21732x +=C .()2317x -=D .()21732x -=8.设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y=x 2-2x+m 上的三点,则y 1,y 2,y 3的大小关系为A.y 1>y 2>y 3 B.y 1>y 3>y 2C.y 3>y 2>y 1D.y 3>y 1>y 29.已知关于x 的一元二次方程mx 2-x+2=0有两个不相等的实数根,则实数m 的取值范围是A.1.8A m > B.1.8B m < C.1.08C m m <≠且m >1D.08m m <-≠且10.如图,一架飞机在点A 处测得水平地面上一个标志物P的俯角为α,水平飞行m 千米后到达点B 处,又测得标志物P 的俯角为β,那么此时飞机离地面的高度为A .tan tan tan tan m αββα-千米B .tan tan tan tan m αβαβ-千米C .tan tan mαβ-千米D .tan tan mβα-千米11.罕见病“脊髓性肌萎缩症”治疗用药利司扑兰口服液在2023年医保谈判中经两轮“砍价”,从63800元/瓶降至3900元/瓶,成功进入医保目录.设这两轮谈判药物价格平均下降率为x ,则可列方程为A .()23900163800x +=B .63800(1-2x )=3900C .()23900163800x -=D .()26380013900x -=12.如图,正方形ABCD 的边长为4cm ,动点P ,Q 同时从点A 出发,以1cm /s 的速度分别沿A B C →→和A D C →→的路径向点C 运动.设运动时间为x (单位:s )四边形PBDQ 的面积为第6题图第10题图y(单位:2cm),则y与x(08<<)之间的函数图象大致是下列图中的xA. B. C. D.二、填空题:(本题共5个小题,每小题3分,共15分,只要求写出最后结果)第14题图第16题图第17题图三、解答题:(本题共8小题,共69分.解答要写出必要的文字说明、证明过程或推演步骤.)18.(本题满分9分,每小题3分)用适当的方法解下列方程:(1)22570x x +-=;(2)22410x x -+=;(3).19.(本题满分8分)如图,在矩形ABCD 中,E 是BC 的中点,DF ⊥AE ,垂足为F .(1)求证:△ABE ∽△DFA ;(2)若AB =3,BC =2,求DF 的长.第19题图20.(本题满分7分)如图,在由小正方形组成的网格图中建立一个平面直角坐标系,一条圆弧经过格点()()()024260A B C ,,,,,.解答下列问题:(1)请在图中确定该圆弧所在圆的圆心D 的位置,点D 的坐标为__________;(2)求 AC 的长.(结果保留π).21.(本题满分7分)2023年9月第19届亚运会在杭州举行,某商店购进一批亚运会纪念品进行销售,已知每件纪念品的成本是30元,如果销售单价定为每件40元,那么日销售量将达到100件.据市场调查,销售单价每提高1元,日销售量将减少2件.要使每天销售这种纪念品盈利1600元,同时又要最大程度让利给顾客,那么该纪念品的售价单价应定为每件多少元?第20题图22)1(3-=-x x x第22题图.(本题满分9分)如图,一次函数y kx =比例函数()0my m x=≠的图象相交于A ,B 作BC x ⊥轴,垂足为C ,连接AC ,已知点在第一象限图象上的一点,若3POC ABC S S =△△,请求出第23题图24.(本题满分10分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作CD ⊥AB 于点E ,交⊙O 于点D ,点F 是AB 延长线上一点,连接CF ,AD ,∠FCD =2∠DAF .(1)求证:CF 是⊙O 切线;(2)若AF =15,sin F =32,求CD 的长.25.(本题满分12分)如图①,抛物线23y ax bx =+-与x 轴交于点()40A -,和点()10B ,,与y 轴交于点C ,点P 是直线下方抛物线上的点,PD AC ⊥于点D ,PF x ⊥轴于点F ,交线段AC 于点E ,(1)求抛物线的解析式;(2)写出PD 与PE 满足的关系式.当PD 最大时,求P 点的坐标;(3)如图(2),点M 是在直线AC 上方的抛物线上一动点,当MAO OAC ∠=∠时,求点M 的坐标.第24题图第25题图。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
1.32的倒数是( ). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( ).A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为 ( ). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 ( ).A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( )A )1- B )0 C )1 D )26. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.7.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
2018-2019学年七年级上学期期末考试数学试题(含两套)
2018-2019学年七年级(上)期末数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE 的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B 看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.2018-2019学年辽宁省鞍山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD=45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.2018—2019 学年度第一学期期末初一年级学业水平测试数学试卷(考试时间120分钟,全卷满分120分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
门头沟区2023-2024学年第一学期期末九年级数学试题答案
门头沟区2020—2021学年度第一学期期末调研评分参考初三数学一、 选择题(本题共24分,每小题3分)二、 填空题(本题共24分, 每小题3分)三、解答题 (本题共52分,第17~21题每小题5分,第22题每小题6分,第23~25题每小题7分)17. 计算: 1012sin 45(2015)3-⎛⎫-+--︒+- ⎪⎝⎭π31…………………………………4分2=-. …………………………………5分18. 第一种情况:过点D 作DE ∥BC 交AC 于点E∵DE ∥BC∴△ADE ∽△ABC ………………………………2分 第二种情况:作∠ADE =∠C ∵∠A =∠A ,∠ADE =∠C∴△AED ∽△ABC ………………………………5分19. (1)补全图形正确:中垂线 ……………………1分 圆 ……………………2分 一条切线 ……………………3分(2)∠OBP = 90 ° ……………………4分直径所对的圆周角等于90° ……………………5分20.(1)顶点坐标(-1,-4) ……………………1分 (2)令2230x x +-=(3)(1)0x x +-= 123,1x x =-=∴与x 轴的交点坐标为(3,0)(1,0)-、 ……………………3分(3)3x <-或1x > ……………………5分21.(1)∵点P (2,1)是反比例函数图象上的一点∴12m=,解得,2m = ∴反比例函数表达式为2y x=………………………2分 (2)2x <-,或02x <<………………………5分 22.(1)∵AD ACAC AB=,∠A=∠A ∴△ACD ∽△ABC …………………2分 (2)∵△ACD ∽△ABC∴∠ADC=90°, ∴∠CDB=90° ∴ ∠ADC= ∠CDB ∵ ∠B=∠ACD ∴△ACD ∽△CBD …………………3分 ∴CD ADDB CD=…………………4分 ∵AD =3,BD =2 ∴32CD CD=解得:6CD =…………………5分DBdh(C )人梯地面AO 23.连接BD ,作DH ⊥AF 于点H ……………………1分 由题意可知点B 、D 、H 共线 ∵∠ADH =45°,∠AHD =90° ∴tan 1AHADH DH∠== …………………2分 ∴设AH =x,则DH =AH =x∴BH =x +42 …………………3分 在Rt △AHB 中, ∵∠ABH =30° ∴3tan AH ABH BH ∠==…………………4分 3423x x =+解得,21321x =…………………5分 ∴AF =AH +HF =21322.7…………………6分24(1)略. …………………………………………………………………………………2分 (2)4.75米. ……………………………………………………………………………3分 (3)1米. …………………………………………………………………………………4分 (4)如图所示,建立平面直角坐标系:由题意可知,演员身体形成的抛物线的表达式为()20.6 2.5 4.75.h d =--+ ∵ 当3d =时,()20.63 2.5 4.75 4.6 3.4.h =--+=≠∴ 此次表演不成功.∵ 当 3.4h =时,()20.6 2.5 4.75 3.4.d --+= 解得 11d =,2 4.d =∴ 人梯调整距起跳点A 的水平距离为1米或4米时均能成功.……………6分25.解:(1)连接OD ,∵ED 为⊙O 的切线,∴OD ⊥ED .………………………………………………………………………1分 ∵AB 为⊙O 的直径,∴∠ACB =90°. ………………………………………………………………… 2分 ∵BC ∥ED ,∴∠ACB =∠E =∠EDO . ∴AE ∥OD . ∴∠DAE =∠ADO . ∵OA =OD , ∴∠BAD =∠ADO .∴∠BAD =∠DAE . ………………………………3分 (2)连接BD , ∴∠ADB =90°. ∵AB =6,AD =5,∴BD 2211AB AD -=………………………………………………………4分 ∵∠BAD =∠DAE =∠CBD , ∴tan ∠CBD = tan ∠BAD 11.. …………………………………………………5分 在Rt △BDF 中, ∴DF =BD ·tan ∠CBD =115. ………………………………………………………6分 26.(1)∵2ax bx c c ++=∴20ax bx += ()0x ax b += ∴0x =,或bx a=-………………………………………1分 ∵22ba -= ∴4b a-=∵12x x <∴10x =,24x = ………………………………………2分(2)由题意可得:221122ax bx c ax bx c ++<++ 221122ax bx ax bx +<+ ………………………………………3分 2212120ax ax bx bx -+-< 121212()()()0a x x x x b x x -++-<1212()[()]0x x a x x b -++< ……………………………………4分∵12x x < ∴120x x -< ∴12()0a x x b ++>即12bx x a+>- ……………………………………5分 ∵124x x +>∴4b a-≤ ∴22bt a=-≤ ……………………………………6分27.解:(1)补图正确; …………………1分(2)45°; …………………2分(3)结论:2BN CM =. …………3分证明:作BH ⊥PC 交PC 的延长线于点H .∵点A 与点D 关于CP 对称, ∴CE 是AD 的垂直平分线. ∴CA =CD .∴∠1=∠2=α.∵CA =CB ,∴CB =CD .∴∠3=∠4. ∵∠4=90°,∴∠3=12(180°-∠BCD )=12(180°-90°-α-α)=45°-α.∴∠CNB =∠3+∠1=α+45°-α=45°.…………………4分 ∴△NHB 为等腰直角三角形∴2BN BH = …………………5分 ∵∠5=90°,CP 是AD 的垂直平分线,∴∠2+∠7=90°,∠2+∠6=90°. ∴∠6=∠7. …………………6分 ∵BH ⊥PH ,∴∠H =90°=∠AMC . ∴在△CMA 和△BHC 中, ∠H=∠CMA , ∠7=∠6, BC =CA ,CMA ≌△BHC . ∴BH =CM .∴2BN CM =…………………7分28.(1)5 ………………………………………………1分(2)A (1,2),C (2.5,0);………………………………………3分 (3)示意图正确 ………………………………………4分52- ………………………………………………7分其他方法参照给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第一学期期末考试
九年级数学试卷
一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出四个选项中,只有
一项是符合题目要求的,请把每小题的答案填题后的在括号中)
1.下列各组根式中,属于同类二次根式是„„„„„„„„„„„„„„( )
A.2112和 B. 2718和 C. 313和 D. 5445和
2. 下列运算正确的是( )
A.122-23 B. 752
C. 1826232 D. 3327
3. 关于x的一元二次方程(m-2)x2+x+m2-4=0有一个根为0,则m的值应为( )
A.2 B.-2 C.2或-2 D.1
4. 若关于x的一元二次方程mx2-2x+1=0无实数根,则一次函数y=(m-1)x-m图象
不经过„„„„„„„„„„„„„„„„„„„„„„„„„„„„( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.在下列四个图案中,既是轴对称图形,又是中心对称图形的是„„„ ( )
等腰梯形
D平行四边形C等边三角形圆BA
6 .已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙B,⊙A,再以点B为圆心,
3cm为半径画⊙B,则⊙B和⊙A的位置关系是„„„„„„„„„„„( )
A.内含 B,相交 C.外切 D.外离
7.如图,在△ABC中∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′
处,则CC′的长为„„„„„„„„„„„„„„„„„„„ ( )
A. 24 B.4
C. 32 D. 52
8.如图,AB中半圆上O的直径,∠BAC=60°,D是半圆上任意
一点,那么∠D的度数是( )
A.30° B.45° C.60° D.90°
9.下列事件属于随机事件的有„„„„„„„„„„„„„„„
( )
30
0
A
B
C
CB
①当室外温度低于-10℃时,将一碗清水放在室外会结冰;②经过城市中某有交通信号灯
的路口,遇到红灯;③今年春节会下雪;④5,4,9的三根木条组成三角形.
A.② B. ②④ C. ②③ D. ①④
10.在拼图游戏中,从图①的四张纸片中,任取两张纸片,能拼成“小房子”(如图②)的概
率是( )
A.31 B. 41 C. 32 D. 43
①②
二、填空题(本大题共8小题,每小题3分,共24分)
11.使xx23有意义,则x的取值范围是__________.
12.一个正多边形,它的内外角等于它相邻内角的41,则这个多边形是正______边形.
13.已知代数式x2-4x-2的值为3,则代数式2x2-8x-5的值为___________.
14.直径分别为4和8的两圆相切,那么两圆的圆心距为___________.
15.如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C′,A′B′交AC于点D,若∠A′
DC=90°,则∠A=__________°.
A
B
C
A
B
D
S
1
S
2
S
3
16.如图,随机闭合开关S1、S2、S3中的两个,能够让灯泡发光的概率是____________.
17.小刚用一张为24cm的扇形纸做一个如图所示的圆锥形的小帽侧面(接缝处忽略不计),如
果做成的圆锥形的帽子的底面半径为10cm,那么这张扇形纸的面积是___________2cm.
24cm
18.一个口袋中有黑球10个和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回
口袋中摇匀,重复上逑过程200次,其中有120次摸到黄球,由此估计袋中的黄球有
________个.
A
B
C
D
8题图
0
三.解答题(本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程)
19.计算(每小题4分,共8分)
(1) xxxx1233932; (2) 2543122
20.解下列方程(本小题8分)
(1)x2+2x-3=0 (2) x(2x-5)=2x-5
21. (本小题8分)如图所示,利用关于原点的坐标特点,画出△ABC关于原点O对称的△
A1B1C1,并写出点A1、B1、C1的坐标.
o
12345
-1-2-3-4
1
2
3
4
-1
-2
-3
-4
x
y
C(2,3)
A(-3,2)
B(-2,-1)