统计学基础第七章抽样推断

合集下载

统计学 任务一八 抽样推断

统计学 任务一八 抽样推断

31
抽样平均误差
㈢影响抽样误差的主要因素
1.样本容量n。样本容量大小与抽样误差成反比。当 n=N,无抽样误差。此表明,若条件许可应尽量扩容。
2.总体各单位标志变异程度。如总体标准差σ或总体方 差 。标志变异程度大小与抽样误差成正比。当σ=0, 无抽样误差2 。
3.抽样组织形式。类型抽样和等距抽样的抽样误差较小, 整群抽样误差较大。实践中,可利用抽样误差的大小 来检验组织方式的有效性。
差的影响(对抽中群作全面调查,无抽样误差)。 因此群的划分,要尽量缩小群间的差异,加大群 内的差异。 由于样本单位过分集中在少数样本群,同样条件 下抽样误差较大。欲不扩大误差,则需要增加一 些样本群。
21
抽样组织形式
㈣等距抽样——机械抽样
等距抽样是先将总体单位按某一标志顺序排队,再按固 定顺序和相等距离(间隔k)抽取样本单位。
13
◎抽样方法
2.不重复抽样(不回置抽样)从总体中每次抽 取一个单位进行观察,登记后不再放回总体中, 依此直至抽取n 个单位。
不重复抽样的特点:
⑴ n次抽取实质上等于一次同时抽取n个单位; ⑵ n次抽取相互不独立(对下次抽取有影响); ⑶每个总体单位在各次被抽中的概率不同,即1~n次分
别是1/N,1/N-1,1/N-2,…,1/N-n+1,但在每次抽 取时机会仍然均等; ⑷每个总体单位不会被重复抽中。

(n-1)k nk
22
分任务二 抽样误差
抽样误差的概念 抽样平均误差 抽样极限误差与概率度
一.抽样误差的概念
抽样误差是一种调查误差。如前所述:
调 登记性误差 普遍存在可以防止


系统性误差
差 代表性误差

教育统计学_第七、八章 抽样分布及总体平均数的推断

教育统计学_第七、八章 抽样分布及总体平均数的推断

20 1
20 1
P(57.14 68.86) 0.99
答:该地区这一年高考数学平均分95%和99%的 置 信 区 间 分 别 为 58.72 至 67.28 分 之 间 和 57.14 至 68.86分之间。
3.大样本的情况:
当样本容量比较大,自由度在逐渐增大,这时的t分布 已经非常接近正态分布。这时可把t分布转成标准正态 分布来作处理。然后再作区间估计。
n
n
P( X 1.96 X 1.96 ) 0.95
n
n
要在一定可靠度上求出总体参数的置信区间的 上下限,需要以下条件:
1.要知道与所要估计的参数相对应的样本统计量的 值,以及样本统计量的理论分布;
2.要求出该种统计量的标准误;
3.要确定在多大的可靠度上对总体参数作估计,再 通过查某种理论概率分布表,找出与某种可靠度相 对应的该分布横轴上记分的临界值,才能计算出总 体参数的置信区间上下限。
三、 σ未知条件下总体平均数的区间估计
1.σ未知条件下总体平均数区间估计的基本原理 (1)当总体σ未知,总体呈正态分布,大样本或小
样本时
(2)或当总体σ未知,总体虽不呈正态分布,大样 本容量较大(n>30)时,样本平均数可以转换成t 值。
总体平均数95%置信区间为:
P(t X t ) 0.95
E(X )
第一节 抽样分布
2、容量为n的平均数在抽样分布上的标准差,等 于总体标准差除以n的方根。
X
n
第一节 抽样分布
3、从正态总体中,随机抽取的容量为n的一切可能 样本平均数的分布也呈正态分布。
4、虽然总体不呈正态分布,如果样本容量较大, 反映总体μ和σ的样本平均数的抽样分布,也接近于 正态分布。

《统计学原理》课件第七章抽样调查

《统计学原理》课件第七章抽样调查
4 -6
第二节 抽样调查的基本概念
全及总体(总体) 样本总体(样本)
几组基 本概念
重复抽样 不重复抽样
大数定律 中心极限定理
4 -7
研究对象
抽 取 方 法
重复考虑顺序 不重复不考虑 顺序

究 原
总体分布 样本分布 抽样分布

一、全及总体和样本总体
全及总体:也称总体。指所要认识对象的全体。 用N表示有限总体的单位数,称总体容量。
m
lim p n
n
p
ε
1
贝努大数定律对于抽样调查的意义:
从理论上解释了用频率代替概率的理论依据, 即随着抽样单位数n的增加,事件A发生的频率接近 于事件A发生的概率。
4 - 18
大数定律特点
大数定律论证了抽样平均数趋近于总体平均 数的趋势,这为抽样推断提供了重要依据。 但是:
抽样平均数和总体平均数的离差究竟有多大? 离差的分布状况怎样? 离差不超过一定范围的概率究竟有多少?
(二)抽样成数的抽样平均误差
重复抽样: 不重复抽样:
p
p1 p
n
p
p1 p 1 n
n N
说明:实际应用中,平均数和成数的标准差一般是 未知的,通常采用如下方式解决 (1)用过去调查的资料 (2)样本方差的资料代替总体方差 (3)用小规模调查资料 (4)用估计材料
4 - 30
【进上例行者】测为试合某(1,格灯)平资品泡均料,厂使如计对用下算10时。这00按批0间个质灯:x产量泡品规的进定时x行ff,间寿灯抽命2泡样12检10使平40测0用均0,寿误随1命差0机5在和7(抽小1合0取时格002)率小%样的时本平以
按照随机原则 从调查对象中抽取一部分单位进行 观察,并运用数理统计的原理,以被抽取的那部分 单位的数量特征为代表,对总体做出数量上的推断 分析

统计学中的抽样与推断

统计学中的抽样与推断

统计学中的抽样与推断在统计学中,抽样与推断是非常重要的概念。

它们涉及到我们如何从一小部分样本中推断出整个总体的特征。

在这篇文章中,我们将讨论抽样的不同方法以及如何使用样本数据进行推断。

一、抽样方法在统计学中,我们通常使用以下三种抽样方法:1. 简单随机抽样这是最基本的抽样方法。

简单随机抽样意味着从总体中随机抽出样本,每个样本被抽样的概率相等。

这种方法可以确保样本的代表性。

例如,如果我们要调查一个城市的人口,我们可以从人口登记簿中随机抽取一定数量的人口作为样本。

2. 分层抽样分层抽样是把总体划分为若干个层次,然后从每个层次中随机抽取样本。

这个方法可以减小代表性偏差。

例如,如果我们要调查一个城市的人口,我们可以按照不同的年龄段对总体进行分层,然后从每个年龄段中随机抽取一定数量的人口作为样本。

3. 系统抽样这是从总体中按照一定的规则抽样。

例如,如果我们要调查一个工厂中的员工,我们可以按照员工的工号顺序每隔一定数量抽取一个员工作为样本。

二、样本统计量的计算在进行统计推断之前,我们需要先计算样本统计量。

样本统计量是样本数据的数量指标,可以代表总体的特征。

常见的样本统计量包括:1. 样本均值样本均值是样本数据的平均值。

它可以代表总体的平均值。

例如,我们可以从一个城市的人口中随机抽取一部分人口,计算他们的平均收入,这个平均收入就是样本均值。

2. 样本标准差样本标准差是样本数据的标准差。

它可以代表总体的方差。

例如,我们可以从一个工厂中随机抽取一部分产品,计算它们的重量,这个重量的标准差就是样本标准差。

三、参数估计我们通常使用抽样中的样本统计量来估计总体参数。

例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。

常见的参数估计方法包括:1. 点估计点估计是用样本统计量来估计总体参数的方法。

例如,我们可以使用样本均值来估计总体均值,使用样本标准差来估计总体标准差。

2. 区间估计区间估计是用一个区间来估计总体参数的方法。

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为其中: 2222α2222)(E z n σα=n z E σα2=与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大;与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

统计学的抽样与推断

统计学的抽样与推断

统计学的抽样与推断统计学是一门研究数据收集、处理、分析和解释的学科,而抽样与推断则是其中非常重要的两个概念和方法。

抽样是指从总体中选择一部分样本进行数据收集和分析,而推断则是在收集到的样本数据的基础上对整个总体做出合理的推断和估计。

本文将从抽样的方法和推断的步骤两个方面来介绍统计学的抽样与推断。

一、抽样的方法在进行统计学调查或研究时,往往无法对整个总体进行数据收集,这时候就需要通过抽样的方法选取一部分样本来进行研究。

常用的抽样方法包括以下几种:1. 简单随机抽样:简单随机抽样是指通过随机抽取的方法,使得每个样本都有相同的机会被选中。

这样可以保证样本是来自总体的一个典型子集,能够准确反映总体的特征。

2. 分层抽样:分层抽样是将总体划分为若干个层次,然后在每个层次中进行简单随机抽样。

这样可以保证每个层次都有足够的代表性样本,从而更准确地推断每个层次的特征。

3. 系统抽样:系统抽样是指按照一定的规则从总体中选择样本,例如每隔一定间隔选取一个样本。

系统抽样的优点是可以保证样本均匀分布在总体中,同时又比随机抽样更具有操作性。

4. 整群抽样:整群抽样是将总体划分为若干个互不重叠的群组,然后随机选择一部分群组作为样本。

这样可以减少调查的工作量,同时又保持了群组内部的相似性。

二、推断的步骤在得到样本数据后,需要进行推断分析,从而对整个总体进行合理的推断和估计。

推断的步骤主要包括以下几个方面:1. 参数估计:参数估计是指通过样本数据对总体参数进行估计。

常用的参数估计方法包括点估计和区间估计。

点估计是通过样本数据计算出一个具体的数值作为总体参数的估计值,例如样本均值作为总体均值的估计值。

区间估计则是通过样本数据计算出一个区间,该区间可以包含真实总体参数的真值,例如置信区间。

2. 假设检验:假设检验是使用样本数据对总体参数的某个假设进行检验。

常用的假设检验方法包括单样本检验、双样本检验和方差分析等。

通过假设检验可以判断样本数据是否支持某个假设,并对总体参数的差异性进行推断。

电大 社会统计学 第七章 统计推断


(二)置信水平和置信空间
置信区间是在区间估计中,由样本统计量所构造的 总体参数的估计区间,它有估计量加减抽样误差构 成,我们将区间的最小值称为置信下限,区间的最 大值称为置信上限。 置信水平就是将构造置信区间的步骤重复很多次, 置信区间包含总体参数真值的次数所占的比例。
求置信区间的步骤
(四)区间估计
(三)样本均值抽样分布的特征
• 假设从容量N的总体中抽取容量为n的样本,其中总体的均值 为μ,方差为σ2,样本均值的数学期望为E( X ),方差为σ2x
三、样本比例的抽样分布
• 用π表示总体比例,用P表示样本比例。
第三节 参数估计
• 参数估计是统计推断的一个重要部分,它是用样本统计量推 断总体参数的过程。 • 参数估计可分为点估计和区间估计两种类型。 • 一、点估计 • 点估计就是直接用估计量作为总体参数θ的估计值。用样本均 值直接作为总体均值μ的估计值,用样本比例P直接作为总体 比例π的估计值,用样本方差直接作为总体方差的估计值 等。例如,随机样本的均值为6分,我们用6分直接作为总体 的估计值,认为这次考试总体平均分为6分,这就是点估计。
• 假设检验的基本思想可以用小概率原理解释。 • 小概率原理,就是在一次试验中小概率事件是几乎 不可能发生的。也就是说,如果我们对总体的某个 假设是真实的,那么极端值(不支持假设的事件) 是几乎不可能发生的。如果发生了,我们就有理由 怀疑这一假设的真实性,拒绝这一假设。
第四节 假设检验
• 二、虚无假设和替换假设
• (3)有效性。是指当总体参数的无偏估计不止一个统计量时, 标准差小的估计量更有效,标准差大的有效性就相对差。也 就是说,估计量与总体参数的离散程度也要较小。 • (4)充分性。是指一个容量为的样本统计量,是否充分反映 了全部个数据所反映总体的信息,这就是充分性。

统计学课件:抽样推断


3.当总体X~N(, 2),从中抽取容量为n的样本,则
n
2
(n 1)s2
2
~
(2 n-1); 2
(xi x)2
i 1
2
~
(2 n-1)
4. 2—分布的性质 (1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ), X,Y独立,则 X +Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则 E(X)= n,D(X)=2n
3、进行产品质量检验 4、进行假设检验
(一)总体和样本 1、总体 总体也称全及总体,指所有认识的研究对象全体,它是
有所研究范围内具有某种共同性质的全体单位所组成的 集合体。 一般用英文字母大写N来表示总体的单位数。 2、样本 样本又称子样,它是从全及总体中随机抽取出来,作为 代表这一总体的那部分单位组成的集合体。 一般用英文小写字母n来表示样本的单位数。
5. 分位点 设X ~ 2(n),若对于:0<<1,
存在 2 (n) 0 满足
P{X 2 (n)} ,
则称 2 (n) 为 2 (n) 分布的上分位点。
2
(n
)
(二)t 分布
若X 服从N (0,1),Y 服从自由度为n的 2分布, 且X 和Y 独立,则 X
Y /n 服从自由度为n的 t分布。
1、全及指标 根据各单位的标志值或标志属性计算的,反映总体
数量特征的综合指标称为全及指标,又称为参数。
设总体变量 X 为: X1, X 2 ,X N 则有:
X X XF N F
2 X X 2 X X 2 F
N
F
设总体 N 个单位,有 N1 个单位具有某种性质, N0 个单位不具有某种性质,

抽样推断 习题及答案

第六章抽样推断习题答案一、名词解释用规范性的语言解释统计学中的名词。

1. 随机原则:是指在抽样时排出主观上有意识地抽取调查单位,每个单位以相同概率被取到,从而增强样本对总体的代表性。

2. 统计量:是反映样本特征的综合指标,随样本不同而取不同的值,具有随机性。

3. 随机变量:是指变量的值无法预先确定仅以一定的可能性取值的量。

4. 样本容量:是指样本中的总体单位数量。

5. 中心极限定理:是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。

这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。

6. 抽样平均误差:是反应抽样误差一般水平的指标,它的实质含义是指抽样平均数的标准差。

7. 区间估计:通过从总体中抽取的样本,根据一定的可行度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。

8. 简单随机抽样:也称为单纯随机抽样、纯随机抽样、SPS抽样,是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。

1. 抽样推断中,如果获取的样本数据准确,那么,由此推断的总体参数也一定准确。

(×)不一定2. 极限误差越大,则抽样估计的可靠性就越小。

(×)越大3. 抽样平均误差的大小与样本容量的大小成正比关系。

(×)反比4. 在一般的抽样推断中,抽样平均误差小于极限误差。

(×)不一定5. 重复抽样条件下的抽样平均误差,一定比不重复抽样条件下的抽样平均误差大。

(×)在其他条件相同的情况下6. 在不重复抽样的情况下,若调查的单位数为全及总体的10%,则所计算的抽样平均误差比重复抽样计算的抽样误差少10%。

07章 抽样和参数估计习题及答案

第七章 抽样调查1、 抽样调查的目的在于用抽样指标去推断总体指标。

( )2、 不论总体单位数多少都适用抽样调查方法。

( )3、 古典概率是指每次试验中事件等可能出现的条件下,试验前就可计算出来的比率。

( )4、 股票指数在未来的一周内上升可能性的大小指的是主观概率。

( )5、对一个有限总体进行重复抽样,各次抽取的结果是相互独立的。

( )6、对一个无限总体进行不重复抽样,各次抽取的结果是相互独立的。

( )7、抽样极限误差可以大于抽样平均误差,可以小于抽样平均误差,当然也可以等于抽样平均误差。

( )8、对于重复简单随机抽样,若其它条件不变,样本单位数目增加3倍,则样本平均数抽样平均误差将必须减少30%。

( )9、对于重复简单随机抽样,若其它条件不变,要使抽样平均误差减少一半,则抽样单位数目将必须增加1倍。

( )10、抽样误差产生的原因是抽样调查时违反了随机原则。

( ) 11、抽样误差是抽样调查所固有的、无法消除的误差。

( )12、在确定样本单位数目时,若总体成数方差未知,则P 可取0.5。

( )1、 若某一事件出现的概率为1/6,当试验6次时,该事件出现的次数将是()。

1次 大于1次小于1次上述结果均有可能2、 已知一批计算机元件的正品率为80%,现随机抽取n 个样本,其中x 个为正品,则x 的分布服从()。

正态分布二项分布泊松分布超几何分布3、某工厂生产的零件出厂时每200个装一盒,这种零件分为合格与不合格两类,合格率约为99%,设每盒中的不合格数为X ,则X 通常服从( )。

正态分布二项分布泊松分布超几何分布4、 若一个系的学生中有65%是男生,40%是高年级学生。

若随机抽选一人,该学生或是男生或是高年级学生的概率最可能是( )。

0.350.600.80 1.055、 有为朋友从远方来,他乘火车、轮船、汽车、飞机来的概率分别为0.3、0.2、0.1和0.4,如果他乘火车、轮船、汽车来的话,迟到的概率分别为1/4、1/3和1/12,而乘飞机则不会迟到,试求他迟到的概率为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学基础第七章抽样推断【教学目的】1•理解抽样推断的含义及特点2.深刻理解抽样误差产生的原因3.对抽样误差、抽样平均误差、抽样极限误差加以区别4.了解并种抽样组织形式的特点5.重点掌握简单随机抽样组织形式的区间估计方法6.掌握必要样本单位数的确定方法【教学重点】1•理解抽样推断中的几个基本概念(总体指标、样本指标、平均数、成数、方差、标准差)。

2.理解抽样误差的概念3.理解和运用不同抽样方法下计算抽样误差4.掌握简单随机抽样组织形式的区间估计方法6.掌握必要样本单位数的确泄方法【教学难点】1•理解抽样推断中的几个基本概念(总体指标、样本指标、平均数、成数、方差、标准差)。

2.理解抽样误差的概念3.理解和运用不同抽样方法下计算抽样误差4.掌握简单随机抽样组织形式的区间估计方法6.掌握必要样本单位数的确泄方法【教学时数】教学学时为10课时【教学内容参考】第一节抽样推断的意义一、抽样推断的含义(一)抽样推断的特点抽样推断又称为抽样估计,它是在抽样调查的基础上,利用样本实际资料计算样本指标,并据以推算总体相应数量特征的一种统计调查方式。

【案例】从全国所有股份制企业中,抽取一部分企业,详细调查其生产经营状况,根据这一部分企业的调查资料,来推算所有股份制企业的生产经营状况,这就属于抽样推断。

抽样推断有以下几个特点:1•按随机原则从总体中抽取调査单位。

所谓随机原则是指在抽取调查单位时,总体中每个单位都有同等被抽中的机会,完全排除了人为主观意识的影响,哪个单位抽中与否,纯粹是随机的、偶然的。

按随机原则抽取调査单位是进行抽样推论的基本要求。

2.根据被抽取的调查单位,计算各种指标,并对总体的指标作出估计。

3.抽样推断中的抽样误差可以事先计算并加以控制,从而保证抽样推断的结论符合预泄的精确度和可靠度要求。

(二)抽样推断的作用抽样推断的主要作用有:1.对某些不可能进行全而调査而又需要了解全而情况的社会经济现象,可以采用抽样推断方式。

另外,对于无限总体也不可能进行全面调查,只能采用抽样推断方式。

2.对于某些不必要或在经济上不允许经常采用全而调查的社会经济现象,最适宜采用抽样推断方式。

3.对于需要及时了解情况的现象,也经常采用抽样推断方式。

因为全而调査浪费人力、物力和财力,资料也不易及时取得,而抽样推断方式不仅节省人力、资金,且时间快,方式灵活,能够及时满足了解情况的需要。

4.对全面调查的资料进行评价和修正。

全而调查由于范围广、工作量大、参加的人员多,发生登记性误差的可能性就大。

因此,为了保证全面调查资料的准确性,检验全面调査资料的质量, 在全而调査之后,一般都要进行抽样推断。

在总体中再抽取一部分单位重新调査,然后将两次调查的资料进行比较,计算出差错率,并据此对全面调查的资料加以修正。

5.抽样推断还可以用于工业生产过程中的质量控制。

【能力训练】下列事项属于抽样推断的有()o①为了测泄车间的工时损失,对车间中的每三班工人中的第一班工人进行调查。

②为了解某大学食堂卫生状况,对该校的五个食堂进行调査。

③对某城市1%的家庭进行调查,以便研究该城市居民的消费状况。

④对某公司三个分厂中的一个分厂进行调査,以便研究该工厂的能源利用效果。

二、抽样的基本概念(一)总体和样本总体又称全及总体。

它是根据研究目的,由全部调査单位所组成的集合体。

总体的单位数通常都是很大的,甚至是无限的,这样才有必要组织抽样调查,进行抽样推断。

总体单位数一般用符号N表示。

样本又称子样。

它是从总体中随机抽取出来的部分调查单位所组成的集合体。

样本的单位数是有限的。

样本单位数一般用符号n表示,也称样本容疑。

对于某一特左研究问题来说,作为推断对象的总体是确左的,而且是惟一的。

但由于从一个总体中可以抽取许多个样本,所以作为观察对象的样本,不是惟一的,而是可变的。

明白这一点对于理解抽样推断原理是很重要的。

(二)总体指标和样本指标总体指标又称参数。

它是根据总体各单位的标志表现计算的综合指标。

对于总体中的数就标志,可以计算的总体指标有总体平均数乂、总体方差/ (或总体标准差o )。

设总体变量X的取值为:X’, X’,…X N则宀型旦或宀址业N YF对于总体中的品质标志,由于各单位品质标志不能用数量来表示,因此,可以讣算的总体指标有总体成数X?、总体成数方差b■或总体成数标准差o P)o设P表示总体中具有某种性质的单位数在总体单位数中所占的比重,Q表示总体中不具有某种性质的单位数在总体单位数中所占的比重。

在总体N个单位中,有汕个单位具有某种性质,No个单位不具有某种性质,N二汕+N。

则如果总体中的品质表现只有“是”、“非”两种。

例如,产品质量的标志表现为合格和不合格, 人口性别的标志表现为男性和女性,则可以把“是”的标志表现表示为1,而“非”的标志表现表示为0。

那么成数P就可以视为(0, 1)分布的相对数,并可以计算相应的方差(或标准差)。

其计算公式为—_ZXF _N\ _p帀2 = (。

-可叫+(|-P)讥异%+Q训在+ 0“(i_p)心+N{N在抽样推断中,总体指标的意义和计算方法是明确的,但总体指标的具体数值事先是未知的, 需要用样本指标来估计它。

样本指标又称统汁量。

它是根据样本各单位的标志表现计算的、用来估计总体指标的综合指标。

可以计算的样本指标有样本平均数X、样本方差扌和样本成数P等。

设样本变疑X的取值为X t, X:, ---Xn,则R左或宀工(-才或宀S;=呃- P)在抽样推断中,样本指标的计算方法是确泄的,但它的取值随着样本的不同,有不同的样本变量。

所以,样本指标本身是随机变量,用它作为总体指标的估计值,有时误差大些,有时误差小些:有时产生正误差,有时产生负误差。

【能力训练】总体指标和样本指标()。

①都是随机变量②都是确定性变量③前者是惟一确左的,后者是随机变量④前者是随机变量,后者是惟一确定的三、抽样方法在抽样调查中,从总体中抽取样本单位的方法有两种:重复抽样和不重复抽样。

(一)重复抽样重复抽样也称重苣抽样、放回抽样、回置抽样等。

它是指从总体N个单位中随机抽取容虽:为n的样本时,每次抽取一个单位,把结果登记下来后,重新放回,再从总体中抽取下一个样本单N N, N _N位。

在这种抽样方式中,同一单位可能有被重复抽中的机会。

可见,重复抽样的总体单位在%次抽取中都是不变的,每个单位中选的机会在每次抽取中都是均等的。

用重复抽样的方法从总体N个单位中抽取n个单位组成样本,可能得到的样本总数为N"个。

(二)不重复抽样不重复抽样也称不重置抽样、不放回抽样、不回置抽样等。

它是指从总体N个单位中随机抽取容量为n 的样本时,每次抽取一个单位后,不再放回去,下一次则从剩下的总体单位中继续抽取,如此反复,最终构成一个样本。

也就是说,每个总体单位至多只能被抽中一次,所以从总体中每抽取一次,总体就少一个单位。

因此,先后抽岀来的各个单位被抽中的机会是不相等的。

用不重复抽样的方法从总体N个单位中抽取n个单位组成样本,可能得到的样本总数为N!不考虑顺序的组合数为CJ(N _“)!"!可见,在相同样本容量的要求下,不重复抽样可能得到的样本个数比重复抽样可能得到的样本个数少。

当采用不重复抽样、而全及总体所包含的单位数又不多时,越到后来,留在总体中的单位就越少,被抽中的机会就越大。

不过当全及总体单位数很多、样本总体单位数所占的比重很小时,则对先后抽出来的各个单位被抽中的机会影响不大。

由于不重复抽样简便易行,所以在实际工作中经常被采用。

第二节抽样误差一、抽样误差的含义在抽样推断中,用样本指标推断总体指标,总会存在一泄的误差,其误差来源主要有两个方面:(一)登记性误差即在调査和整理资料的过程中,由于主、客观因素的影响而引起的误差,如在登记的过程中由于疏忽而将3误写为8,将1误写为7:在计算合计的过程中所造成的计算错误等。

(二)代表性误差即由于样本的结构情况不足以代表总体特征而导致的误差。

代表性误差的产生又有两种情况: 一种是违反了抽样推断的随机原则,如调査者有意地多选较好的单位或多选较差的单位来进行调查,这样计算出来的样本指标必然出现偏髙或偏低的情况,造成系统性误差,也称为偏差。

另一种情况是遵守了抽样推断的随机原则,但由于从总体中抽取样本时有多种多样的可能,当取得一个样本时,只要被抽中样本的内部结构与被研究总体的结构有所岀入,就会岀现或大或小的偶然性的代表性误差,也称为随机误差。

系统性误差和登记性误差都是由于抽样工作组织不好而导致的,应该采取预防措施避免发生。

而偶然性的代表性误差是无法消除的。

抽样误差就是指这种偶然性的代表性误差,即按随机原则抽样时,单纯由于不同的随机样本得出不同的估计量而产生的误差。

抽样误差是抽样推断所固有的,虽然它无法避免,但可以运用大数左律的数学公式加以精确地讣算,确立英具体的数量界限,并通过抽样设讣加以控制。

所以这种抽样误差也称为可控制误差。

【能力训练】抽样误差是()-①样本数目过少引起的②观察、测量、计算的失误引起的③抽样过程中的偶然性因素引起的④抽样推断中产生的系统性误差二、抽样平均误差(一)抽样平均误差的含义抽样误差描述了样本指标与总体指标之间的离差绝对数,在用样本指标估计相应的总体指标时,它可以反映估计的准确程度。

但是由于抽样误差是随机变量,具有取值的多样性和不确立性特点,因而就不能以它的某一个样本的具体误差数值来代表所有样本与总体之间的平均误差情况, 应该用抽样平均误差来反映抽样误差平均水平。

所谓抽样平均误差,就是所有可能出现的样本指标(平均数或成数)的标准差,也可以理解为所有的样本指标与总体指标之间的平均离差。

我们所说的抽样误差可以事先汁算和控制,就是针对抽样平均误差而言的。

抽样平均误差是用样本指标推断总体指标时,计算误差范伟I的基础。

抽样平均误差的汁算,与抽样方法和抽样组织形式有直接关系,不同的抽样方法和抽样组织形式计算抽样平均误差的公式是不同的。

(二)抽样平均误差的计算在实际工作中,只求得一个样本指标,无法得到抽样平均误差(即样本指标的标准差),因而常常是根据抽样平均误差和总体标准差的关系来推算。

样本平均数的抽样平均误差计算公式如下: |(x-X)7在一般情况下,总体平均数戸是未知的。

当样本较多时,可用样本平均数的平均数来代替(这已经得到证明)。

而在实际工作中,通常只需从总体中抽取一个样本,这样就可以根据总体标准差和样本单位数的关系来计算。

1.重复抽样条件下抽样平均误差的计算数理统汁可以证明:在重复抽样条件下,抽样平均误差与总体标准差成正比,与样本单位数的平方根成反比。

故在已知总体标准差的条件下,可用下面的公式计算样本平均数的抽样平均误差:b“厂〒在大样本(n>30)下,如果没有总体标准差。

相关文档
最新文档