《概率论》总复习提纲

合集下载

一轮复习之概率总复习提纲汇总

一轮复习之概率总复习提纲汇总
古典概型与几何概型 新沂三中 聂礼强
1 5730 p 2
t
随机事件
频率
概率的意义与性质
概 率 的 实 际 应 用
古典概型
几何概型
随机数与随机模拟
1.古典概型的概念: 若一次试验中所有可能出现的基本事 件只有 有限个(有限性) ,且每个基本 事件出现的 可能性相等(等可能性) , 则具有这两个特点的概率模型称为古 典概型. 2.古典概型的特点: (1)有限性; (2)等可能性.
P(A)=
构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)
7.古典概型与几何概型的异同点: (1)相同点: 古典概型与几何概型中基本事件发 生的可能性都是相等的. (2)不同点: 古典概型要求基本事件有有限个, 几何概型要求基本事件有无限个.
例1 抛掷两个骰子,计算: (1)一共有 36 种不同的结果;
D1 C1
B1
A1
M
D
C
A
练习3 已知球O是棱长为2的正方体的 内切球,若在正方体内任取一点,则这一 p 1点不在球O内的概率为 6 .
例4 如图,在三角形AOB中,已知 ∠AOB=60°,OA=2,OB=5,在线段OB上任 取一点C,试求 (1)△AOC为钝角三角形的概率. (2)△AOC为锐角三角形的概率.
1 (2)向上的点数之和是5的概率是 9 ;
(3)所得的两个点数中一个是另一个 1 的两倍的概率是 6 .
练习1
甲、乙两人玩“石头、剪子、
布”的游戏,求两人在一次比赛中做同
1 种手势(石头、石头) 的概率是 9
.
例2 如图,在边长为10cm的正方形中 挖去直角边长为8cm的两个等腰直角三角 形,现有粒子均匀的散落在正方形中, 9 则粒子落在中间带形区域的概率是 . 25

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计复习资料要点总结

概率论与数理统计复习资料要点总结

《概率论与数理统计》复习资料一、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之用。

考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。

1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。

5、理解随机变量的概念,了解(0—1)分布、二项分布、泊松分布的分布律。

6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。

7、掌握指数分布(参数 )、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。

9、会求分布中的待定参数。

10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。

11、掌握连续型随机变量的条件概率密度的概念及计算。

12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。

13、了解求二维随机变量函数的分布的一般方法。

14、会熟练地求随机变量及其函数的数学期望和方差。

会熟练地默写出几种重要随机变量的数学期望及方差。

15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。

会用独立正态随机变量线性组合性质解题。

17、了解大数定理结论,会用中心极限定理解题。

18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。

19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。

概率论复习重点与习题

概率论复习重点与习题

10)掌握正态分布及其性质:理解一般正态分布函
数与标准正态分布函数的关系,会查表求概率,正 态变量的线性变换仍然是正态变量.
m , : X ~ N
2
f x
1
2
e

x m 2
2 2
< x <
X ~ N 0, 1 :
x
1 2 e
x2 2
1)理解总体、简单随机样本、统计量、样本均值、 样本方差及样本矩的概念. 1 n 样本均值 X X i , n i 1 n n 1 1 2 2 2 2 样本方差 S [ X n X ] ( X X ) i i n 1 i 1 n 1 i 1 1 n 样本k 阶原点矩 Ak X i k k 1,2, n i 1 1 n 样本k 阶中心矩 Bk ( X i X ) k k 1,2, n i 1
(7)若随机事件 A 与 B 相互独立,则
A 与 B、A 与 B 、A 与 B 也相互独立.
(8)若
A1 , A2 ,An 是相互独立的事件,则
P ( A1 A2 An )
1 P ( A1 A2 An ) 1 P ( A1 ) P ( A2 ) P ( An )
A A , A A
2)掌握概率的定义及性质,会求常用的古典概型 中的 概率; ,则 (1) 若A1 , A2 ,是两两互不相容事件 P ( A1 A2 ) P ( A1) P ( A2 )
(2) 若A1 , A2 ,, An 是两两互不相容事件 ,则 P ( A1An )
7)掌握泊松分布;
P{X k }

k

概率论与数理统计复习资料要点总结--学生

概率论与数理统计复习资料要点总结--学生

概率论与数理统计复习资料要点总结--学⽣《概率论与数理统计》复习资料⼀、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之⽤。

考试内容以教学⼤纲和实施计划为准;注明“了解”的内容⼀般不考。

1、会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应⽤这些性质进⾏概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运⽤全概率公式与贝叶斯公式解题;掌握事件独⽴性的概念及性质。

5、理解随机变量的概念,掌握离散性随机变量分布率的性质及求法,掌握(0—1)分布、⼆项分布、泊松分布的分布律。

6、理解分布函数的概念及性质,理解并掌握连续型随机变量的概率密度及性质。

7、掌握指数分布(参数λ)、均匀分布、正态分布8、会求特殊的⼀维随机变量函数分布的分布律或概率密度。

9、会求分布中的待定参数。

会求区间的概率.10、会求边缘分布律、边缘密度函数,会判别随机变量的独⽴性。

11、掌握⼆维连续型随机变量未知参数的计算,落在区域概率的计算。

12、理解⼆维随机变量的概念,理解⼆维随机变量的联合分布函数及其性质,掌握⼆维离散型随机变量的联合分布律及其性质,掌握⼆维连续型随机变量的联合概率密度及其性质,并会⽤它们计算有关事件的概率。

13、会求⼆维离散型随机变量函数的分布率.14、掌握数学期望和⽅差的定义及性质,会熟练地求随机变量及其函数的数学期望和⽅差。

会熟练地默写出⼏种重要随机变量的数学期望及⽅差。

15、较熟练地求协⽅差与相关系数.16、会⽤独⽴正态随机变量线性组合性质解题。

17、理解总体、样本、简单随机样本、统计量及抽样分布概念,样本均值与样本⽅差及样本矩概念,掌握χ2分布(及性质)、t 分布、F 分布及其分位点概念。

18、理解正态总体样本均值与样本⽅差的抽样分布定理;会⽤矩估计⽅法来估计未知参数。

19、掌握极⼤似然估计法,⽆偏性与有效性的判断⽅法。

概率论与数理统计复习提纲

概率论与数理统计复习提纲

概率论与数理统计复习提纲第一章 概率论的基本概念一、事件间的关系及运算二、古典概型中概率的计算三、概率的公理化定义及性质-重点四、条件概率、乘法定理、全概率公式及贝叶斯公式-重点五、事件相互独立的定义及判断第二章 随机变量及其分布一、离散型随机变量及其分布律1. 分布律的定义2. 三种重要的离散型分布-重点:(0-1)分布,二项分布),(p n b ,泊松分布)(λπ.二、分布函数的定义及求解-重点:会求离散型或连续型随机变量的分布函数)(x F .三、连续型随机变量及其概率密度1. 概率密度的定义及性质-重点2. 三种重要的连续型分布-重点:均匀分布),(b a U ,指数分布,正态分布),(2σμN .注意:正态分布),(2σμN 与标准正态分布)1,0(N 的关系-引理;标准正态分布)1,0(N 的上α分位点αz 的定义。

第三章 多维随机变量及其分布一、二维随机变量的分布函数的定义及性质二、二维离散型随机变量的联合分布律及二维连续型随机变量的联合概率密度及性质-重点三、会求条件概率密度)/(/x y f X Y 和)/(/y x f Y X ;四、二维离散型随机变量的边缘分布律及二维连续型随机变量的边缘概率密度-重点五、相互独立的随机变量的判断方法-重点六、随机变量函数的分布1. 一维随机变量函数的分布-重点2. 二维随机变量函数的分布:Y X Z +=,{}Y X Z ,m ax =,{}Y X Z ,min =第四章 随机变量的数字特征一、会求随机变量及其函数的数学期望及方差、掌握期望和方差的性质-重点二、记住常见分布的数学期望及方差-重点三、协方差、相关系数、矩的概念及计算、不相关的定义第五章 大数定律及中心极限定理一、契比雪夫不等式及其等价形式二、中心极限定理:定理4、定理5、定理6第六章 样本及抽样分布一、统计量的定义及常用的统计量-重点二、)(2n χ分布、)(n t 分布、),(21n n F 分布的定义、构造及上α分位点的定义-重点三、来自正态总体的抽样分布(P158-P160):定理1、定理2、定理3为重点,了解定理4。

概率论与数理统计复习提纲

概率论与数理统计复习提纲一、 随机事件基本概念 1. 样本空间 2. 随机事件3. 样本空间S 是必然事件;Φ是不可能事件。

4. 随机事件的运算性质 二、 概率的定义及其运算 1. 概率的定义 2. 概率的性质3. 古典概率:1()({})lki l k A P A P e n S ====∑所包含的基本事件数中基本事件的总数4. 条件概率:()(),()0()P AB P A P A P A =>其中。

5. 事件的独立性:(1) 称A,B 两个事件相互独立,如果满足:()()()P AB P A P B = (2)称A,B,C 三个事件相互独立,如果满足()()()P A BP A P B = ()()()P AC P A P C = ()()()P BC P B P C = ()()()()P ABC P A P B P C =若满足前三个条件,则称A 、B 、C 两两独立。

6. 三个重要公式: (1) 乘法公式:(a) 设()0P A >,则有 ()(|)()P AB P B A P A =(b) 设()0P AB >,则有()(|)(|)()P ABC P C AB P B A P A = (c) 设121()0n P A A A ->,则有12121()(|)(nn nnP A AAP AA ---=(2)全概率公式 :设12,,,n B B B 为S 的一个划分,1122()(|)()(|)()(|)()n n P A P A B P B P A B P B P A B P B =+++,其中()0(1,2,,)i P B i n >= 。

(3)设随机试验E 的样本空间为S ,A 为E 的事件,12,,,n B B B 为S 的一个划分,()0P A >,()0(1,2,,)i P B i n >=,则有1(|)()(|)(|)()i i i nkkk P A B P B P B A P A B P B ==∑第二章 随机变量及其分布 一、基本概念1.随机变量 ():,()X X e e S X e R =∀∈∃∈实数 。

概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

概率论与数理统计复习提纲

第一章 随机事件及其概率一、随机事件及其运算1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。

2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生;②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生; ③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。

④对立关系(互逆):A ,事件A 发生事件A 必不发生,反之也成立; 互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。

)3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。

若AB =∅,则A B A B ⋃=+; ②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。

4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃ 对于n 个事件,有1111,nni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质:(1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki ik i iA P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如若),()(B P A P ≤则B A ⊂。

概率论与数理统计期末复习大纲

概率论与数理统计期末复习大纲第一章:掌握事件间的关系与运算、概率的公理化定义;掌握概率的性质及其计算;掌握条件概率的公式、乘法定理、全概率公式与贝叶斯公式、事件的独立性的概念、会用事件的独立性计算概率练习1-2:4,5练习1-3:6,14练习1-4:4,9,10练习1-5:8,9第二章:2.1节:掌握本节的定理例题结论;练习2-1:5,6,8,122.2节:掌握本节的定理例题结论;练习2-2:12.3节:掌握常用的离散型分布的密度函数,数学期望、方差及相关性质(重点:两点分布二项分布与泊松分布练习2-3:62.4节:掌握常用的连续型分布的密度函数,数学期望、方差及相关性质(尤其是正态分布);练习2-4:1,练习2-5:2,3,4,5第三章:3.1节:掌握本节的定理例题结论;练习3-15,6,73.2节:条件概率密度的计算不考,但要掌握公式,此外本节的定理例题结论要掌握;练习3-2:1,5,6,13,153.3节:掌握离散型随机向量函数的分布,随机向量函数的数学期望,及数学期望的性质;练习3-3:8,3.4节:掌握协方差相关系数的概念及性质;练习3-4:1,4,5第四章:练习4-1:4,5,64.3节:掌握2χ分布F分布t分布的构成及性质;练习4-3:5,84.4节:掌握定理4.1和4.2的结论第五章:5.1节:掌握关于无偏性、有效性的定义和例题;练习5-1:15.2节:会求最大似然估计、矩估计;练习5-2:25.3节:掌握置信区间公式;练习5-3:2,3,μ的假设检验;练习5-5:65.5节:单正态分布的关于)),σ(=2≤,(=≥,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ang 《概率论与数理统计》总复习提纲第一块 随机事件及其概率内 容 提 要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为E .1) 试验可在相同的条件下重复进行;2) 每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3) 每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间ω记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为w .(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为Ω)和不可能事件(记为Φ).2、事件的关系与运算(1)包含关系与相等:“事件A 发生必导致B 发生”,记为B A ⊂或A B ⊃;B A B A ⊂⇔=且A B ⊂.(2)互不相容性:φ=AB ;B A 、互为对立事件Ω=⋃⇔B A 且Φ=AB .(3)独立性:(1)设A B 、为事件,若有)()()(B P A P AB P =,则称事件A 与B 相互独立. 等价于:若)|()(A B P B P =(0)(>A P ).(2)多个事件的独立:设n A A A ,,,21 是n 个事件,如果对任意的)1(n k k ≤<,任意的n i i i k ≤<<<≤ 211,具有等式)()()()(2121k k i i i i i i A P A P A P A A A P =,称n 个事件n A A A ,,,21 相互独立.3、事件的运算(1)和事件(并):“事件A 与B 至少有一个发生”,记为B A ⋃.(2)积事件(交):“ 事件A 与B 同时发生”,记为B A ⋂或AB .(3) 差事件、对立事件(余事件):“事件发生A 而B 不发生”,记为A B -称为A 与B 的差事件;B B =-Ω称为B 的对立事件;易知:B A B A =-.4、事件的运算法则1) 交换律:A B B A ⋃=⋃,BA AB =;2) 结合律:C B A C B A ⋃⋃=⋃⋃)()(,)()(BC A C AB =;3) 分配律:BC AC C B A ⋃=⋃)(,))(()(C B C A C AB ⋃⋃=⋃;4) 对偶(De Morgan)律:B A B A =⋃,B A AB ⋃=,可推广k k k k k k k k A A A A ==,5、概率的概念 (1)概率的公理化定义:(了解)ΩΩ设是一个样本空间,为的某些子集组成F ()A P A ∀∈的一个事件域.,定义在上的一个集值函数满足:F.F1()0;P A ≥)非负性:2()1;P Ω=)规范性:123,,A A )可列可加性:设是可列个互不相容事件,则11()()n n n n P A P A ∞∞===∑().P A A 则称为事件的概率(2)频率的定义:(了解)事件A 在n 次重复试验中出现A n 次,则比值n n A称为事件A 在n 次重复试验中出现的频率,记为)(A f n ,即n n A f An =)(.(3)概率的统计定义:(了解)频率具有稳定性,即()n k f A n=随n 的增大越来越靠近某个常数p ,称p 为事件A 的(统计)概率.在实际问题中,当n 很大时,取()().n P A p f A =≈(4)古典概率(有限等可能型): 若试验的基本结果数为有限个,且每个事件发生的可能性相等,则(试验对应古典概型)事件A 发生的概率为: n A k n k A A P )()(==中样本点总数中所含样本点数Ω=.(5)几何概率(无限等可能型):(了解)若试验基本结果数无限,随机点落在某区域g 的概率与区域g 的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域Ω中随机地取一点落在区域A 中”这一事件A 发生的概率为:()A P A Ω的测度=的测度.(6)主观概率:(了解)人们根据经验对该事件发生的可能性所给出的个人信念.6、概率的基本性质(1)不可能事件概率为零: ()0P Φ=.(2)有限可加性:设n A A A ,,,21 是n 个两两互不相容的事件,即i jA A =Φ,(i j ≠)n j i ,2,1,,=,则有)(21n A A A P ⋃⋃⋃ =)(1A P +)()(2n A P A P ++ .(3)单调不减性:若事件,()()B A P B P A ⊃≥则,且()()()P B A P B P A -=-.(4) 互逆性:()1()P A P A =-且()1P A ≤.(5) 加法公式:对任意两事件B A 、,有=⋃)(B A P )()(B P A P +-)(AB P ;此性质可推广到任意n 个事件n A A A ,,,21 的情形.(6)可分性:对任意两事件B A 、,有)()()(B A P AB P A P +=,且()()()P A B P A P B ⋃≤+7、条件概率与乘法公式(1)条件概率:设B A 、是两个事件,若()0,P A >则)()()|(A P AB P A B P =称为事件A 发生的条件下事件B 发生的条件概率.(2)乘法公式:设()0,()0,P A P B >>则)|()()|()()(B A P B P A B P A P AB P ==.称为事件B A 、的概率乘法公式.其可推广成有即个的情形,详见书上第16页,其主要的意义在说明了前面的事件对后面的事件发生的概率产生影响.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ,),,2,1(n i =,则对任何事件B ∈F.,有 ∑=n i i i A B P A P B P 1)|()()(=称为全概率公式.应用背景:若影响某一事件(“结果”)发生有几种不同的情况(“原因”),那么计算结果的概率就要用全概率公式, 相当于其是由原因计算结果.(2)贝叶斯(Bayes)公式:设n A A A ,,,21 是Ω的一个划分,且0)(>i A P ),,2,1(n i =,则对任何事件B ∈F.,有),,1(,)|()()|()()|(1n j A B P A P A B P A P B A P ni ii j j j ==∑= 称为贝叶斯公式或逆概率公式.应用背景:若影响某一事件(“结果”)发生有几种不同的情况(“原因”),那么若告诉你结果已发生,那么要计算某一种情况(“原因”)发生的概率时,就要用到贝叶斯公式,相当其主要的应用是要由结果计算原因.9、贝努里(Bernoulli)概型(1)只有两个可能结果的试验称为贝努里试验,常记为E .E 也叫做“成功—失败”试验,“成功”的概率常用)(A P p =表示,其中A =“成功”.(2)把E 重复独立地进行n 次,所得的试验称为n 重贝努里试验,记为nE .(3)把E 重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为∞E .以上三种贝努里试验统称为贝努里概型.(4)n E 中成功k 次的概率是:)0(,)1(n k q p C p p C k n k k n k n k k n ≤≤=---其中1(01)p q p +=≤≤.疑 难 分 析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件.它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件A 与B 必有一个事件发生,且至多有一个事件发生,则A 、B 为互逆事件;如果两个事件A 与B 不能同时发生,则A 、B 为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形.作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个.3、两事件独立与两事件互斥两事件A 、B 独立,则A 与B 中任一个事件的发生与另一个事件的发生无关,这时)()()(B P A P AB P =生,这两事件的发生是有影响的,这时0)(,=Φ=AB P AB .可以用图形作一直观 解释.在图1.1左边的正方形中,图1.1)(21)(,41)(B P A P AB P ===,表示样本空间中两事件的独立关系,而在右边的正方形中,0)(=AB P ,表示样本空间中两事件的互斥关系.4、条件概率)|(B A P 与积事件概率)(AB P)(AB P 是在样本空间Ω内,事件AB 的概率,而)|(B A P 是在试验E 增加了新条件B 发生后的缩减的样本空间B Ω中计算事件A 的概率.虽然A 、B 都发生,但两者是不同的,一般说来,当A 、B 同时发生时,常用)(AB P ,而在有包含关系或明确的主从关系时,用)|(B A P .如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率.问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件.贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块 随机变量及其分布内 容 提 要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设Ω是随机试验的样本空间,如果对于试验的每一个可能结果Ω∈ω,都有唯一的实数)(ωX 与之对应,则称)(ωX 为定义在Ω上的随机变量,简记为X .随机变量通常用大写字母Z Y X 、、等表示.根据其取值的情形可以分成为⎧⎪⎨⎪⎩离散型随机变量(可能取值至多可列)随机变量连续型随机变量(可能取值充满某个区间)奇异型随机变量2、离散型随机变量及其分布列如果随机变量X 只能取有限个或可列个可能值,则称X 为离散型随机变量.如果X 的一切可能值为 ,,21x x ,并且X 取k x 的概率为k p ,则称),3,2,1}({ ===k x X P p k k 为离散型随机变量X 的概率函数(概率分布或分布律).也称分布列,常记为1212n n x x x p p p ⎛⎫ ⎪⎝⎭ 其中1,0=≥∑i i i p p .常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为(1,)((1,))X b p B p ,分布列为10,1,0,)1(}{1<<=-==-p k p p k X P k k 或 01~X q p ⎛⎫ ⎪⎝⎭(2)二项分布:记为(,)((,))X b n p B n p ,概率函数10,,,1,0,)1(}{<<=-==-p n k p p C k X P k n k k n (3)泊松分布,记为()(())X P πλλ,概率函数0,,1,0,!}{>===-λλλ k k e k X P k泊松定理: 设0>λ是一常数,n 是任意正整数,设λ=nnp ,则对于任一固定的非负整数k ,有!)1(lim k e p p C k k n n k n k n n λλ--∞→=-.根据泊松定理可得,当n 很大(大于50)且p 很小(一般是小于0.05)时,二项分布可以用泊松分布近似代替,即!)1(k e p p C k k n k k n λλ--≈-,其中np =λ3、分布函数及其性质 分布函数的定义:设X 为随机变量,x 为任意实数,函数)}({)(+∞<<-∞≤=x x X P x F称为随机变量X 的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性: )(1)(0+∞<<-∞≤≤x x F ; (2)单调性: 如果21x x <,则)()(21x F x F ≤;(3)右连续: 即)()0(x F x F =+;(4)极限性: 1)(lim ,0)(lim ==+∞→-∞→x F x F x x ;(5)完美性: )()(}{}{}{121221x F x F x X P x X P x X x P -=≤-≤=≤<.4、连续型随机变量及其分布如果对于随机变量X 的分布函数)(x F ,存在非负函数()p x ,使对于任一实数x ,有()()xF x p t dt -∞=⎰,则称X 为连续型随机变量.函数()p x 称为X 的概率密度函数,简称为概率密度.概率密度函数具有以下性质:(1)()0p x ≥; (2)()1p x dx +∞-∞=⎰; (3)2112{}()x x P x X x p t dt <≤=⎰; (4)0}{1==x X P ;(5)如果()p x 在x 处连续,则()()F x p x '=.常用连续型随机变量的分布:(1)均匀分布:记为),(~b a U X ,概率密度为1,,()0,a x b p x b a ⎧≤≤⎪=-⎨⎪⎩其它分布函数为⎪⎩⎪⎨⎧>≤≤--<=b x bx a a b a x a x x F ,1,,0)(性质:若a c d b <<<,则().d c P c X d b a -<<=- (2)指数分布:记为()X Exp θ,概率密度为/1,0,()0,x e x p x θθ-⎧>⎪=⎨⎪⎩其他, 分布函数为/1,0,()0,x e x F x θ-⎧->=⎨⎩其他. 无记忆性质:对于任意,0,s t >有{|}{}P X s t X s P X t >+>=>.(3)正态分布:记为),(~2σμN X ,概率密度为2()2(),x p x X μσ--=-∞<<+∞,相应的分布函数为 ⎰∞---=x x dt e x F 22)(21)(σμπ当1,0==σμ时,即)1,0(~N X 时,称X 服从标准正态分布.这时分别用)(x ϕ和)(x Φ表示X 的密度函数和分布函数,即⎰∞---=Φ=x t x dt e x e x 222221)(,21)(ππϕ 性质:① 若2(,)X N μσ,则其密度函数关于x μ=对称,从而1()()2P X P X μμ>=<=. ② )(1)(x x Φ-=-Φ.③ 若2(,)X N μσ,则(0,1)X N μσ-,即一般正态分布),(~2σμN X 的分布函数)(x F 与标准正态分布的分布函数)(x Φ有关系:)()(σμ-Φ=x x F .5、随机变量函数的分布 (1)离散型随机变量函数的分布设X 为离散型随机变量,其分布列为(表2-2):表2-2则)(X g Y =任为离散型随机变量,其分布列为(表2-3):表2-3i y 有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设X 为离散型随机变量,概率密度为()X p x ,则)(X g Y =的概率密度有两种方法可求.1)定理法:若)(x g y =在X 的取值区间内有连续导数)(x g ',且)(x g 单调时,)(X g Y =是连续型随机变量,其概率密度为⎩⎨⎧<<'=其它,0,)()]([)(βαy y h y h f y f XY .其中)()}.(),(max{)},(),(min{y h g g g g +∞-∞=+∞-∞=βα是)(x g 的反函数. 2)分布函数法:先求)(X g Y =的分布函数∑⎰∆=≤=≤=k y xY k dxx fy X g P y Y P y F )()(})({}{)(然后求 ()[()]Y Y p y F y '=. 结论:若2(,)X N μσ,则22(0)(,)aX b a N a b a μσ+≠+.疑 难 分 析1、随机变量与普通函数随机变量是定义在随机试验的样本空间Ω上,对试验的每一个可能结果Ω∈ω,都有唯一的实数)(ωX 与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间. 2、分布函数)(x F 的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数)(x F 左连续,但大多数书籍定义分布函数)(xF为右连续. 左连续与右连续的区别在于计算)(xF时,xX=点的概率是否计算在内.对于连续型随机变量,由于}{1==xXP,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于}{1≠=xXP,则定义左连续或右连续时)(xF值就不相同,这时,就要注意对)(xF定义左连续还是右连续.第三块 多维随机变量及其分布内 容 提 要基本内容:多维随机变量及其分布函数 二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布.1、二维随机变量及其联合分布函数 12(),(),,()(,,),n X X X F P ωωωΩ如果随机变量定义在同一概率空间上则称12(),(),,()n X X X X ωωωω=()(为n 维(n 元)随机变量或随机向量.n 当=2时,称为二维随机变量,常记为(,).X Y 联合分布函数的定义: 设12(),(),,()n XX X X n ωωωω=()()是维随机变量,,nx R n ∀∈则称元函数121122(,,,),,,)n n n F x x x P X x X x X x =≤≤≤(为随机向量12(),(),,()n X X X X ωωωω=()(的联合分布函数2,,n =特别时称为二维联合分布函数即(,)(,)F x y P X x Y y =≤≤二维联合分布函数具有以下基本性质:(1)单调性: ),(y x F 是变量x 或y 的非减函数; (2)有界性: 1),(0≤≤y x F ;(3)极限性:1),(0),(0),(0),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F , , ,,但注意(,)(),(,)()Y X F y F y F x F x +∞=+∞=,其中()X F x 与()Y F y 分别表示X 与Y 的分布函数.(4)连续性: ),(y x F 关于x 右连续,关于y 也右连续;(5)非负性: 对任意点),(),,(2211y x y x ,若2121,y y x x <<,则0),(),(),(),(11211222≥+--y x F y x F y x F y x F .上式表示随机点),(Y X 落在区域],[2121y Y y x X x ≤<≤<内的概率为:},{2121y Y y x X x P ≤<≤<.2、二维离散型随机变量及其联合分布列如果二维随机变量),(Y X 所有可能取值是有限对或可列对,则称),(Y X 为二维离散型随机变量.设),(Y X 为二维离散型随机变量,它的所有可能取值为,2,1,),,(=j i y x j i 将),2,1,(},{ ====j i p y Y x X P ij j i 或表3.1称为),(Y X 的联合分布列.表3.1联合分布列具有下列性质:(1)≥ij p ;(2)111=∑∑∞=∞=i j ijp.3、二维连续型随机变量及其概率密度函数如果存在一个非负函数),(y x p ,使得二维随机变量),(Y X 的分布函数),(y x F 对任意实数y x ,有⎰⎰∞-∞-=xydydx y x p y x F ),(),(,则称),(Y X 是二维连续型随机变量,称),(y x p 为),(Y X 的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)非负性 对一切实数y x ,,有0),(≥y x p ; (2)规范性1),(=⎰⎰+∞∞-+∞∞-dy dx y x p ;(3)在任意平面域D 上,),(Y X 取值的概率⎰⎰=∈Ddxdyy x p D Y X P ),(}),{(;(4)如果),(y x p 在),(y x 处连续,则),(),(2y x p y x y x F =∂∂∂.常用连续型随机变量的分布:(1) 设D 是平面上的一个有界区域,其面积为A .若二维随机变量(,)X Y 的联合概率密度为1,(,),(,)0,x y D f x y A ⎧∈⎪=⎨⎪⎩其它,则称(,)X Y 服从区域D 上的二维均匀分布.(2) 二元正态分布:其密度函数不要求背,具体的请见课本P67. 4、二维随机变量的边缘分布设),(Y X 为二维随机变量,则称},{)(+∞<<-∞≤=Y x X P x F X },{)(y Y X P y F Y ≤+∞<<-∞=分别为),(Y X 关于X 和关于Y 的边缘(边际)分布函数.当),(Y X 为离散型随机变量,则称),2,1(),2,1(1.1. ====∑∑∞=∞=j p p i p p i ij j j ij i 分别为),(Y X 关于X 和关于Y 的边缘分布列.当),(Y X 为连续型随机变量,则称⎰⎰+∞∞-+∞∞-==dxy x p y p dy y x p x p Y X ),()(,),()( 分别为),(Y X 关于X 和关于Y 的边缘密度函数. 性质:221212(,)(,,,,)X Y N μμσσρ,则211(,)XN μσ,222(,)Y N μσ.5、随机变量的独立性设),(y x F 及)()(y F x F Y X 、分别是),(Y X 的联合分布函数及边缘分布函数.如果对任何实数y x ,有)()(),(y F x F y x F Y X ⋅=则称随机变量X 与Y 相互独立.设),(Y X 为二维离散型随机变量,X 与Y 相互独立的充要条件是),2,1,(.. ==j i p p p j i ij .设),(Y X 为二维连续型随机变量,X 与Y 相互独立的充要条件是对几乎一切实数y x ,,有)()(),(y p x p y x p Y X =.性质:221212(,)(,,,,)X Y N μμσσρ,则0X Y ρ=⇔与相互独立.6、两个随机变量函数的分布设二维随机变量),(Y X 的联合概率密度函数为),(y x p ,),(Y X Z ϕ=是Y X ,的函数,则Z 的分布函数为dxdyy x p z F zy x Z ⎰⎰≤=),(),()(ϕ.对于一般的函数ϕ,求()Z F z 通过分布函数的方法,如第三章,习题29就是使用这种方法.但对于以下的几个,更加常用的是公式的方法. 若),(Y X 为连续型随机变量,概率密度函数为),(y x p .(1)Y X Z +=的分布:dyy y z p dx x z x p z p Z ⎰⎰+∞∞-+∞∞--=-=),(),()(.特别地,若X 与Y 相互独立,则()()()()().Z X Y X Y p z p x p z x dx p z y p y dy +∞+∞-∞-∞=-=-⎰⎰(2)Z X Y =-的分布:()(,).Z p z p z y y dy +∞-∞=+⎰特别地,若X 与Y 相互独立,则()()().Z X Y p z p z y p y dy +∞-∞=+⎰(3)Z XY =的分布:1()(,).||Z zp z p x dx x x+∞-∞=⎰特别地,若X 与Y 相互独立,则1()()().||Z X Y zp z p x p dx x x+∞-∞=⎰(4)Y XZ =的分布若),(Y X 为连续型随机变量,概率密度函数为),(y x p ,则Z 的概率函数为:⎰+∞∞-=dyy yz p y z p Z ),()(.性质:①若(,),(,),(,)X b n p Y b m p X Y X Y b n m p ++且与相互独立,则.②若1212(),()().XY X Y X Y πλπλπλλ++且与相互独立,则③若221122(,),(,)XN YN μσμσ,且X 与Y 相互独立的,则22221212(,).X bY cN a b c a b μμσσ+++++a7.最大值与最小值的分布 1,,n X X n 设是相互独立的个随机变量,则1()()(max(,,))Y n F y P Y y P X X y =≤=≤1()ni i F y ==∏1()()(min(,,))Y n F y P Y y P X X y =≤=≤11(1())n i i F y ==--∏其中的()i F y 表示的是随机变量i X 的分布函数.疑 难 分 析1、事件},{y Y x X ≤≤表示事件}{x X ≤与}{y Y ≤的积事件,为什么},{y Y x X P ≤≤不一定等于}{}{y Y P x X P ≤⋅≤?如同仅当事件B A 、相互独立时,才有)()()(B P A P AB P ⋅=一样,这里},{y Y x X P ≤≤依乘法原理}|{}{},{x X y Y P x X P y Y x X P ≤≤⋅≤=≤≤.只有事件}{x X P ≤与}{y Y P ≤相互独立时,才有}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,因为}{}|{y Y P x X y Y P ≤=≤≤.2、二维随机变量),(Y X 的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由)|()(),(|x y p x p y x p X Y X ⋅=知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果Y X 、相互独立,则}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤,即)()(),(y F x F y x F Y X ⋅=.说明当Y X 、独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量Y X 、相互独立,是指组成二维随机变量),(Y X 的两个分量Y X 、中一个分量的取值不受另一个分量取值的影响,满足}{}{},{y Y P x X P y Y x X P ≤⋅≤=≤≤.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有)()()(B P A P AB P ⋅=.两者可以说不是一个问题.但是,组成二维随机变量),(Y X 的两个分量Y X 、是同一试验E 的样本空间上的两个一维随机变量,而B A 、也是一个试验1E 的样本空间的两个事件.因此,若把“x X ≤”、“y Y ≤”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的.第四块 随机变量的数字特征内 容 提 要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量X 的分布列为 ,2,1,}{===k p x X P k k ,如果级数∑∞=1k kk p x 绝对收敛,则称级数的和为随机变量X 的数学期望.设连续型随机变量X 的密度函数为)(x p ,如果广义积分⎰+∞∞-dxx xp )(绝对收敛,则称此积分值⎰+∞∞-=dxx xp X E )()(为随机变量X 的数学期望.数学期望有如下性质:(1)设C 是常数,则C C E =)(; (2)设C 是常数,则)()(X CE CX E =;(3)若21X X 、是随机变量,则)()()(2121X E X E X X E +=+; 对任意n 个随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E +++=+++ ;(4)若21X X 、相互独立,则)()()(2121X E X E X X E =; 对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X E X E X E X X X E =.2、随机变量函数的数学期望(1)设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k ,则X 的函数)(X g Y =的数学期望为2,1,)()]([1==∑∞=k p x g x g E k k k ,式中级数绝对收敛.设连续型随机变量X 的密度函数为)(x p ,则X 的函数)(X g Y =的数学期望为⎰+∞∞-=dxx p x g x g E )()()]([,式中积分绝对收敛.(2)若二维离散型随机变量(,)X Y 的联合分布列为3、随机变量的方差设X 是一个随机变量,则})]({[)()(2X E X E X Var X D -==称为X 的方差.)()(X X D σ=称为X 的标准差或均方差.计算方差也常用公式22)]([)()(X E X E X D -=. 方差具有如下性质:(1)设C 是常数,则0)(=C D ;(2)设C 是常数,则)()(2X D C CX D =; (3)22()()()2(())(())D aX bY a D X b D Y abE X E X Y E Y ±=+±--=22()()2cov(,)a D X b D Y ab X Y +±=22()()2a D X b D Y ab ρ+±. 特别地,若X Y 与相互独立,则22()()()D aX bY a D X b D Y ±=+.更加一般地,对任意n 个相互独立的随机变量n X X X ,,,21 ,有)()()()(2121n n X D X D X D X X X D +++=+++ ;(4)0)(=X D 的充要条件是:存在常数C ,使))((1}{X E C C X P ===. 4、几种常见分布的数学期望与方差:(1)~(1,),.(),()(1)X B p E X p D X p p ==-; (2))1()(,)().,(~p np X D np X E p n B X -==; (3)~().(),()X P E X D X λλλ==;(4)12/)()(,2/)()().,(~2a b X D b a X E b a U X -=+=; (5)()XExp θ,则2(),()E X D X θθ==;(6)22)(,)().,(~σμσμ==XDXENX.6、协方差与相关系数随机变量),(YX的协方差为)]}()][({[),cov(YEYXEXEYX--=.它是1+1阶混合中心矩,有计算公式:)()()(),cov(YEXEXYEYX-=.随机变量),(YX的相关系数为DYDXYXXY),cov(=ρ.相关系数具有如下性质:(1)1≤XYρ;(2)⇔=1XYρ存在常数ba,,使}{baXYP+==1,即X与Y以概率1线性相关;(3)若YX,独立,则0=XYρ,即YX,不相关.反之,不一定成立.(4)(Schwarz inequality) 设(X,Y)是二维随机变量,若X与Y的方差都存在,则2[(,)]Cov X Y DX DY≤⋅疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性.但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义.例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数XY ρ反映了随机变量X 和Y 之间的什么关系?相关系数XY ρ是用随机变量X 和Y 的协方差和标准差来定义的,它反映了随机变量X 和Y 之间的相关程度.当1=XY ρ时,称X 与Y 依概率1线性相关;当0=XY ρ时,称X 与Y 不相关;当10<<XY ρ时,又分为强相关与弱相关.4、两个随机变量X 与Y 相互独立和不相关是一种什么样的关系?(1)若X 、Y 相互独立,则X 、Y 不相关.因为X 、Y 独立,则)()()(Y E X E XY E =,故0)()()(),cov(=--=Y E X E XY E Y X ,从而0=XY ρ,所以X 、Y 不相关.(2)若X 、Y 不相关,则X 、Y 不一定独立.如:⎩⎨⎧≤+=.,0,1,/1),(22 其它 y x y x p π 因为0)()(==Y E X E ,4/1)()(==Y D X D 0,0),cov(==XY Y X ρ,知X 、Y 不相关.但π/12)(2x x p X -=,π/12)(2y y p Y -=,)()(),(Y p x p y x p y X ≠,知X 、Y 不独立.(3)若X 、Y 相关,则X 、Y 一定不独立.可由反证法说明.(4)若X 、Y 不相关,则X 、Y 不一定不相关.因为X 、Y 不独立,)()()(Y E X E XY E ≠,但若0)()()(===XY E Y E X E 时,可以有0=XY ρ,从而可以有X 、Y 不相关.但是,也有特殊情况,如),(Y X 服从二维正态分布时,X 、Y 不相关与X 、Y 独立是等价的.第五块 大数定律和中心极限定理内 容 提 要基本内容:切比雪夫(Chebyshev )不等式,切比雪夫大数定律,伯努里(Bernoulli )大数定律,辛钦(Khinchine )大数定律,棣莫弗-拉普拉斯(De Moivre-Laplace )定理,列维-林维德伯格(Levy-Lindberg)定理.1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式 22}{εσεμ≤≥-X P 或221}{εσεμ-><-X P 成立.2、大数定律(了解)(1)贝努利大数定律:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp n n P A n .贝努利大数定理给出了当n 很大时,A 发生的频率/A n n 依概率收敛于A 的概率,证明了频率的稳定性.(2)辛钦大数定律:设 ,,,,21n X X X 相互独立,服从同一分布的随机变量序列,且()k E X μ=(1,2,k =),则对任意给定的0>ε,有11lim {||} 1.nk n k P X n με→∞=-<=∑3、中心极限定律(1)林德贝格-勒维中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2 =≠=i X D i σ.则对任意实数x ,随机变量σμσμn n X n X Y n i i n i i n ∑∑==-=-=11)(的分布函数)(x F n 满足⎰∞--∞→∞→=≤=x t n n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:(了解)设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2 =≠=i X D i i σ.记 ∑==n i i nB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→-∑=++n i i i n X E B δδμ, 则随机变量n n i i n i i n i i n i i n i i n B X X D X E X Z ∑∑∑∑∑=====-=-=11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰∑∑∞--==∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n n i i n i i n n n dt e x B X x F 2/11221lim )(lim πμ.当n 很大时,),(~),1,0(~12.1.∑∑==n i n i n i i n B N X N Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有 ⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于 1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析【例3】一本书共有100万个印刷符号.排版时每个符号被排错的概率为0.0001,校对时每个排版错误被改正的概率为0.9,求校对后错误不多于15个的概率.分析:根据题意构造一个独立同分布的随机变量序列,具有有限的数学期望和方差,然后建立一个标准化的随机变量,应用中心极限定理求得结果.解:设随机变量⎩⎨⎧=.,0,1 其它 错个印刷符号校对后仍印 第n X n 则)1(≥n X n 是独立同分布随机变量序列,有5101.00001.0}1{-=⨯===n X P p .作)10(,61==∑=n X Y n k K n ,nY 为校对后错误总数.按中心极限定理(德—拉定理),有 )58.1(]))101(1010/[5(15}15{553Φ≈-Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤--npq np npq np Y P Y P n n9495.0=.。

相关文档
最新文档