数学悖论与三次数学危机

合集下载

数学史三次危机

数学史三次危机

无理数的发现——第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。

当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。

他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。

这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。

到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。

他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。

欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。

今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。

第一次数学危机对古希腊的数学观点有极大冲击。

这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。

危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!无穷小是零吗?——第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。

1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。

他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。

(整理)数学史上的三次危机.

(整理)数学史上的三次危机.

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。

因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。

它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。

这是数学史上的一个里程碑。

毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。

后来,又发现数轴上还存在许多点也不对应于任何有理数。

因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。

例如, ,22,8,6,2等都是无理数。

无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。

事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。

第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。

这种状态一直保持到笛卡儿解析几何的诞生。

中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。

即算术阶段。

希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。

在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。

总之,第一次数学危机是人类文明史上的重大事件。

无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。

首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。

浅谈数学发展史中的三次危机

浅谈数学发展史中的三次危机

浅谈数学发展史中的三次危机摘要:在数学发展的历史长河中,危机与发展是并存的。

在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。

第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。

第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。

罗素悖论的发现,导致了数学史上的第三次危机。

为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。

归根结底,导致三次危机的原因,是由于人的认识。

关键词:危机;万物皆数;无穷小;分析方法;集合一、前言历史上,数学的发展又顺利也有曲折。

打的挫折也可以叫做危机。

危机也意味着挑战,危机的解决就意味着进步。

所以,危机往往是数学发展的先导。

数学发展史上有三次数学危机。

每一次危机,都是数学的基本部分受到质疑。

实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。

二、无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。

当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。

他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。

这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。

到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。

他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。

数学史上的三次危机及其解决

数学史上的三次危机及其解决

论数学史上的三次数学危机学号:100521026 姓名:付东群摘要:数学发展从来不是完全直线,而是常常出现悖论。

历史上一连串的数学悖论动摇了人们对数学的可靠性的信仰,数学史上曾经发生了三次数学危机。

数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。

危机的产生、解决,又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。

关键词:数学危机;无理数;微积分;集合论;悖论;引言:数学史不仅仅是单纯的数学成就的编年记录。

数学的发展决不是一帆风顺,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至面临危机。

数学史也是数学家们克服困难和战胜的斗争记录。

无理数的发现,微积分和非欧集合的创立,乃至费马定理的证明......这样的例子在数学史上不胜枚举,他们可以帮助人们了解数学创造的完美过程。

对这种创造的过程的了解则可以使我们从前人的探索与奋斗中西区教益,获得鼓舞和增强信心。

第一次数学危机(无理数的产生)第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。

这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。

(一)、危机的起源毕达哥拉斯学派认为“万物皆数”,这个数就是整数,他们确定数学的目的是企图通过数的奥秘来探索宇宙的永恒真理,并且认为宇宙间的一切现象都能归结为整数或整数之比。

后来这个学派发现了毕达哥拉斯学定理(勾股定理),他们认为这是一件很了不起的事,然而了不起的事后面还有更了不起的事。

毕达哥拉斯学派的希帕索斯从毕达哥拉斯定理出发,发现边长为1的正方形对角线不能用整数来表示,这就产生了这个无理数。

这无疑对“万物皆数”产生了巨大的冲击,由此引发了第一次数学危机【1】。

(二)、危机的解决由无理数引发的第一次数学危机对古希腊的数学观点产生了极大的冲击。

悖论与三次数学危机

悖论与三次数学危机

数学悖论、三次危机及其深刻影响【摘要】“希帕索斯悖论”导致数学史上的第一次危机,引导人们发现与认识无理数,促使公里几何学、逻辑学的诞生以及公理体系的形成;“贝克莱悖论”导致数学史上第二次危机,使人们认识到当时,无论是牛顿还是莱布尼茨所提出的微积分理论其实并不严格,促使柯西等数学家将极限的定义严格化,造就了18世纪分析学的辉煌;“罗素悖论”发现,动摇了当时的数学基础——集合论,从根本上危及了整个数学体系的确定性和严密性,导致了数学史上第三次危机。

【关键词】数学史;数学悖论;数学危机引言谈及数学,总会给人以严谨、严密,逻辑性强的特点。

然而,数学的这些特点并非从古至今一成不变,而是通过一次次的修正,补充才逐渐形成。

纵观数学科学发展的历史过程,我们不难体会到:数学的发展也和其他事物的发展一样, 不可能是笔直的, 它也经历了曲折的发展过程。

本文就旨在通过回顾、讨论数学史三次危机的产生、解决,从而分析悖论对数学发展的意义与影响。

一、“希帕索斯(Hippasus)悖论”与第一次数学危机(一)背景大约在公元前五世纪,古希腊数学家毕达哥拉斯(pythagoras)创建的毕达哥拉斯学派是一个从事政治、数学、哲学和宗教研究活动具有神秘主义色彩的团体。

同时,这一学派在哲学与数学方面的研究成果突出,在当时占有统治地位。

在哲学上,毕达哥拉斯跟当时的其他希腊思想家一样,也热衷于探索世界构成的本原问题。

与其他哲学学派不同,毕达哥拉斯学派宣称万物的本原不是自然物质,而是数。

由此提出了“数本原说”,主张“整个字宙间的一切现象,都可归结为整数和整数之比”。

在数学上,毕达哥拉斯学派证明了著名的毕达哥拉斯定理(即勾股定理)。

就是指直角三角形三边有如下关系的一个命题:设一直角三角形两直角边长分别为a、b,斜边边长为c,则有如下关系式:222a b c+=(二)“希帕索斯悖论”(即危机的产生和实质)毕达哥拉斯学派在所提出“宇宙间的一切现象都能归结为整数或整数之比”的哲学信条不久,就受到了严重的挑战。

《数学史上的三次危机》课件

《数学史上的三次危机》课件

Three crises in Mathematics
第一次危机 first
出现
1
希帕索斯发 现:两直角边都 为1的等腰直角三 角形,其斜边的 长度是上帝都不 知道的数。这是 人类数学史上发 现的第一个无理 数。
2 a ? b
2 因为这一背
经离道的发现, 希帕索斯被扔 到海里淹死了。
4 毕达哥拉斯认定类似于“根号
2
第一个图形 反比例函数图形
第二个图形 双曲线的图形
Three crises in Mathematics
第二次危机 Second
背景 2、无穷小与0
3 中国庄周所著《庄子》
一书的《天下篇》中, 也记有“一尺之棰,日 取其半,万世不竭”。
5
而现在,我们高中生都 知道,无穷小不是一个实数, 而是一个以0为极限的变量。 无穷小不一定是0,但0是 无穷小,不仅如此,0还是 实数内唯一一个无穷小。
Three crises in Mathematics
第二次危机
Second
出现
2 无穷小量的概念对于
微积分理论乃至高等数学 的发展有着基石性的作用, 当时人们的认知是不严谨 和不完整的,牛顿和莱布 尼兹纷纷采用“先用了再 说”的方式进行研究,才 照成了第二次数学危机。
1
1734 年 , 英 国 哲 学 家 、 大 主 教贝克莱把矛头指向微积分的基 础--无穷小的问题。他指出微积分 理论在推导过程中存在逻辑上的 自相矛盾:“无穷小量是一个幽 灵,说它是0吧,又可以做为分母, 不是0吧,又可以舍去。总之看起 来是0又不是0。与其相信无穷小 的灵魂,还不如相信上帝”。微 积分的合理性就这样遭到严重质 疑,险些要把整个微积分理论推 翻
4

数学史上的三次危机

数学史上的三次危机张清利第一次数学危机在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。

因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。

它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。

这是数学史上的一个里程碑。

毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。

后来,又发现数轴上还存在许多点也不对应于任何有理数。

因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。

例如, ,22,8,6,2等都是无理数。

无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。

事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。

第一次数学危机表明,当时希腊的数学已经发展到这样的阶段:1. 数学已由经验科学变为演绎科学;2. 把证明引入了数学;3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有更加重要的地位。

这种状态一直保持到笛卡儿解析几何的诞生。

中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。

即算术阶段。

希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。

在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。

总之,第一次数学危机是人类文明史上的重大事件。

无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。

首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。

史上数学三大危机简介

---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。

相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。

罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。

他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。

由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。

毕达哥拉斯学派所说的数仅指整数。

而一切数均可表成整数或整数之比则是这一学派的数学信仰。

1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。

毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。

希帕索斯的发现导致了数学史上第一个无理数的诞生。

小小的出现,却在当时的数学界掀起了一场巨大风暴。

它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。

悖论的例子有关数学三次危机


• 二分法悖论 • 这也是芝诺提出的一个悖论:当一个物体行进一段距离 这也是芝诺提出的一个悖论: 到达D,它必须首先到达距离D的二分之一,然后是四 到达 ,它必须首先到达距离 的二分之一, 的二分之一 分之一、八分之一、十六分之一、 分之一、八分之一、十六分之一、以至可以无穷地划分 下去。因此,这个物体永远也到达不了D。这些结论在 下去。因此,这个物体永远也到达不了 。 实践中不存在,但是在逻辑上无可挑剔。 实践中不存在,但是在逻辑上无可挑剔。
•NO.7 罗素悖论 1. 理发师悖论:某乡村有一位理发师,一天他宣布:只给不 理发师悖论:某乡村有一位理发师 一天他宣布: 理发师, 自己刮胡子的人刮胡子。这里就产生了问题: 自己刮胡子的人刮胡子。这里就产生了问题:理发师给不 给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子 给自己刮胡子?如果他给自己刮胡子, 的人,按照他的原则,他不能给自己刮胡子; 的人,按照他的原则,他不能给自己刮胡子;如果他不给 自己刮胡子,他就是不自己刮胡子的人,按照他的原则, 自己刮胡子,他就是不自己刮胡子的人,按照他的原则, 他就应该给自己刮胡子。这就产生了矛盾。 他就应该给自己刮胡子。这就产生了矛盾。
• 还有两个芝诺悖论 • “飞矢不动”:意思是箭在运动过程中的任一瞬时间 飞矢不动” 必在一确定位置上,因而是静止的, 必在一确定位置上,因而是静止的,所以箭就不能处 于运动状态。 于运动状态。 • “操场或游行队伍”:A、B两件物体以等速向相反方 操场或游行队伍” 、 两件物体以等速向相反方 向运动。从静止的c来看 比如说A、 都在 来看, 都在1小时内移 向运动。从静止的 来看,比如说 、B都在 小时内移 动了2公里 可是从A看来 公里, 看来, 小时内就移动了4 动了 公里,可是从 看来,则B在1小时内就移动了 在 小时内就移动了 公里。运动是矛盾的,所以运动是不可能的。 公里。运动是矛盾的,所以运动是不可能的。

最新第11讲 三次数学危机与悖论欣赏

___________________________ _______________________
历史上,数学的发展有顺利也有曲折。大 的挫折也可以叫做危机。危机也意味着挑战, 危机的解决就意味着进步。所以,危机往往 是数学发展的先导。数学发展史上有三次数 学危机。每一次数学危机,都是数学的基本 部分受到质疑。实际上,也恰恰是这三次危 机,引发了数学上的三次思想解放,大大推 动了数学科学的发展。
___________________________ _______________________
一、第一次数学危机
第一次数学危机是由 2 不能写成 两
个整数之比引发的,我们在第一章已专 门讨论过,现再简要回顾一下。
___________________________ _______________________
___________________________ _______________________
1.危机的引发 1)牛顿的“无穷小”
牛顿的微积分是一项划时代的科学成就,蕴 含着巨大的智慧和创新,但也有逻辑上的问题。 我们来看一个例子。
微积分的一个来源,是想求运动物体在某一 时刻的瞬时速度。在牛顿之前,只能求一段时间 内的平均速度,无法求某一时刻的瞬时速度。
这一危机发生在公元前5世纪,危机 来源于:当时认为所有的数都能表示为整 数比,但突然发现 2 不能表为整数比。
其实质是: 2 是无理数,全体整数之比
构成的是有理数系,有理数系需要扩充,需 要添加无理数。
___________________________ _______________________
S
1
t
gt0
g(t) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学发展从来不是完全直线式的,而是常常出现悖论。

历史上一连串的数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。

数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。

危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。

数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。

悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1] 。

数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。

数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。

本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。

公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2] 。

他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比),除此之外不再有别的数,即是说世界上只有整数或分数。

毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3] ,也就是我们所说的勾股定理。

勾股定理指出直角三角形三边应有如下关系,即 a2 =b2 +c 2,a 和 b 分别代表直角三角形的两条直角边, c 表示斜边。

然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。

他发现边长相等的正方形其对角线长并不能用整数或整数之比来表示。

假设正方形边长为 1 ,并设其对角线长为 d ,依勾股定理应有 d2 =12 +12 =2,即 d2 =2 ,那么 d 是多少呢?显然 d 不是整数,那它必是两整数之比。

希伯斯花了很多时间来寻找这两个整数之比,结果没找着,反而找到了两数不可通约性的证明[4],用反证法证明如下:设 Rt△ABC,两直角边为 a=b,则由勾股定理有 c2 =2a2 ,设已将 a 和 c 中的公约数约去,即 a、c 已经互素,于是 c 为偶数, a 为奇数,不妨令 c=2m,则有(2m) 2 =2a2,a2 =2m2,于是 a 为偶数,这与前面已证a 为奇数矛盾。

这一发现历史上称为毕达哥拉斯悖论。

毕达哥拉斯悖论的出现,对毕达哥拉斯学派产生了沉重的打击,数“即万物”的世界观被极大的动摇了,有理数的尊崇地位也受到了挑战,因此也影响到了整个数学的基础,使数学界产生了极度的思想混乱,历史上称之为第一次数学危机。

第一次数学危机的影响是巨大的,它极大的推动了数学及其相关学科的发展。

首先,第一次数学危机让人们第一次认识到了无理数的存在,无理数从此诞生了,之后,许多数学家正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论[5] ,为数学分析的发展奠定了基础。

再者,第一次数学危机表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系。

欧氏几何就是人们为了消除矛盾,解除危机,在这时候应运而生的[6]。

第一次数学危机极大地促进了几何学的发展 ,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。

公元 17 世纪,牛顿和莱布尼兹创立了微积分,微积分能提示和解释许多自然现象,它在自然科学的理论研究和实际应用中的重要作用引起人们高度的重视。

然而,因为微积分才刚刚建立起来,这时的微积分只有方法,没有严密的理论作为基础,许多地方存在漏洞,还不能自圆其说。

例如牛顿当时是这样求函数 y=x n 的导数的[7]:(x+△x) n=x n+n ·x n-1 · △x+ [n ( n+1 ) /2] ·x n-2 · (△x)2 +……+(△x) n ,然后用自变量的增量△ x 除以函数的增量△y ,△y/△x= [ ( x +△x) n-x n ]/△x=n ·x n-1+ [n ( n-1 )/2] ·x n-2 · △x+……+n·x· ( △x) n-2 +(△x) n-1 ,最后,扔掉其中含有无穷小量△ x 的项,即得函数 y=x n 的导数为 y′=nx n-1。

对于牛顿对导数求导过程的论述,哲学家贝克莱很快发现了其中的问题,他一针见血的指出:先用△x 为除数除以△y ,说明△x 不等于零,而后又扔掉含有△ x 的项,则又说明△x 等于零,这岂不是自相矛盾吗?因此贝克莱嘲弄无穷小是逝“去的量的鬼魂” ,他认为微积分是依靠双重的错误得到了正确的结果,说微积分的推导是分“明的诡辩” 。

[8]这就是著名的“贝克莱悖论”。

确实,这种在同一问题的讨论中,将所谓的无穷小量有时作为 0 ,有时又异于 0 的做法,不得不让人怀疑。

无穷小量究竟是不是零?无穷小及其分析是否合理?贝克莱悖论的出现危及到了微积分的基础,引起了数学界长达两个多世纪的论战,从而形成了数学发展史中的第二次危机。

第二次数学危机的出现,迫使数学家们不得不认真对待无穷小量△ x ,为了克服由此引起思维上的混乱,解决这一危机,无数人投入大量的劳动。

在初期,经过欧拉、拉格朗日等人的努力,微积分取得了一些进展;从 19 世纪开始为彻底解决微积分的基础问题,柯西、外尔斯特拉斯等人进行了微积分理论的严格化工作。

微积分内在的根本矛盾,就是怎样用数学的和逻辑的方法来表现无穷小,从而表现与无穷小紧密相关的微积分的本质。

在解决使无穷小数学化的问题上,出现了罗比达公理:一个量增加或减少与之相比是无穷小的另一个量,则可认为它保持不变。

而柯西采用的ε-δ方法刻画无穷小,把无穷小定义为以 0 为极限的变量,沿用到今,无穷小被极限代替了。

后来外尔斯特拉斯又把它明确化,给出了极限的严格定义,建立了极限理论,这样就使微积分建立在极限基础之上了。

极限的ε-δ定义就是用静态的ε-δ刻画动态极限,用有限量来描述无限性过程,它是从有限到无限的桥梁和路标,它表现了有限与无限的关系,使微积分朝科学化、数学化前进了一大步。

极限理论的建立加速了微积分的发展,它不仅在数学上,而且在认识论上也有重大的意义。

后来在考查极限理论的基础中,经过代德金、康托尔、海涅、外尔斯特拉斯和巴门赫等人的努力,产生了实数理论;在考查实数理论的基础时,康托尔又创立了集合论。

这样有了极限理论、实数理论和集合论三大理论后,微积分才算建立在比较稳固和完美的基础之上了,从而结束了二百多年的纷乱争论局面,进而开辟了下一个世纪的函数论的发展道路。

在前两次数学危机解决后不到 30 年即 19 世纪 70 年代,德国数学家康托尔创立了集合论,集合论是数学上最具革命性的理论 ,初衷是为整个数学大厦奠定坚实的基础。

1900 年,在巴黎召开的国际数学家会议上,法国大数学家庞加莱兴奋的宣布[9]:我“们可以说,现在数学已经达到了绝对的严格。

”然而,正当人们为集合论的诞生而欢欣鼓舞之时 ,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安 ,其中英国数学家罗素 1902 年提出的悖论影响最大, 罗“素悖论”的内容是这样的:设集合 B 是一切不以自身为元素的集合所组成的集合,问:B 是否属于 B?若 B 属于 B,则 B 是 B 的元素,于是 B 不属于自身,即 B 不属于 B ;反之,若 B 不属于 B ,则 B 不是 B 的元素,于是 B 属于自己,即 B 属于 B。

这样,利用集合的概念,罗素导出了——集合 B 不属于 B 当且仅当集合 B 属于 B 时成立的悖论。

之后,罗素本人还提出了罗素悖论的通俗版本,即理发师悖论[10] 。

理发师宣布了这样一条原则:他只为村子里不给自己刮胡子的人刮胡子。

那么现在的问题是,理发师的胡子应该由谁来刮?。

如果他自己给自己刮胡子,那么他就是村子里给自己刮胡子的人,根据他的原则,他就不应给自己刮胡子;如果他不给自己刮胡子,那么他就是村子里不给自己刮胡子的人,那么又按他的原则他就该为自己刮胡子。

同样有产生了这样的悖论:理发师给自己刮胡子当且仅当理发师不给自己刮胡子。

这就是历史上著名的罗素悖论。

罗素悖论的出现,动摇了数学的基础,震撼了整个数学界,导致了第三次数学危机。

罗素悖论的出现,动摇了本来作为整个数学大厦的基础——集合论,自然引起人们对数学基本结构有效性的怀疑。

罗素悖论的高明之处,还在于它只是用了集合的概念本身,而并不涉及其它概念而得出来的,使人们更是无从下手解决。

罗素悖论导致的第三次数学危机,使数学家们面临着极大的困难。

数学家弗雷格在他刚要出版的《论数学基础》卷二末尾就写道[11]:对“一位科学家来说,没有一件比下列事实更令人扫兴:当他工作刚刚完成的时候,它的一块基石崩塌下来了。

在本书的印刷快要完成时,罗素先生给我的一封信就使我陷入这种境地。

”可见第三次数学危机使人们面临多么尴尬的境地。

然而科学面前没有人会回避,数学家们立即投入到了消除悖论的工作中,值得庆幸的是,产生罗素悖论的根源很快被找到了,原来康托尔提出集合论时对“集合”的概念没有做必要的限制,以至于可以构造“一切集合的集体”这种过大的集合而产生了悖论。

为了从根本上消除集合论中出现的各种悖论,特别是罗素悖论,许多数学家进行了不懈的努力。

如以罗素为主要代表的逻辑主义学派[12] ,提出了类型论以及后来的曲折理论、限制大小理论、非类理论和分支理论,这些理论都对消除悖论起到了一定的作用;而最重要的是德国数学家策梅罗提出的集合论的公理化,策梅罗认为,适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性,他首次提出了集合论公理系统,后经费兰克尔、冯·诺伊曼等人的补充形成了一个完整的集合论公理体系( ZFC 系统) [5],在 ZFC 系统中,“集合”和“属于”是两个不加定义的原始概念,另外还有十条公理。

ZFC 系统的建立,使各种矛盾得到回避,从而消除了罗素悖论为代表的一系列集合悖论,第三次数学危机也随之销声匿迹了。

尽管悖论消除了,但数学的确定性却在一步一步丧失,现代公理集合论一大堆公理是在很难说孰真孰假,可是又不能把它们一古脑消除掉,它们跟整个数学是血肉相连的,所以第三次危机表面上解决了,实质上更深刻地以其它形式延续[7] 。

相关文档
最新文档