直线一级倒立摆建模

直线一级倒立摆建模
直线一级倒立摆建模

一、直线一级倒立摆建模

根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:

倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:

1) 非线性

倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。也可以利用非线性控制理论对其进行控制。倒立摆的非线性控制正成为一个研究的热点。

2) 不确定性

主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3) 耦合性

倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4) 开环不稳定性

倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。由于机构的限制,如运动模块行程限制,电机力矩限制等。为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:

(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;

(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;

(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。为此,设调整时间小2 s,峰值时间小于0.5 s. 对小车进行受力分析

N

mg p

..

I

X

p

N F

..

x

M

.

b x

上图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车和摆杆的相互作用力的水平和垂直方向的分量。在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,所以矢量方向定义如图2所示,图示方向为矢量的正方向。其中: M 小车质量 m 摆杆质量 b 小车摩擦系数

L 摆杆转动轴心到杆质心的长度 I 摆杆惯量

F 加在小车上的力 x 小车位置

φ 摆杆与垂直向上方向的夹角

θ 摆杆与垂直向下方向的夹角(考虑带摆杆初始位置为竖直向下)

u 输入,即施加在小车上的外力; y

输出.

分析小车水平方向所受合力,可以得到方程:

(式1)

由摆杆水平方向的受力进行分析可以得到下面等式:

=

(式2、式3)

将式3代入式

1可得系统第一个运动方程:

(式4)

为了推出系统第二个运动方程,对摆杆垂直向上的合力进行分析可得方程:

=

(式5 式6)

力矩平衡方程如下:

(式7)

式中:

合并式6、式7得第二个运动方程:

(式8)

设θ = π +φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ <<1,则可以进行近似处理:

用u来代表被控对象的输入力F,线性化后两个运动方程如下:

(式9)

对式(3-9)进行拉普拉斯变换(推导传递函数时假设初始条件为0。):

(式10)

整理后得到传递函数:

(式11)

其中:

设系统状态空间方程为:(式12)

参考相关资料得出系统实际模型参数如下:

M为小车质量1.096Kg

M为摆杆质量0.109Kg

Be为小车摩擦系数0.1N/m/s

L为摆杆转动轴心到摆杆质心的长度0.25m

I为摆杆转动惯量0.0034Kg*m*m

代入相关数据得到:

A=

B=

C=

D=

将数据输入matlab进行建模

a=[0 1 0 0;0 -0.08831 0.6293 0;0 0 0 1;0 -0.236 27.67 0] b=[0;0.865;0;2.357]

c=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

d=[0;0;0;0]

[num,den]=ss2tf(a,b,c,d)

num =

0 -0.0000 0.8650 -0.0000 -22.4513

0 0.8650 -0.0000 -22.4513 0

0 -0.0000 2.3570 0.0040 0

0 2.3570 0.0040 -0.0000 0

den =

1.0000 0.0883 -27.6700 -

2.2947 0

二、系统特性分析

首先利用matlab进行仿真

>> step(num,den)

利用传递函数得到如下响应曲线:

系统响应曲线是发散的

[z,p,k]=tf2zp(num,den)

得:

p =

5.2576

-5.2630

-0.0829

系统极点有一个在右半平面,系统不稳定

利用matlab命令uc=ctrb(a,b);r=rank(uc)来判断系统能控性结果如下:

三、系统建模

利用配置极点法对系统进行校正

性能指标1

取超调量σ=20%,调整时间=2秒

=4.39

根据书上相关公式得:ζ=0.456

n

之后求出系统的主导极点;

利用公式

2,1s =12

-±-ζωζωn n 计算出主导极点2,1s =-2 ±3.9j 再取两个实极点

=-10,

=-10

接着利用matlab 求取状态反馈矩阵K :K=acker(a,b,p) K =

-85.5630 -35.0084 127.6198 22.9928 利用simulink 进行仿真设计:

性能指标2

取超调量σ=10%,调整时间

=1.5秒

根据书上相关公式得:ζ=0.59 n ω=4.5

之后求出系统的主导极点

2,1s =- 2.655 ±3.63 j 再取两个实极点

=-15,

=-15

接着利用matlab求取状态反馈矩阵K:K=acker(a,b,p)

K =

-202.6981 -80.2979 257.6800 44.4121

仿真设计

性能指标3

取超调量σ=15%,调整时间=2秒

=3.869

根据书上相关公式得:ζ=0.52

n

s=- 2±3.3 j 再取两个实极点=-10,=-10之后求出系统的主导极点

2,1

接着利用matlab求取状态反馈矩阵K:K=acker(a,b,p)

K =

-66.3214 -31.1617 118.7278 21.5810

实验分析:性能指标1设定在超调量σ=20%,调整时间t=2秒时,系统响应超调量在7%,调整时间在2秒左右。

当性能指标2设定在超调量σ=10%,调整时间t=1.5秒时,实际超调量在4%,调整时间在1.5秒。

性能指标3设定在超调量σ=15%调整时间t=2s时,实际超调量为9%,调整时间1.5s左右。

从特征根的选取上来看,一般将特征根配置在原点的左边,而且离原点越远响应时间越短,但相应的反馈控制矩阵的控制力度也越大从以下数据可见一斑K1 =-85.5630 -35.0084 127.6198 22.9928;K2= -202.6981 -80.2979 257.6800 44.4121;第三组与第一组相比超调量稍微增加,而调整时间不变。

四、总结

学习MATLAB已经一学期了,matlab是一种非常方便的仿真工具,在矩阵计算上有很大的优势,在本次的实验过程中,通过matlab只有短短的几条语句就能将系统的反馈矩阵算出来,相比起自己手动计算的复杂性来说效率有了很大的提高,省心省力。在这最后一次的自控原理实践课中,我对matab的运用以及系统的控制过程有了更深一步的了解也加强了自己的动手能力。最后,感谢老师一学期来对我的辛勤教导。

一级倒立摆的建模与控制分析

控制工程与仿真课程设计报告 报告题目直线一级倒立摆建模、分析及控制器的设计 组员1专业、班级14自动化1 班姓名朱永远学号1405031009 组员1专业、班级14自动化1 班姓名王宪孺学号1405031011组员1专业、班级14自动化1 班姓名孙金红学号1405031013 报告评分标准 评分项目权重评价内容评价结果项目得分 内容70设计方案较合 理、正确,内容 较完整 70-50分 设计方案基本合 理、正确,内容 基本完整 50-30分 设计方案基本不 合理、正确,内 容不完整 0-30分 语言组织15语言较流顺,标 点符号较正确 10-15分语言基本通顺, 标点符号基本正 确 5-10分 语言不通顺,有 错别字,标点符 号混乱 5分以下 格式15 报告格式较正 确,排版较规范 美观 10-15分 报告格式基本正 确,排版不规范 5-10分 报告格式不正 确,排版混乱 5分以下总分

直线一级倒立摆建模、分析及控制器的设计 一状态空间模型的建立 1.1直线一级倒立摆的数学模型 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程: ()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。 ()21- 对摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22 l x dt d m F N S +=- ()31- 即: αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程: ()θcos 22 l l dt d m F mg P h -=++- ()51- 即 θθθθ αcos sin cos 2 ml ml F mg P g +=++- ()61- 力矩平衡方程如下: 0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程: () 0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理: φφφφφφφ===?? ? ??==2sin ,12cos ,0,sin ,1cos 2 dt d N x f F x M --= α sin g S F F =α cos g h F F =

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析 一、倒立摆系统的模型建立 如图1-1所示为一级倒立摆的物理模型 图1-1 一级倒立摆物理模型 对于上图的物理模型我们做以下假设: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆惯量 F:加在小车上的力 x:小车位置 ?:摆杆与垂直向上方向的夹角 θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。其中,N和P为小车与摆

杆相互作用力的水平和垂直方向的分量。注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图1-2 小车及摆杆受力分析 分析小车水平方向受力,可以得到以下方程: M x?=F-bx?-N (1-1) 由摆杆水平方向的受力进行分析可以得到以下方程: N =m d 2dt (x +l sin θ) (1-2) 即: N =mx?+mlθcos θ?mlθ2sin θ (1-3) 将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )x?+bx?+mlθcos θ?mlθ2sin θ=F (1-4) 为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P ?mg =m d 2dt 2 (l cos θ) (1-5) P ?mg =? mlθsin θ?mlθ2cos θ (1-6) 利用力矩平衡方程可以有:

?Pl sinθ?Nl cosθ=Iθ (1-7) 注意:此方程中的力矩方向,由于θ=π+?,cos?=?cosθ,sin?=?sinθ,所以等式前面含有负号。 合并两个方程,约去P和N可以得到第二个运动方程: (I+ml2)θ+mgl sinθ=?mlx?cosθ (1-8) 设θ=π+?,假设?与1(单位是弧度)相比很小,即?<<1,则 可以进行近似处理:cosθ=?1,sinθ=??,(dθ dt ) 2 =0。用u来 代表被控对象的输入力F,线性化后的两个运动方程如下: {(I+ml2)??mgl?=mlx? (M+m)x?+bx??ml?=u (1-9) 假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到: {(I+ml2)Φ(s)s2?mglΦ(s)=mlX(s)s2 (M+m)X(s)s2+bX(s)s?mlΦ(s)s2=U(s) (1-10) 由于输出为角度?,求解方程组的第一个方程,可以得到: X(s)=[(I+ml2) ml ?g s ]Φ(s) (1-11) 或改写为:Φ(s) X(s)=mls2 (I+ml2)s2?mgl (1-12) 如果令v=x?,则有:Φ(s) V(s)=ml (I+ml2)s2?mgl (1-13) 如果将上式代入方程组的第二个方程,可以得到: (M+m)[(I+ml2) ml ?g s ]Φ(s)s2+b[(I+ml2) ml +g s ]Φ(s)s?mlΦ(s)s2= U(s) (1-14) 整理后可得传递函数: Φ(s) U(s)= ml q s2 s4+b(I+ml 2) q s3?(M+m)mgl q s2?bmgl q s (1-15)

(完整版)一级直线倒立摆matlab程序

非线性作业 一 一级直线倒立摆 如图1所示 系统里的各参数变量 M :小车系统的等效质量(1.096kg ); 1m :摆杆的质量(0.109kg ); 2m :摆杆的半长(0.25m ); J :摆杆系统的转动惯量(0.0034kg*m ); g :重力加速度(9.8N/Kg ); r :小车的水平位置(m ); θ:摆角大小(以竖直向上为0起始位置,逆时针方向为正方向); h F :小车对摆杆水平方向作用力(N )(向左为正方向),h F ’是其反作用力; v F :小车对摆杆竖直方向作用力(N )(向上为正方向),v F ’是其反作用力; U :电动机经传动机构给小车的力,可理解为控制作用u’(向左为正方向); p x :摆杆重心的水平位置(m );p y :摆杆重心的竖直位置(m )。 1.1一级倒立摆的数学建模 定义系统的状态为[r,r, θ, θ] 经推导整理后可以达到倒立摆系统的牛顿力学模型: θθθsin cos )(2mgl l r m ml I =-+ (1) u ml r m M ml -?=+-?2sin )(cos θθθθ& (2) 因为摆杆一般在工作在竖直向上的小领域内θ=0,可以在小范围近似处理: 0,0sin ,1cos 2==≈θθθ&,则数学模型可以整理成: θθmgl l r m ml I =-+&&&&)(2 (3) u r m M ml =++-&&&&)(θ (4) 系统的状态空间模型为

??????????????θθ&&&&&&r r =????????????????+++++0)() (0010000)(0000102222Mml m M I m M mgl Mml m M I gl m ??????????????θθ&&r r +???????? ??????????+++++222)(0)(0Mml m M I ml Mml m M I ml I u (5) u r r r y ??????+?????? ??????????????=??????=0000101000θθθ&& (6) 代人实际系统的参数后状态方程为: ????????????? ?θθ&&&&&&r r =????????????08285.2700100006293.0000010??????????????θθ&&r r +u ????????????3566.208832.00 (7) u r r r y ??????+????????????? ???????=??????=0000101000θθθ&& (8) 1.2滑模变结构在一级倒立摆系统的应用 主要包括切换函数的设计、控制率的设计和系统消除抖振的抑制。基于线性二次型最优化理论的切换函数设计,定义系统的优化积分指标是: Qxdt x J T ?∞ =0 Q>0, 本文采用指数趋近律:)sgn(S kS S ε--=&,其中k 和ε为正数。将其代人S=Cx=0中,可以得到: )sgn(S kS CBu CAx x C S ε--=+==&& (9) 控制率为:))sgn(()(1S kS CAx CB u ε++-=- (10) ε的选取主要是为了抑制系统的摩擦力和近似线性化所带来的误差和参数摄动等因素,从而使得系统具有良好的鲁棒性。文中k=25, ε=0.8。取变换矩阵T 。

倒立摆姿态控制模型

倒立摆 倒立摆百度文库解释: 倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 倒立摆分类

直线二级倒立摆的建模和控制综述

西南科技大学 自动化专业方向设计报告 设计名称:直线二级倒立摆的建模和镇定控制 姓名: 学号: 班级: 指导教师: 起止日期:

方向设计任务书 学生班级:学生姓名:学号: 设计名称: 起止日期:指导教师: 方向设计学生日志

直线二级倒立摆的建模与镇定控制 摘要(150-250字) 倒立摆是一个典型的多变量、非线性、强耦合、欠驱动的自然不稳定系统,对倒立摆系统的控制研究,能反映控制过程中的镇定、非线性和随动等问题,因此常用于各种控制算法的研究。而且对倒立摆系统的研究还有重要的工程背景,对机器人行走、火箭的姿态调整等都有重要的现实意义。 本文以直线二级倒立摆系统为模型,阐释了直线二级倒立摆的建模方法和镇定控制算法。其次介绍了直线二级倒立摆系统的结构和参数,应用拉格朗日方程建模方法详细推导了二级倒立摆的数学模型,并对系统的性能进行分析。接下来,本文重点研究了最优控制算法在直线二级倒立摆镇定控制中的应用;在介绍倒立摆系统的最优控制算法的基础上,设计了系统的最优控制器,分析得出控制参数的选择规律;并且在Simulink上完成仿真实验,观察控制系统性能。 关键词:倒立摆;建模;LQR;镇定控制

Modeling and Balance Control of the Linear Double Inverted Pendulum Abstract:Inverted pendulum is a typical multivariable, nonliner, closed coupled and quick movement natural instable system.The process of control research can reflect many key problems in control theory, such as the problem of tranquilization, non linearity, following and so on. So the inverted pendulum is commonly used for the study of many kinds of control theory. The research of inverted pendulum also has important background of engineering, and has practical significance for the Robot walk and Rocket-profile adjustment. In this paper, taking the linear double inverted pendulum system as the control model, reaching of the control system based on lagrange equation and optimal control algorithm. First of all, giving out the research significance and situation of the inverted pendulum system,and introducing the linear double inverted pendulum modeling methods and stabilization control theory. Secondly, introducing the structure and parameters of the inverted pendulum system. Researching of the inverted pendulum mathematical model based on lagrange equation, and giving a detailed derivation, then having stability analysis of the system. Next, this paper studied the inverted pendulum system’s optimal control algorithm,and designed the LQR controller based on it,then coming to the law of selection of control parameters. Finishing the simulation in the Simulink software,observing the performance of the control system. Key words: inverted pendulum, modeling, LQR, balance control

一级倒立摆地Simulink仿真

单级倒立摆稳定控制 直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。 图1 直线一级倒立摆系统 图2 控制系统结构 假设小车质量M =0.5kg ,匀质摆杆质量m=0.2kg ,摆杆长度2l =0.6m ,x (t )为小车的水平位移,θ为摆杆的角位移,2 /8.9s m g =。控制的目标是通过外力u (t)使得摆直立向上(即0)(=t θ)。该系统的非线性模型为: u ml x m M ml mgl x ml ml J +=++=++22)sin ()()cos (sin )cos ()(θθθθθθθ ,其中231ml J =。 解: 一、 非线性模型线性化及建立状态空间模型 因为在工作点附近(0,0==θ θ )对系统进行线性化,所以 可以做如下线性化处理:32 sin ,cos 13!2!θθθθθ≈-≈-

当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’^2≈0; 因此模型线性化后如下: (J+ml^2)θ’’+mlx ’’=mgl θ (a) ml θ’’+(M+m) x ’’=u (b) 其中23 1ml J = 取系统的状态变量为,,,,4321θθ ====x x x x x x 输出T x y ][θ=包括小车位移和摆杆的角位移. 即X=????????????4321x x x x =????? ???????''θθx x Y=??????θx =??????31x x 由线性化后运动方程组得 X1’=x ’=x2 x2’=x ’’=m m M mg 3)(43-+-x3+m m M 3)(44-+u X3’ =θ’=x4 x4’=θ’’=ml l m M g m M 3)(4)(3-++x3+ml l m M 3)(43-+-u 故空间状态方程如下: X ’=????????????'4'3'2'1x x x x =????????????????? ?-++-+-03)(4)(300100003)(4300 0010ml l m M g m M m m M mg ????????????4321x x x x + ???????? ??????????-+--+ml l m M m m M 3)(4303)(440 u

20112515直线一级倒立摆机理建模

上海电力学院课程设计报告 课名:自动控制原理应用实践 题目:倒立摆控制装置 院系:自动化工程学院 专业:测控技术与仪器 班级:2011151班 姓名:马玉林 学号:20112515 时间:2014年1月14日

倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 1.1 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。 2 直线倒立摆数学模型的建立 直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入

倒立摆建模

系统建模 系统建模可以分为两种:机理建模和实验建模.实验建模就是通过在研究对象上加上一系列的研究者先确定的输入信号,激励研究对象并通过传感器的检测其可观测的输出,应用数学手段建立起系统输入---输出关系.这里包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容.机理建模就是在了解研究对象在运动规律基础上,通过物理,化学的知识和数学手段建立起的系统内部的输入输出状态关系.系统的建模原则: 1) 建模之前,要全面了解系统的自然特征和运动机理,明确研究目的和准确性要求,选择合适的分析方法。 2) 按照所选分析法,确定相应的数学模型的形式; 3) 根据允许的误差范围,进行准确性考虑,然后建立尽量简化的合理的数学模型。 小车—倒立摆系统是各种控制理论的研究对象。只要一提小车—倒立摆系统,一般均认为其数学模型也已经定型。事实上,小车—倒立摆的数学模型与驱动系统有关,常见到的模型只是对应于直流电机的情况,如果执行机构是交流伺服电机,就不是这个模型了。本文主要分析由直流电机驱动的小车—倒立摆系统。小车倒立摆系统是检验控制方式好坏的一个典型对象,其特点是高阶次、不稳定、非线性、强耦合,只有采取有效的控制方式才能稳定控制. 在忽略空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车忽然均匀质杆组成的系统,如下图所示: 图中F 是施加于小车的水平方向的作用力,x 是小车的位移,φ是摆的倾斜角。若不给小车施加控制力,倒摆会向左或向右倾斜,控制的目的是当倒摆出现偏角时,在水平方向上给小车以作用力,通过小车的水平运动,使倒摆保持在垂直的位置。即控制系统的状态参数,以保持摆的倒立稳定。 M 小车的质量 0.5Kg m 摆杆的质量 0.2Kg X φ F M 图1 直线一级倒立摆系统 θ

哈工大一阶倒立摆

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系): 专业:自动化班号: 任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)错误!未找到引用源。的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1) 控制系统设计课程设计报告 (1) 一.实验设备简介 (3) 二.直线一阶倒立摆数学模型的推导 (6) 2.1概述 (6) 2.2数学模型的建立 (7) 2.3一阶倒立摆的状态空间模型: (9) 2.4实际参数代入: (10) 三.定量、定性分析系统的性能 (11) 3.1 对系统的稳定性进行分析 (11) 3.2 对系统的稳定性进行分析: (12) 四. 实际系统的传递函数与状态方程 (13) 五. 系统阶跃响应分析 (14) 六.一阶倒立摆PID控制器设计 (15) 6.1 PID控制分析 (15) 6.2 PID控制参数设定及MATLAB仿真 (17) 6.3 PID控制实验 (18) 七.状态空间极点配置控制器设计 (19) 7.1 状态空间分析 (20) 7.2 极点配置及MA TLAB仿真 (21) 7.3 利用爱克曼公式计算 (21) 八.课程设计心得与体会 (22) 一.实验设备简介 倒立摆控制系统:Inverted Pendulum System (IPS) 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

一级倒立摆物理建模、传递函数和状态方程的推导

一级倒立摆物理建模和传递函数的推导 设定: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 车位置 φ 摆杆与垂直向上方向的夹角

图1、2是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用。 分析小车水平方向所受的合力,可以得到以下方程: N x b F x M --=? ?? (1) 由摆杆水平方向的受力进行分析可以得到下面等式: )sin (22 θl x dt d m N += (2) 即: θθθθsin cos 2 ?? ???-+=ml ml x m N (3) 把这个等式代入式(3)中,就得到系统的第一个运动方程: F ml ml x b x m M =-+++?? ????θθθθsin cos )(2 (4) 对摆杆垂直方向上的合力进行分析,可以得到下面方程: )cos (2 2 θl dt d m mg P =- (5) θθθθcos sin 2 ?? ?--=-ml ml mg P (6) 力矩平衡方程: ? ?=--θθθI Nl Pl cos sin (7)

此方程中力矩的方向,由于φπθ+=,θφcos cos -=,θφsin sin -=,故等式前面有负号。 合并这两个方程,约去 P 和N ,得到第二个运动方程: θ θθcos sin )(2 ? ???-=++x ml mgl ml I (8) 设θ =π +φ, 假设φ 与1(单位是弧度)相比很小,即c <<1,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2 =dt d θ。用u 来代表被控对象的输入力F ,线性化后两个运动方程如下: { u ml x b x m M x ml mgl ml I =-++=-+? ?? ? ?? ???φφφ)()(2 (9) 假设初始条件为0,对式(9)进行拉普拉斯变换: { ) ()()()()()()()()(22222s U s s ml s s bX s s X l M s s mlX s mgl s s ml I =Φ-++=Φ-Φ+ (10) 由于输出为角度φ ,求解方程组的第一个方程,可以得到: )(])([)(22s s g ml ml I s X Φ-+= (11) 或 mgl s ml I mls s X s -+=Φ2 22)()()( (12) 令? ?=x v ,则有: mgl s ml I ml s V s -+=Φ22)()()( (13) 把上式代入方程组的第二个方程,得到:

倒立摆MATLAB建模

线控大作业 如图所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:2l=1m 小车的质量:M=1kg 重力加速度:g=10/s2 摆杆惯量:I=0.003kgm2 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量 %≤10%, 调节时间ts ≤4s ,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。 要求:1、建立倒立摆系统的状态方程 2、定量分析,定性分析系统的性能指标——能控性、能观性、稳定性 3、极点配置 设计分析报告

1 系统建模 在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。如下如所示。 图 一级倒立摆模型 其中: φ 摆杆与垂直向上方向的夹角 θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 分析小车水平方向所受的合力,可以得到以下方程: N x b F x M --= 由摆杆水平方向的受力进行分析可以得到下面等式: )sin (22 θl x dt d m N += 即:

θθθθsin cos 2 ml ml x m N -+= 把这个等式代入式(3-1)中,就得到系统的第一个运动方程: F ml ml x b x m M =-+++θθθθsin cos )(2 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程: )cos (22 θl dt d m mg P =- θθθθ cos sin 2 ml ml mg P --=- 力矩平衡方程如下: θ θθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。 合并这两个方程,约去P 和N ,得到第二个运动方程: θθθcos sin )(2x ml mgl ml I -=++ 设φπθ+=(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即1<<φ,则可以进行近似处理:0)(,sin ,1cos 2=-=-=dt d θφθθ。用u 来代表被控对象的输入力F ,线性化后两个运动方程如下: 2(+)()I ml mgl mlx M m x bx ml u ????-=?++-=? 对式(3-9)进行拉普拉斯变换,得到 ?????=Φ-++=Φ-Φ+) ()()()()()()()()(22222s U s s m l s s bX s s X m M s s m lX s m gl s s m l I 注意:推导传递函数时假设初始条件为0。 由于输出为角度φ,求解方程组的第一个方程,可以得到: )(])([)(22s s g ml ml I s X Φ-+= 或 m g l s ml I mls s X s -+=Φ222 )()()( 如果令x v =,则有:

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

直线一级倒立摆控制详细报告

直线一级倒立摆控制 一、课程设计目的 学习直线一级倒立摆的数学建模方法,运用所学知识设计PID控制器,并应用MATLAB进行仿真。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。 二、课程设计要求 1. 应用动力学知识建立直线一级倒立摆的数学模型(微分方程形式),并建立系统的开环传递函数模型。 2. 运用经典控制理论知识,按设计要求设计控制器。 3. 应用MATLAB的Simulink建立控制系统的仿真模型,得出仿真结果。 4. 控制要求: ※小车的位置x和摆杆角度的稳定时间小于10秒; ※阶跃响应摆杆角度的摆幅小于2°; ※θ有≤8°扰动时,摆杆的稳定时间小于三秒。 对比仿真结果与控制要求,修正设计值,使之满足设计要求。 三、控制系统建模过程 1、控制对象示意图

/ 10 1 图1.控制对象示意图 图中对象参数: M 小车质量 1.32kg l 摆杆转动中心到杆质心的距离 0.27m m 摆杆质量 0.132kg F 作用在系统上的外力

/ 10 2 X 小车位移 θ 摆杆与竖直方向的夹角,以垂直向上为起始位置,取逆时针方向为正方向。 b 小车摩擦阻尼系数 0.1N/m/sec 2. 控制系统模拟结构图: 图2.系统的模拟结构图 其中G1(s )表示关于摆角θ的开环传递函数,D(S) 表示PID 控制器的传递函数,G2(s )表示小车位移x 的传递函数。由于摆角与垂直向上方向夹角为0时为平衡状态,故摆角的理想输出值应为R (S )=0。 3. 建模过程: T 图3.小车及摆杆的受力分析图 如图3所示,对小车及摆杆进行受力分析,得到以下平衡方程: 对小车有: 22..................................(1)dx d x F F b N M dt dt =--=∑小车 对摆杆有:

直线一级倒立摆的稳定性研究开题报告

南京工程学院 自动化学院 本科毕业设计(论文)开题报告 题目:直线一级倒立摆稳定性的研究 专业:自动化 班级:自动化102 学号:203100234 学生姓名: 殷逸 指导教师: 徐开芸高级实验师 2014年3月25日

本科毕业设计(论文)开题报告 学生姓名殷逸学号203100234 专业自动化 指导教师徐开荟职称高级实验师所在院系自动化学院课题来源院级基金课题课题性质工程技术研究课题名称直线一级倒立摆稳定性的研究 毕业设计的内容和意义课题背景: 倒立摆系统的最初分析开始于二十世纪五十年代,是一个比较复杂的不稳定,多变量,带有强耦合特性的高阶机械系统。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统受到不确定因素的干扰。其控制方法和思路在处理一般工业过程中有很广泛的用途,此外,其相关的研究成果也在航天科技和机器人学习方面得到了大量的应用,如机器人行走过程中平衡控制,火箭发射中的垂直度控制和卫星飞行中的姿态控制等,因此,倒立摆系统是进行控制理论研究的理想平台。 毕业设计内容: 1.主要建立一级直线倒立摆数学模型,对倒立摆系统进行定性分析; 2.分析倒立摆稳摆过程,侧重于设计PID控制器和线性二次型最优控制器; 3.利用MATLAB进行仿真实验、调整参数,最终实现稳摆实时控制; 4.尽量提供软件调试结果。 课题内容: 要求掌握倒立摆系统的组成和控制原理,建立一阶级倒立摆系统的数学模型,并对其进行线性化和定性分析。分别设计PID控制器和线性二次型最优控制器,利用MATLAB进行仿真实验、分别调整PID控制器和线性二次型最优控制器的参数,最终实现稳摆控制。 课题意义: 倒立摆系统具有成本低廉,结构简单,参数和结构易于调整的优点。作为控制理论研究中的一种比较理想的实验手段,倒立摆系统为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某周控制理论或方法的典型方案,促进了控制系统新理论和新思想的发展。由于控制理论的广泛应用,由倒立摆系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广泛的利用开发前景。

相关文档
最新文档