构造函数法解不等式问题(教师版)

构造函数法解不等式问题(教师版)
构造函数法解不等式问题(教师版)

专题2.3构造函数法解不等式问题(小题)

在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。

例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。

既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x

=,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结:

关系式为“加”型:

(1)'()()0f x f x +≥构造''[()][()()]

x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()()

xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()]

n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论)

关系式为“减”型

(1)'()()0f x f x -≥构造'''2()()()()()[]()x x x x x

f x f x e f x e f x f x e e e --==(2)'

()()0xf x f x -≥构造''2()()()[]f x xf x f x x x -=(3)'

()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--==(注意对x 的符号进行讨论)

例1.设(),g()f x x 是R 上的可导函数,''()g ()f x x ,分别是(),g()f x x 的导函数,且满足

''()()()g ()0f x g x f x x +<,则当a x b <<时,有(

).()()()()

A f a g b f b g a >.()()()()

B f a g a f a g b >.()()()()

C f a g a f b g b >.()()()()

D f a g a f b g a >【解析】因为''()()()g ()0f x g x f x x +<不等式左边的原函数为()()f x g x ,因此需要构造新函数,令()()()h x f x g x =,可知'()0h x <,则函数()h x 是单调递减函数,因此当a x b <<,有()()h a h b >即答案选C 。

变式:设(),g()f x x 是R 上的可导函数,''()()()g ()0f x g x f x x +<,(3)0g -=,求不等式()()0

f x

g x <的解集。

【解析】同上题''()()()g ()f x g x f x x +的原函数为()()f x g x ,构造新函数()()()h x f x g x =可知'()0h x <,()h x 单调递减,又因为(3)0g -=即(3)0h -=,所以()()0f x g x <的解集是(3,)-+∞例2.已知定义为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,'()()0f x f x x

+>,若

111(),2(2),ln (ln 2)222

a f

b f

c f ==--=,则下列关于,,a b c 的大小关系正确的是().A a b c >>.B a c b >>.C c b a >>.D b a c

>>

例3.已知函数()f x 为定义在R 上的可导函数,且'()()f x f x <对于任意x R ∈恒成立,e 为自然对数的底数,则()

2013.(1)(0)(2013)(0)

A f e f f e f >?

B f e f f e f ?、2013.(1)(0)(2013)(0)

C f e f f e f >?>?、2013.(1)(0)(2013)(0)

D f e f f e f

()()()()0f x f x f x f x ,函数()h x 在定义域内单调递增,所以2013(1)(0)(2013)(0),11

f f f f e e >>例4.设函数()f x 在R 上的导函数为'()f x ,且'22()()f x xf x x +>,下面的不等式在R 内恒成立的是()

.()0A f x >.()0B f x <.()C f x x >.()D f x x

<【解析】'2'22()()2()()0f x xf x x f x xf x x +>?+->,试着找出不等式左边部分的原函数,若设

231()()3

h x x f x x =-,则''2()[2()()]h x x f x xf x x =+-无法判断'()h x 的正负,因此构造函数有误,构造的原则是构造的新函数的导函数的正负是可以判断的,因此设241()()4

h x x f x x =-,则''2()[2()()]h x x f x xf x x =+-,当0x >时,'()0h x >;当0x <时,'()0h x <,则()h x 为左减右增的函数,且(0)0h =,即21()04

f x x >≥,即()0f x >例5.已知函数()f x 的定义域为R ,且'()1(),(0)4f x f x f >-=,则不等式ln3()1x f x e ->+的解集为()

.(0,)A +∞1.(,)2B +∞.(1,)C +∞.(,)

D e +∞【解析】ln3ln3()1()()3

x x x x x f x e e f x e e e f x e ->+?>+?->令''()(),()[()()1]0

x x x h x e f x e h x e f x f x =-=+-<所以()h x 为R 上的单调减函数,又因为(0)3h =,故不等式的解集为(0,)

+∞例6.设'()f x 是奇函数()f x ()x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是()

.(,1)(0,1)A -∞-?.(1,0)(1,)B -?+∞.(,1)(1,0)C -∞-?-.(0,1)(1,)

D ?+∞【解析】令''2

()()()(),()f x xf x f x g x g x x x -==当0x >时,'()0

g x <因为()f x 为R 上的奇函数且(1)0f -=,所以(1)0f =,(1)(1)01

f g =

=所以当(0,1)x ∈时,()0()0g x f x >?>

当(1,)x ∈+∞时,()0()0

g x f x

当(1,0)x ∈-,()0()0

g x f x >?<当(1,)x ∈+∞时,()0()0

g x f x 综上,()0f x >的解集为(,1)(0,1)

-∞-?例7.函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(

.(1,1)A -.(1,)B -+∞.(,1)C -∞-.(,)

D -∞+∞【解析】()24()24

f x x f x x >+?->令''()()2,()()20

g x f x x g x f x =-=->所以()g x 为R 的单调递增函数,又因为(1)(1)2(1)4

g f -=--?-=所以不等式的解集为(1,)

-+∞例8.已知()f x 定义域为(0,)+∞,'()f x 为()f x 的导函数,且满足'()()f x xf x <-,则不等式2(1)(1)(1)f x x f x +>--的解集是()

.(0,1)A .(1,)B +∞.(1,2)C .(2,)

D +∞【解析】''()()()()0

f x xf x f x xf x <-?+<令''()(),()()()0

g x xf x g x f x xf x ==+<单调递减

222(1)(1)(1)(1)(1)(1)(1)f x x f x x f x x f x +>--?++>--

2(1)(1)

g x g x +>-22101101122111x x x x x x x x x x +>>-????->?><-?>????><-+<-??

或或例9.设'()f x 为()f x 的导函数,且'()()()f x f x x R >∈,2(2)f e =(e 为自然对数的底数),则不等式2(2ln )f x x <的解集为()

【解析】''

()()()()0f x f x f x f x >?->,令''()()()(),()0x x f x f x f x h x h x e e -==>()h x 为R 上的递增函数,2(2)(2)1f h e

==2(2ln )f x x <,令2ln t x =,2t

x e =,则不等式可化为()t f t e <,即()1t f t e

<不等式可化为:()(2)h t h <,2t <即2ln 2

x <解得0x e

<<高考真题举例解析:

1.函数()f x 满足22'

()2(),(2)8x e e x f x xf x f x +==,当0x >时,()f x 的极值状态是【解析】因为2'

()2()x

e x

f x xf x x +=,关键因为等式右边函数的原函数不容易找出,因此把等式左边函数的原函数找出来,设2()()h x x f x =,则'

()x e h x x =,且2(2)2e h =,因为2'()2()x e x f x xf x x +=,则'

32()()x e h x f x x -=,判断()f x 的极值状态就是判断'()f x 的正负,设()2()x g x e h x =-,则

''2()2()2()x x x

x e x g x e h x e e x x -=-=-=这里涉及二阶导,()g x 在2x =处取得最小值0,因此()0g x ≥,则'()0f x ≥,故()f x 没有极大值也没有极小值。(有难度,但不失为好题目)2.定义在R 上的函数()f x 满足'()()1,(0)4f x f x f +>=,则不等式()3x x e f x e >+的解集为___________.

3.定义在R 上的函数()f x 满足(1)1f =,对任意的x R ∈有'1()2

f x <,则不等式22

1()2x f x +>的解集是【解析】222

211()()022x x f x f x ++>?->,令2t x =,则1()02t f t +->,设1()()2t h t f t +=-,则''1()()2

h t f t =-,所以'()0h t <,即函数()h t 单调递减,又因为(1)0h =,()h t 为偶函数,所以[0,1)t ∈,即(1,1)

x ∈-4.()f x 是定义在(0,)+∞上的非负可导函数,且'()()0xf x f x -≤,对任意正数,a b ,

若a b <则必有()

.()()A af b bf a ≤.()()B bf a af b ≤.()()C af a f b ≤.()()

D bf b f a ≤

【解析】'

()()0xf x f x -≤,则应设''2()()()(),()f x xf x f x h x h x x x -==,在(0,)+∞上,函数'()0h x ≤,()h x 单调递减,因此()()a b h a h b ,即()()

af b bf a ≤到此为止常规的抽象函数与导数结合的不等式问题已经讲完了,但是不知道同学们注意了没有,上面所有的题目中涉及'()f x 均为不等式,因此我们需要构造原函数用不等关系来证明单调关系,但是如果涉及'()f x 式子为等式呢?又该如何?

特例1.设函数()f x 为R 上的可导函数,对任意的实数x 有2()2018()f x x f x =--,且当(0,)x ∈+∞时,'()20180f x x ->,则不等式(1)()20181009f m f m m +--≥+的解集为__________.

【解析】因为2()()2018f x f x x +-=,则可设2()1009f x x =,当(0,)x ∈+∞时,

'()2018201820180f x x x x -=-=不符合题意,则可修改2()1009f x x x =+,所以

22(1)()201810091009(1)(1)(1009)20181009

f m f m m m m m m m +--≥+?+++--≥+解得1

2

m ≥-特例2.设函数()f x 在R 上存在导函数'()f x ,对于任意的实数x ,都有2'()3()f x x f x =-,当(,0)x ∈-∞时,'1()32f x x +<,若27(3)()92

f m f m m +--≤+,则实数m 的取值范围是__________.

特例3.若函数()f x 在R 上存在导函数'()f x ,对任意x R ∈,有2()()f x f x x +-=,且(0,)x ∈+∞时,'()f x x >,若(2)()22f a f a a --≥-,则实数a 的取值范围是

【解析】因为()f x 满足2()()f x f x x +-=,所以可设21()2

f x x =当0x >时,不满足'()f x x >,所以原函数表达式错误,重新修改()f x 表达式,设21()2f x x x =

+此时符合题意,2211(2)()22(2)(2)2222

f a f a a a a a a a --≥-?

-+---≥-解得:1a ≤以上三个特例得知,若含有'()f x 的式子为等式时,可试着将()f x 的表达式写出来,再根据题目中的条件对()f x 表达式进行修订,直到符合题意为止,没必要再构造函数利用单调性来求解不等式,这类问题值得特别留意。

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

一元一次不等式---教师版

不等式的俩边都乘上(或除去)同一个正数,不等号的方向不变。不等式的俩边都乘上(或除去)同一个负数,不等号的方向改变。“>”填空。若a>b 且m≠0,则 ___a b (2) 2 2 ____ a b m m ___m a m b (4) ___a m b m 1. 若0,a 则下列各式错误的是(C ) 1a B 10a 10a 2a 0,m 那么(20032004m m 3.14m m C 2003 200420042003m m D 1 1 23 m m 关于x 的方程7 45ax x 的解是正数,求的取值范围。 解: ax+7=4x-5 ax-4x=-12 x=-12÷(a-4)>0 a b a m b m m>0am>bm: a b a b m m 且m<0am

2 1 32 x x 2)36 x x 436 x x 364 x x 合并同类项得2 x 把系数化为1得2 x 解不等式: 221 23 x x 2)2(21) x x 622 x x 226 x x 合并同类项得8 x 把系数化为1得8 x 解关于x的不等式:(m m-1>0,m>1时,

变式 不等式-2x<4的解集表示在数轴上,正确的是(B ) A C 四.一元一次不等式组 一元一次不等式组解集的确定主要是借助数轴直观找到.共分四种情况,“同大取大,同小取小,大小小大取中间,大大小小解不见”, 例6 不等式组 2110 x x >-?? -≤?的解集是_1 12x -<≤-____________________ 不等式组 图示 解集 x a x b b a x a >(同大取大) x a x b ? b a b x a <<(大小交叉取中间) x a x b >??

不等式复习资料(教师)

不等式复习资料 1 ?已知f3为R 上的减函数,贝IJ 满足f (丄)>f (l )的实数W 的取值范围是( ) X A. (—8,1) B ?(1,+8) C ?(―8,0)U (0,1) D ?(―8, 0)U (I, + 8) 【答案】D fx>0 2x-2y+l<0 【答案】B 5. 当XG (1,2)时,不等式x 2+/m+4<0恒成立,则加的取值范围是 ________________ 。 【答案】(一8,—5] 6. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4俩甲型货车和 8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台:每辆乙型货 车 运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费 用为( ) A. 2000 元 B. 2200 元 C. 2400 元 D. 2800 元 【答案】B 0100 2.在约束条件! y0且XH I 时,lgx+ 1 >2 lgx C.当x>2^.x +丄的最小值为2 x B ?当x>0时,肩+4=?2 D.当0VXS2时,兀一丄无最大值 x 4.已知正数X 、 y 满足v 2x-y<0 x-3v+5>0 则z = 2 2x+y 的最大值为( A. 8 【答案】 B. 16 C. 32 D. 64

构造函数法证明导数不等式的八种方法(新)

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤- +x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

不等式及其性质(教师版)

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2)五种不等号的读法及其意义: 符号读法意义 “≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小 “<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大 “≤”读作“小于或等 于” 即“不大于”,表示左边的量不大于右边的量 “≥”读作“大于或等 于” 即“不小于”,表示左边的量不小于右边的量 (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x 表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1. 判断下列各式哪些是等式,哪些是不等式. (1)4<5; (2)x2+1>0; (3)x<2x-5; (4)x=2x+3; (5)3a2+a; (6)a2+2a≥4a-2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是() A.18<t<27 B.18≤t<27 C.18<t≤27D.18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a;②-2>-5;③x≥-1;④

利用导数构造函数解不等式

构造函数解不等式 1.(2015全国2理科).设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 (A ) (B )(C ) (D ) 2若定义在R 上的函数()f x 是奇函数, ()02=f ,当x >0时,()()2x x f x f x -'<0,恒成立,则不等式()x f x 2>0的解集 A ()2,-∞-?()+∞,2 B ()0,2- ? ()+∞,2 C ()2,-∞-?()2,0 D .()0,2-?()2,0 3定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,, 则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,+∞ B . ()(),03,-∞+∞U C .()(),00,-∞+∞U D .()3,+∞ 4. 定义在R 上的函数()f x 满足:()1()f x f x '>-,(0)6f =,()f x '是()f x 的导函数, 则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为 A .()0,+∞ B .()(),03,-∞+∞U C .()(),01,-∞+∞U D .()3,+∞ 5.定义在R 上的函数()f x 满足 则不等式(其中e 为自然对数的底数)的解集为

6.定义域为R 的可导函数()x f y =的导函数为'()f x ,满足()()x f x f '>,且(),10=f 则不等式()1

构造法解函数不等式

龙源期刊网 https://www.360docs.net/doc/ec15462171.html, 构造法解函数不等式 作者:余建国 来源:《新高考·高二数学》2015年第12期 什么是函数不等式?先看一个问题. 例1 已知定义在R上的函数f(x)满足f(2)=1,且f(x)的导函数f'(x)>x1,则不 等式f(x) 我们并不知道问题中的函数f(x)的解析式,只知道它满足两个条件:①f(2)=1,②导函数.f'(x)>x-l,求解不等式f(x) g'(x)=f'(x) -x+1.由条件②知,g'(x)>o,所以g(x)在(-∞,+∞)上为增函数.又 由条件①,知g(2)=f(2)-1/2×4+2-1=0,故由g(x) 由此可见,解此类函数不等式的步骤是: Sl结合题设中的导数条件和所要求解的函数不等式,构造一个新函数; S2确定新函数的导数符号,以确定新函数的单调性; S3利用新函数的单调性及图象中的特殊点,得到函数不等式的解集. 例2 函数f(x)的定义域是R,f(o)=2,对任意x∈R,f(x)+f'(x)>1,则不等式ex·f(x)>ex+1的解集为__________. 解析记函数g(x)=ex·f(x)-ex1,则g'(x)=ex(f(x)+f'(x)-1). 因为对任意x∈R,f(x)+'(x)>1,所以g '(x)>0恒成立,所以g(x)在(-∞,+∞)上为增函数,因为g(0)=f(o)-11=0,所以不等式ex·f(x)>ex+1,即g(x)>g(0)的解集是x>o,所以不等式e·f(x)>ex+1的解集为(o,+∞). 评析最简单的构造函数方法是“g(x)一左边-右边”,这样目标就是解不等式g(x)>o. 例3 已知f(x),g(x)(g,(x)≠0)分别是定义在R上的奇函数和偶函数,当x 解析 当x 由f(-3) =0,得h(-3)=-h(3)=0.

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

不等式及其性质(教师版)

不等式及其性质(教师 版) https://www.360docs.net/doc/ec15462171.html,work Information Technology Company.2020YEAR

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2) (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1.判断下列各式哪些是等式,哪些是不等式. 例2.(1)4<5; 例3.(2)x2+1>0; 例4.(3)x<2x-5; 例5.(4)x=2x+3; 例6.(5)3a2+a;

例7. (6)a 2+2a≥4a -2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t ℃,则下面表示气温之间的不等关系正确的是( ) A .18<t <27 B .18≤t <27 C .18<t≤27 D .18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a ;②-2>-5;③x≥-1;④ 31y-4<1;⑤2m≥n ;⑥2x-3,其中不等式有( ) A .2个 B .3个 C .4个 D .5个 3.(2017春?南山区校级月考)下面给出了6个式子:?3>0; x+3y >0; x=3;④x-1;⑤x+2≤3;⑥2x≠0;其中不等式有( ) A .2个 B .3个 C .4个 D .5个 4.(2017春?太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x+30y≥500”表示的实际意义是( ) A .两种客车总的载客量不少于500人 B .两种客车总的载客量不超过500人 C .两种客车总的载客量不足500人 D .两种客车总的载客量恰好等于500人 5.已知有理数m ,n 的位置在数轴上如图所示,用不等号填空. (1)n-m 0;(2)m+n 0;(3)m-n 0;(4)n+1 0;(5)m?n 0; (6)m+1 0. 例2.用不等式表示: (1)x 与-3的和是负数; (2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 举一反三: 【变式】a a 的值一定是( ).

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧.技法一:“比较法”构造函数 [典例](2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解](1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的结论求解.[对点演练] 已知函数f(x)=x e x,直线y=g(x)为函数f(x)的图象在x=x0(x0<1)处的切线, 求证:f(x)≤g(x).

高中数学不等式知识点总结教师版

高中数学不等式专题教师版 一、 高考动态 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ 二、不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b ab +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小;

常见构造函数解不等式归纳

常见构造函数解不等式归纳 1. 对于不等式()(0)f x k k '>≠,构造函数()()g x f x kx b =-+ 2. 对于不等式()()0xf x f x '+>,构造函数()()g x xf x = 3. 对于不等式()()0xf x f x '->,构造函数()()(0)f x g x x x = ≠ 4. 对于不等式()()0xf x nf x '+>,构造函数()()n g x x f x = 5. 对于不等式()()0xf x nf x '->,构造函数()()(0)n f x g x x x = ≠ 6. 对于不等式()()0f x f x '+>,构造函数()()x g x e f x = 7. 对于不等式()()0f x f x '->,构造函数()()x f x g x e = 8. 对于不等式()()0f x kf x '+>,构造函数()()kx g x e f x = 9. 对于不等式()2()0f x xf x '+>,构造函数2()()x g x e f x = 10. 对于不等式0)(ln )('>+x af x f a x ,构造函数()()x g x a f x = 11. 对于不等式()()tan 0f x f x x '+>,构造函数()()sin g x f x x = 12. 对于不等式()()tan 0f x f x x '->,构造函数()()cos g x f x x = 13. 对于不等式:0cos )(sin )(' >-x x f x x f ,构造 x x f x h sin )()(= 14.对于不等式:0sin )(cos )('>+x x f x x f ,构造 x x f x h cos )()(= 15. 对于不等式()0() f x f x '>,构造函数()ln () g x f x = 16.对于不等式()()ln 0f x f x x x '+ >,构造函数()()ln g x f x x = 17.对于不等式:0)()()()(''>+x g x f x g x f ,构造 )()()(x g x f x h = 18.对于不等式:0)()()()(''>-x g x f x g x f ,构造 )()()(x g x f x h =

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

教案7——不等式证明(教师)

教案7 不等式证明 一、课前检测 1.若0>x ,则x x 432+ +的最小值是_________.342+ 2. 已知1>x ,1>y ,且4lg lg =+y x ,则y x lg lg 的最大值为( B ) A .4 B .2 C .1 D .41 3. 设a 、b 是正实数,则下列不等式中不成立的是( D ) (A)221≥++ab b a (B)4)11)((≥++b a b a (C)b a ab b a +≥+2 2 (D)ab b a ab ≥+2 4. 设x,y 为正数, 则(x+y)(1x + 4y )的最小值为( B ) (A ) 6 (B )9 (C )12 (D )15 二、知识梳理 1. .比较法是证明不等式的一个最基本的方法,分_______________两种形式.比差、比商 (1)作差比较法,它的依据是________________: ?? ????>-b a b a b a b a b a b a 000 它的基本步骤:___________________,差的变形的主要方法有配方法,分解因式法,分子有理化等. 作差——变形——判断

(2) 作商比较法,它的依据是:____________________________ 若a >0,b >0,则 ???? ???>b a b a b a b a b a b a 111 它的基本步骤是:作商——变形——判断商与1的大小.它在证明幂、指数不等式中经常用到. 2.综合法:综合法证题的指导思想是___________(“由因导果”),即从已知条件或基本不等式出发,利用不等式的性质,推出要证明的结论. 3.分析法:分析法证题的指导思想是_____________(“由果索因”),即从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够确定这些充分条件都已具备,那么就可以判定所要证的不等式成立。 三、典型例题分析 例1. 已知0,0>>b a ,求证: b a a b b a +≥+ 证法1: )(b a a b b a +-+ = ab ab b a b a )()()(33+-+ = ab b ab a b a ])(2))[((22+-+ =ab b a b a 2 ))((-+ ∵b a +>0,ab >0,0)(2≥-b a ∴ 0)(≥+-+b a a b b a 即 b a a b b a +≥+ 证法2:ab ab b a ab b a b a b a a b b a -+=++=++)()()(3 3 =1+1)(2 ≥-ab b a

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

7.5不等式的综合应用(教师版)

科 目 数学 年级 高三 备课人 高三数学组 第 课时 7.5不等式的综合应用 【典型例题】 一、简单线性规划的实际应用: 例1、(2012 四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A.1800元 B.2400元 C.2800元 D.3100元 *2122120,0,x y x y x y x y N +≤??+≤??≥≥? ?∈?,最大利润为max 300400,430044002800z x y z =+=?+?=. 变式训练:(2012 江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表: 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元 为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( ) A.50,0 B.30,20 C.20,30 D.0,50 501.20.9540,0x y x y x y +≤??+≤??≥≥? ,最大收入为40.5560.3 1.20.90.9z x y x y x y =?+?--=+,则z 在区间(30,20)处取最大值. 二、基本不等式的简单应用:

构造法解导数不等式问题

构造法解导数不等式问题 一.知识梳理 常见的构造函数方法有如下法则构造函数 1.利用和差函数求导法则构造函数 (1)对于不等式()()() 00<>'+'或x g x f ,可构造函数()()()x g x f x F +=。 (2)对于不等式()()() 00<>'-'或x g x f ,可构造函数()()()x g x f x F -=。 特别地,对于不等式()() ()0≠<>'k k k x f 或,可构造函数()()kx x f x F -=。 2. 利用积商函数求导法则构造函数 (3)对于不等式()()()()() 00<>'+'或x g x f x g x f ,可构造函数()()()x g x f x F =。 (4)对于不等式()()()()() 00<>'-'或x g x f x g x f ,可构造函数()()() x g x f x F =。 ! (5)对于不等式()()() 00<>+'或x f x f x ,可构造函数()()x xf x F =。 (6)对于不等式()()() 00<>-'或x f x f x ,可构造函数()()()0≠= x x x f x F 。 (7)对于不等式()()() 00<>+'或x nf x f x ,可构造函数()()x f x x F n =。 (8)对于不等式()()() 00<>-'或x nf x f x ,可构造函数()()()0≠= x x x f x F n 。 (9)对于不等式()()() 00<>+'或x f x f ,可构造函数()()x f e x F x =。 (10)对于不等式()()() 00<>+'或x f x f ,可构造函数()()x e x f x F = 。 (11)对于不等式()()() 00<>+'或x kf x f ,可构造函数()()x f e x F kx =。 (12)对于不等式()()() 00<>-'或x kf x f ,可构造函数()()kx e x f x F = 。 (13)对于不等式()()() 00tan <>'+或x x f x f ,可构造函数()()x xf x F sin =。

相关文档
最新文档