用spss软件进行一元线性回归分析
spss中的回归分析

7、Plots(图)对话框 单击“Plots”按钮,对话框如下图所示。Plots可帮助分析
资料的正态性、线性和方差齐性,还可帮助检测奇异值或异常值。
(1)散点图:可选择如下任何两个变量为Y(纵轴变量)与X (横轴变量)作图。为 获得更多的图形,可单击“Next”按钮来重 复操作过程。
Variables
Model
Entered
1
INCOMEa
Variables
Removed
Method
. Enter
a. All requested variables entered.
b. Dependent Variable: FOODEXP
输 入 / 移 去 的 变 量b
模型 1
输入的变量 移去的变量
DEPENDENT:因变量。 *ZPRED:标准化预测值。 *ZRESID: 标准化残差。 *DRESID:删除的残差。 *ADJPRED:调整残差。 *SRESID:Student氏残差。 *SDRESID: Student氏删除残差。 (2)Standardized Residual Plots:标准化残差图。 Histogram:标准化残差的直方图,并给出正态曲线。 Normal Probality Plot:标准化残差的正态概率图(P-P图)。 (3)Produce all Partial plots:偏残差图。
Coefficie nts Beta
.923
系 数a
t -.781 12.694
Sig. .441 .000
模型
1
(常量)
非标准化系数
B
标准误
SPSS多元线性回归分析教程

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。
包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。
为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。
也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。
另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。
1、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。
数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。
从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。
在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。
所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。
具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。
如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。
Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。
上述两项为默认选项,请注意保持选中。
设置如图7-10所示。
设置完成后点击Continue返回主对话框。
图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。
SPSS 线性回归分析

整理课件
二、多元线性方程回归系数的检验
26
需要对回归系数是否为零逐一进行检验。
原假设H0:βi=0 ,即:第i个偏回归系数与0无显 著差异
利用t检验统计量(略) 若与t统计量的概率伴随p <a,则拒绝H0
多元线性回归中回归系数的检验与整体回归方程 的检验不能相互替代。
第9章 SPSS的线性回归分析
1
9.1 回归分析概述 9.2 线性回归分析和线性回归模型 9.3 回归方程的统计检验 9.4 多元回归分析中的其他问题 9.5 线性回归分析的基本操作 9.6 线性回归分析的应用举例
整理课件
学习的内容与目标
2
掌握线性回归分析的主要指标,了解最小二乘法 的基本思想
熟练掌握线性回归分析的具体操作,读懂分析结 果;掌握计算结果之间的数量关系,写出回归方 程,对回归方程进行各种统计检验
(ordinary least square estimation ,OLSE)
11
估计思想:
使每个样本点(xi , yi)与回归线上的对应点( xi , E (yi ))在垂直方向上偏差距离的二次方总和达 到最小的原则来估计参数 即,∑( yi - E(yi ))2 =最小
b b b b c ˆ ˆ y ˆ ˆ n
19
用于检验被解释变量与所有解释变量之间的线 性关系是否显著,用线性模型来描述它们之间的
关系是否恰当,即检验模型对总体的近似程度。
➢ SST =回归平方和 SSA + 剩余平方和SSE
➢ 回归方程的显著性检验中采用方差分析的方法,研究在 SST中SSA相对于SSE来说是否占有较大比例。如果比例较 大,表明y与x全体的线性关系明显,则利用线性模型反映 y与x的关系是恰当的;反之,不恰当。
SPSS操作:简单线性回归(史上最详尽的手把手教程)

SPSS操作:简单线性回归(史上最详尽的手把手教程)1、问题与数据研究表明,运动有助于预防心脏病。
一般来说,运动越多,心脏病的患病风险越小。
其原因之一在于,运动可以降低血胆固醇浓度。
近期研究显示,一项久坐的生活指标—看电视时间,可能是罹患心脏病的预测因素。
即看电视时间越长,心脏病的患病风险越大。
研究者拟在45-65岁健康男性人群中分析胆固醇浓度与看电视时间的关系。
他们猜测可能存在正向相关,即看电视时间越长,胆固醇浓度越高。
同时,他们也希望预测胆固醇浓度,并计算看电视时间对胆固醇浓度的解释能力。
研究者收集了受试者每天看电视时间(time_tv)和胆固醇浓度(cholesterol)等变量信息,部分数据如下:2、对问题的分析研究者想判断两个变量之间的关系,同时用其中一个变量(看电视时间)预测另一个变量(胆固醇浓度),并计算其中一个变量(看电视时间)对另一个变量(胆固醇浓度)变异的解释程度。
针对这种情况,我们可以使用简单线性回归分析,但需要先满足7项假设:假设1:因变量是连续变量假设2:自变量可以被定义为连续变量假设3:因变量和自变量之间存在线性关系假设4:具有相互独立的观测值假设5:不存在显著的异常值假设6:等方差性假设7:回归残差近似正态分布那么,进行简单线性回归分析时,如何考虑和处理这7项假设呢?3、思维导图(点击图片可查看清晰大图)4、对假设的判断4.1 假设1和假设2因变量是连续变量,自变量可以被定义为连续变量。
举例来说,我们平时测量的反应时间(小时)、智力水平(IQ分数)、考试成绩(0到100分)以及体重(千克)都是连续变量。
在线性回归中,因变量(dependent variable)一般是指研究的成果、目标或者标准值;自变量(independent variable)一般被看作预测、解释或者回归变量。
假设1和假设2与研究设计有关,需要根据实际情况判断。
4.2 假设3简单线性回归要求自变量和因变量之间存在线性关系,如要求看电视时间(time_tv)和胆固醇浓度(cholesterol)存在线性关系。
一元线性回归分析例题

SPSS一元线性回归分析例题(体检数据中的体重和肺活量的分析)某单位对12名女工进行体检,体检项目包括体重(kg)和肺活量(L),数据如下:X(体重:kg) 42.00 42.00 46.00 46.00 46.00 50.0050.00 50.00 52.00 52.00 58.00 58.00Y(肺活量:L) 2.55 2.20 2.75 2.40 2.80 2.813.41 3.10 3.46 2.85 3.50 3.00用x表示体重,y表示肺活量,建立数据文件。
利用一元线性回归分析描述其关系。
基本操作提示:Step 1 建立数据文件,并打开该数据文件。
Step 2 选择菜单Analyz e→Regressio n→Linear,打开主对话框。
在“Dependent”(因变量)列表框中选择变量“肺活量”,作为线性回归分析的被解释变量;在“Independent”(自变量)列表框中选择变量“体重”,作为解释变量。
Step 3 单击“Statistics”按钮,在打开的对话框中,依次选择“Estimates”(显示回归系数的估计值)、“Confidence intervals”、“Model fit”(模型拟合)、“Descriptives”、“Casewise diagnostic”(个案诊断)和“All Cases”选项。
选择完毕后,单击“Continue”按钮,返回主对话框。
Step 4 单击“Plots”(图形)按钮,在打开的主对话框中,选择“DEPENDENT”(因变量)作为y轴变量,“*ZPRED”(标准化预测值)作为x轴变量;并在“Standardized Residual Plots”(标准化残差图)中选择“Histogram”(直方图)和“Normal probabilityplot”(正态概率图,即P-P图)选项。
选择完毕后,单击“Continue”按钮,返回主对话框。
Step 5 单击“Save”(保存)按钮,在打开的主对话框中,在“Predicted Values”(预测值)选项区域中选择“Unstandardized”和“S. E. ofmean predictions”(预测值均数的标准误差)选项;“PredictionIntervals”(预测区间)选项区域中选择“Mean”和“Individual”选项;“Residuals”(残差)选项区域中选择“Unstandardized”选项。
第九章SPSS回归分析

第3步:启动分析过程。点击【分析】【 回归】【线性】菜单命令,打开如图所示 的对话框。
第4步:设置分析变量。设置因变量:在左边变量 列表中选“成就动机分数”,选入到“因变量”框 中。设置自变量:在左边变量列表中选“智商分数 ”变量,选入“自变量”框中。如果是多元线性回 归,则可以选择多个自变量。
第八个表:残差统计
第九个:标准化残差的概率图
[分析]:由此图可知,所有的点都比较靠近对角线 ,结合前面第八个表中的标准化残差为0.892,小 于2,因此可以认为残差是正态的。
由于自我效能感、服从领导满意度、同事人际敏感 、工作技能水平、个人信心指数这几个变量的回归 系数所对应的sig值不显著,在回归分析中需要删 除这几个变量,然后再建立回归方程。因此在SPSS 中接着再次进行回归分析。
分析:此例属于一元线性回归,一般先做两个变量 之间的散点图进行简单地观测。若散点图的趋势大 概呈线性关系,可以建立线性方程;若不呈线性分 布,可建立其它方程模型,并比较R2来确定选择其 中一种最佳方程式。
一元线性回归方程的原假设为:所建立的回归方程 无效,回归方程中来自总体自变量的系数为0。
第9步:重复前面SPSS的操作步骤,从第2步至第6 步。在第3步将自我效能感、服从领导满意度、同 事人际敏感、工作技能水平、个人信心指数这几个 变量从自变量移出,由于SPSS软件中还保存了刚才 第4、5、6步的操作内容,此时只需要再点击【确 定】按钮,输出分析结果。其中模型摘要、回归方 程、回归系数表如下:
第4步:设置分析参数。单击【统计】按钮,打开“ 线性回归:统计”对话框,可以选择输出的统计量 如图所示。
在“回归系数”栏,选择“估算值”。
在对话框的右边,有五个复选框:
(1)“模型拟合”是系统默认项,输出复相关系数 R、R2及R2修正值,估计值的标准误,方差分析表。 (2)“R方变化量”:增加进入或剔除一个自变量时 , R2的变化。
spss线性回归方法分析
课程名称 实用统计软件 实验项目名称 一元线性回归分析 实验成绩 指导老师(签名 ) 日期 2011-9-9
一. 实验目的 1.掌握一元线性回归的最小二乘估计; 2.掌握t检验和F检验的基本原理和检验方法; 3.掌握R平方的统计意义; 4.掌握运用SPSS制作散点图的操作; 5.掌握运用SPSS进行一元回归分析的操作,以及学会识别输出表格数据和统计图形的意义。
二. 实验内容与要求
1.实验内容 1、根据P206习题7-4的数据,运用线性回归的方法分析某地区居民对食品的消费量与居民收入之间的关系。
2、处理P207 习题7-5 。(注意:题目假设的是y与 1/x之间近似具有线性关系,因而我们要拟合的是y与 1/x之间的线性关系,首先要进行变量变换,根据x计算出1/x。)
3、为了研究高等数学成绩与概率统计成绩的关系,收集到20名学生的高等数学与概率统计的成绩数据见课本P207习题7-6。试根据数据运用SPSS做一元线性回归分析。
2.实验要求: 1.作散点图,直观上观察样本点的线性趋势; 2.拟合模型,估计模型系数,写出模型表达式; 3.进行拟合优度评价、模型有效性检验(F检验)、系数非零检验(t检验); 4.进行残差分析,正态性检验(作正态拟合曲线图),独立性检验、奇异点、异方差等(做残差图); 5.保存预测以及残差数据、个案分析(个案影响度度量统计量)。 三.实验步骤 参见课件 一元回归分析.ppt 四. 实验结果(数据与图形)与分析 1.
Variables Entered/Removedb Model Variables Entered Variables Removed Method 1 xa . Enter a. All requested variables entered. b. Dependent Variable: y Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .227a .051 -.001 152.69833 a. Predictors: (Constant), x
SPSS数据分析教程-8-线性回归分析
回归模型的主要问题
? 进行一元线性回归主要讨论如下问题:
(1) 利用样本数据对参数ˉ 0, ˉ 1和? 2,和进行点估计, 得到经验回归方程
(2) 检验模型的拟合程度,验证Y与X之间的线性相关 的确存在,而不是由于抽样的随机性导致的。
Radj
=
1?
SSE=(n ? p ? 1) SST=(n ? 1)
=
1?
n? 1 n ? p ? 1(1 ?
R2)
应用举例
? 数据文件performance.sav记录了一项企业心 理学研究的数据。它调查了一个大型金融机构 的雇员,记录了他们和主管的交互情况的评价 和对主管的总的满意情况。我们希望该调查来 了解主管的某些特征和对他们的总的满意情况 的相互关系。
应用回归分析的步骤
? 步骤1:写出研究的问题和分析目标 ? 步骤2:选择潜在相关的变量 ? 步骤3:收集数据 ? 步骤4:选择合适的拟合模型 ? 步骤5:模型求解 ? 步骤6:模型验证和评价 ? 步骤7:应用模型解决研究问题
简单线性回归
? 简单线性回归的形式为:
? Y = ˉ 0 +ˉ 1 X +2 ? 其中变量X为预测变量,它是可以观测和控制的;Y
(3) 利用求得的经验回归方程,通过X对Y进行预测或 控制。
简单回归方程的求解
? 我们希望根据观测值估计出简单回归方程中 的待定系数ˉ 0和ˉ 1,它们使得回归方程对应 的响应变量的误差达到最小,该方法即为最
小二乘法。
也就是求解ˉ 0和ˉ 1,使得 Xn S(ˉ 0; ˉ 1) = (y iቤተ መጻሕፍቲ ባይዱ? ˉ 0 ? ˉ 1X i )2
4 spss相关分析和回归分析
ˆ 22.6486 0.2643x y
三、SPSS在多元线性回归分析中的应用
由于多元线性回归模型是一元回归模型的推广,因此两者在 SPSS软件中的操作步骤是非常相似的。
选择菜单栏中的【Analyze(分 析)】→【Regression(回归)】 →【Linear(线性)】命令,弹出 【Linear Regression(线性回 归)】对话框。这既是一元线性回归也是多元线性回归的主操 作窗口。因此,读者可以参考一元线性回归的SPSS操作步骤。 只不过由于多元回归模型涉及到多个自变量,因此要在 【Linear Regression(线性回归)】对话框左侧的候选变量 列 表框中选择多个变量,将其添加至【Independent(s)(自变量)】 列表框中,即选择这些变量作为多元线性回归的自变量。
试在MINITAB中做回归分析: (1)求Y与x1、x2、X3的三重线性回归方程并检验,检验水平为0.05; (2)当X1=50,X2=46,X3=98时,对Y做出置信度为95%的区间预测。
29.9
51
124
99
三、实例分析-回归分析
三、实例分析-回归分析
三、实例分析-回归分析
三、实例分析-回归分析
量列表框中选择变量y,将其添加至【Dependent(因变量)】列表 框中,选择变量x,将其添加至【Independent(s)(自变量)】列表
框中,点击ok。
二、SPSS一元线性回归实例分析
结果如下:
因为方差分析表中的P值为0.001,小于0.05,说明模型显著;而 系数检验中的P值分别为0.000和0.001,都小于0.05,说明系数显 著,即甲醛浓度对缩醛化度具有显著影响。一元线性方程为:
主要结果如下:
相关分析与回归分析SPSS实现
-- -- 相关分析与回归分析 一、试验目标与要求 本试验项目的目的是学习并使用SPSS软件进行相关分析和回归分析,具体包括: (1) 皮尔逊pearson简单相关系数的计算与分析 (2) 学会在SPSS上实现一元及多元回归模型的计算与检验。 (3) 学会回归模型的散点图与样本方程图形。 (4) 学会对所计算结果进行统计分析说明。 (5) 要求试验前,了解回归分析的如下内容。 参数α、β的估计 回归模型的检验方法:回归系数β的显著性检验(t-检验);回归方程显著性检验(F-检验)。
二、试验原理
1.相关分析的统计学原理 相关分析使用某个指标来表明现象之间相互依存关系的密切程度。用来测度简单线性相关关系的系数是Pearson简单相关系数。 2.回归分析的统计学原理 相关关系不等于因果关系,要明确因果关系必须借助于回归分析。回归分析是研究两个变量或多个变量之间因果关系的统计方法。其基本思想是,在相关分析的基础上,对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定,确立一个合适的数据模型,以便从一个已知量推断另一个未知量。回归分析的主要任务就是根据样本数据估计参数,建立回归模型,对参数和模型进行检验和判断,并进行预测等。 线性回归数学模型如下:
iikkiiixxxy22110 在模型中,回归系数是未知的,可以在已有样本的基础上,使用最小二乘法
对回归系数进行估计,得到如下的样本回归函数:
iikkiiiexxxyˆˆˆˆ22110 回归模型中的参数估计出来之后,还必须对其进行检验。如果通过检验发现模型有缺陷,则必须回到模型的设定阶段或参数估计阶段,重新选择被解释变量-- -- 和解释变量及其函数形式,或者对数据进行加工整理之后再次估计参数。回归模型的检验包括一级检验和二级检验。一级检验又叫统计学检验,它是利用统计学的抽样理论来检验样本回归方程的可靠性,具体又可以分为拟和优度评价和显著性检验;二级检验又称为经济计量学检验,它是对线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验、异方差检验等。