相关分析和一元线性回归分析SPSS报告
第7章 相关分析与回归分析(含SPSS)

四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。
偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)
偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。
(二)偏相关系数在SPSS中的实现
1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶
SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于
是
n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影
SPSS相关性和回归分析一元线性方程案例解析

将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方物和人都不是以个体存在的,它们都被复杂的关系链所围绕着,具有一定的相关性,也会具备一定的因果关系,(比如:父母和子女,不仅具备相关性,而且还具备因果关系,因为有了父亲和母亲,才有了儿子或女儿),但不是所有相关联的事物都具备因果关系。
所以一元线性方程为:居民总消费=2878.518+0.954*居民总储蓄
其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
点击“分析”--回归----线性”结果如下所示:
将“因变量”和“自变量”分别拖入框内(如上图所示)从上图可以看出:“自变量”指“居民总储蓄”, "因变量”是指“居民总消费”
相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。
本文将介绍如何使用SPSS进行相关分析和回归分析。
相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。
在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“相关”子菜单。
3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。
4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。
5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。
回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。
在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。
2.选择“分析”菜单,然后选择“回归”子菜单。
3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。
4.选择回归模型的方法(如线性回归、多项式回归等)。
5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。
6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。
在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。
回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。
值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。
例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。
总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。
通过上述步骤,用户可以轻松地完成数据分析和结果呈现。
然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。
spss对数据进行相关性分析实验报告

spss对数据进行相关性分析实验报告一、实验目的与背景在统计学的研究中,相关性分析是一种常见的分析方法,用于研究两个或多个变量之间的关联程度。
本实验旨在使用SPSS软件对收集到的数据进行相关性分析,并探索变量之间的关系。
二、实验过程1. 数据收集:根据研究目的,我们收集了一份包含多个变量的数据集。
其中,变量包括A、B、C等。
2. 数据准备:在进行相关性分析之前,我们需要对数据进行准备。
首先,我们载入数据集到SPSS软件中。
然后,对于缺失数据,我们根据需要采取相应的填补或删除策略。
接着,我们进行数据的清洗和整理,以确保数据的准确性和一致性。
3. 相关性分析:使用SPSS软件,我们可以轻松地进行相关性分析。
在SPSS的分析菜单中,选择相关性分析功能,并设置相应的参数。
我们将选择Pearson相关系数,该系数用于衡量两个变量之间的线性相关关系。
此外,还可以选择其他类型的相关系数,如Spearman相关系数,用于非线性关系的探索。
设置参数后,我们点击“运行”按钮,即可得到相关性分析的结果。
4. 结果解读:SPSS将为我们提供一份详细的结果报告。
我们可以看到每对变量之间的相关系数及其显著性水平。
如果相关系数接近1或-1,并且P值低于显著性水平(通常为0.05),则可以得出两个变量之间存在显著的线性相关关系的结论。
此外,我们还可以通过散点图、线性回归等方法进一步分析相关性结果。
5. 结论与讨论:根据相关性分析的结果,我们可以得出结论并进行讨论。
如果发现两个变量之间存在显著的相关关系,我们可以进一步探究其原因和意义。
同时,我们还可以提出假设并设计更深入的实验,以验证和解释这些相关性。
三、结果与讨论根据我们的研究目的和数据集,通过SPSS软件进行的相关性分析显示了一些有意义的结果。
我们发现变量A与变量B之间存在显著的正相关关系(Pearson相关系数为0.7,P<0.05)。
这表明随着A的增加,B也会相应增加。
实验报告四.SPSS一元线性相关回归分析预测

a
均值 159.1000 .000 .781 159.2740 .00000 .000 -.038 -.17402 .007 .900 .104 .100
标准 偏差 1.79729 1.000 .308 1.95023 1.75840 .943 1.025 2.10525 1.084 1.583 .133 .176
广东金融学院实验报告
课程名称:市场调查与预测
实验编号 及实验名称 姓 名
实验四:SPSS 一元线性相关回归分析预测 马秀文 实验中心 周刺天
系 班
别 级
工商管理系 市场营销 2 班 4
学
号
111521216 2013/12/9 无
实验地点 指导教师
实验日期 同组其他成员
实验时数 成 绩
一、实验目的及要求 利用 SPSS 进行回归分析。 二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等) 通过实验教学中心的教学环境发布相关练习资料。 软件运行环境:操作系统 WindowsXP,办公自动化软件,SPSS 统计分析软件包。 硬件设备:实验室的个人电脑。 三、实验内容及步骤(包含简要的实验步骤流程) 为了了解某地母亲身高 x 与女儿身高 Y 的相关关系,随机测得 10 对母女的身高(见文 件“母女身高.sav”) 。利用 SPSS 软件,完成以下任务: 1.画出 x、Y 散点图,观察因变量与自变量之间关系是否有线性特点; 2.试对 x 与 Y 进行一元线性回归分析,列出一元线性回归预测模型; 3.预测当母亲身高为 161cm 时女儿的身高?
第 2 页 共 7 页
四、实验结果(包括程序或图表(截图) 、 自变量与因变量有线性特点, 即母亲身高和女儿身高有线性特点, 且大致呈正相关的关系。
SPSS相关性和回归分析一元线性方程案例解析

其中在“样本数据统计”中,随即误差一般叫“残差”:
从结果分析来看,可以简单的认为:居民总储蓄每增加1亿,那居民总消费将会增加0.954亿
提示:对于回归参数的估计,一般采用的是“最小二乘估计法”原则即为:“残差平方和最小“
1:点击“分析”—相关—双变量,进入如下界面:
将“居民总储蓄”和“居民总消费”两个变量移入“变量”框内,在“相关系数”栏目中选择“Pearson",(Pearson是一种简单相关系数分析和计算的方法,如果需要进行进一步分析,需要借助“多远线性回归”分析)在“显著性检验”中选择“双侧检验”并且勾选“标记显著性相关”点击确定,得到如下结果:
从以上结果,可以看出“Pearson"的相关性为0.821,(可以认为是“两者的相关系数为0.821)属于“正相关关系”同时“显著性(双侧)结果为0.000,由于0.000<0.01,所以具备显著性,得出:“居民总储蓄”和“居民总消费”具备相关性,有关联。
既然具备相关性,那么我们将进一步做分析,建立回归分析,并且构建“一元线性方程”,如下所示:
2:从anvoa b的检验结果来看(其实这是一个“回归模型的方差分析表)F的统计量为:29.057,P值显示为0.000,拒绝模型整体不显著的假设,证明模型整体是显著的
3:从“系数a”这个表可以看出“回归系数,回归系数的标准差,回归系数的T显著性检验等,回归系数常量为:2878.518,但是SIG为:0.452,常数项不显著,回归系数为:0.954,相对的sig为:0.000,具备显著性,由于在“anvoa b”表中提到了模型整体是“显著”的
SPSS-相关性和回归分析(一元线性方程)案例解析
SPSS相关性分析

回归分析
一元线性回归模型:
y 0 1 x
为截距,即常 其中x为自变量;y为因变量; 0 1 量; 为回归系数,表明自变量对因变量的影 响程度。
用最小二乘法求解方程中的两个参数,得到
1
( x x )( y y ) (x x)
i i 2 i
0 y bx
等级相关分析
等级相关分析 等级相关是指以等级次序排列 或以等级次序表示的变量之间的相关。主要包 括斯皮尔曼二列等级相关和肯德尔和谐系数多 列等级相关。
Spearman等级相关系数—定序变量之 间的相关性的度量
斯皮尔曼等级相关系数:
两个变量为定序变量。 一个变量为定序变量,另一个变量为尺度数据,且 两总体不是正态分布,样本容量n不一定大于30。 数据的秩:秩rank,是一种数据排序的方式,可以 知道某变量值在该列所有值中的名次。秩是对应数 值由大到小的,例如有100个数据都不一样的话, 最大的数值对应的秩就是100,最小的就是1。有重 复数据时候,会按同名称排列。
残差是指由回归方程计算得到的预测值与实际 样本值之间的差距,定义为:
ˆi yi (0 1x1 2 x2 ... p x p ) ei yi y
对于线性回归分析来讲,如果方程能够较好的 反映被解释变量的特征和规律性,那么残差序 列中应不包含明显的规律性。残差分析包括以 下内容:残差服从正态分布,其平均值等于0 ;残差取值与X的取值无关;残差不存在自相 关;残差方差相等。
设样本量为n,考察两个变量X和Y之间的相关 关系,X和Y的取值记为xi,yi。所有像(xi,yi) 2 对的个数为n(n-1)/2(也就是 Cn)。和分别 表示和的秩次,如果对于任意k,有我们称 (xk,yk)为同序对;否则,称为逆序对。 总的同序对的个数记为U,逆序对的个数记为V, 则Kendall的Tau系数的定义为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用下面的数据做相关分析和一元线性回归分析:
选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。
一、相关分析
1.作散点图
普通高等学校毕业生数和高等学校发表科技论文数量的相关图
从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。
2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数
把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:
Correlations
普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)
普通高等学校毕业生数(万人) Pearson Correlation 1 .998**
Sig. (2-tailed) .000
N 14 14
高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000
N 14 14
**. Correlation is significant at the 0.01 level (2-tailed).
两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P 值=0.000,小于显着性水平0.05,应拒绝原假设(两变量之间不具有相关性),即毕业生人数好发表科技论文数之间的相关性显着。
3.求两变量之间的相关性
选择相关系数中的全部,点击确定:
Correlations
(万人) (篇)
Kendall's tau_b (万人) Correlation Coefficient 1.000 1.000**
Sig. (2-tailed) . .
N 14 14
(篇) Correlation Coefficient 1.000** 1.000
Sig. (2-tailed) . .
N 14 14
Spearman's rho (万人) Correlation Coefficient 1.000 1.000**
Sig. (2-tailed) . .
N 14 14
(篇) Correlation Coefficient 1.000** 1.000
Sig. (2-tailed) . .
N 14 14
**. Correlation is significant at the 0.01 level (2-tailed).
注解:两相关变量(毕业生数和发表论文数)的Kendall相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显着。
两相关变量(毕业生数和发表论文数)的Spearman相关系数=1.000,呈正相关;无相关系数检验对应的概率P值,应接受原假设(两变量之间不具有相关性),即毕业生数与发表论文数之间相关性不显着。
4.普通高等学校毕业生数和高等学校发表科技论文数量的相关系数
将所求变量移至变量,将控制变量移至控制中,选中显示实际显着性水平,点击确定:
Correlations
普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)
普通高等学校毕业生数(万人) Pearson Correlation 1 .998**
Sig. (2-tailed) .000
N 14 14
注解: 两相关变量(普通高校毕业生数和发表论文数)的偏相关系数=0.998,呈正相关;对应的偏相关系数双侧检验p值0,小于显着性水平0.05,应拒绝原假设(两变量之间不具有相关性),即普通高校毕业生数与发表论文数之间相关性显着。
二、一元线性回归
从前面的相关分析可以看出普通高等学校毕业生数和高等学校发表科技论文数量呈高度正相关关系,所以,下面对这两个变量做一元线性回归分析。
1.建立回归方程
点击选项,选中使用F的概率,如上图所示。
点击继续,确定:
Variables Entered/Removed b
Model Variables
Entered
Variables
Removed Method
1 (篇)a. Enter
a. All requested variables entered.
b. Dependent Variable: (万人)
此图显示的是回归分析方法引入变量的方式。
此图是回归方程的拟合优度检验。
注解:上图是回归方程的拟合优度检验。
第二列:两变量(被解释变量和解释变量)的相关系数R=0.998.
第三列:被解释变量(毕业人数)和解释变量(发表科技论文数)的判定系数
R2=0.996是一元线性回归方程拟合优度检验的统计量;判定系数越接近1,说明回归方程对样本数据的拟合优度越高,被解释变量可以被模型解释的部分越多。
第四列:被解释变量(毕业人数)和解释变量(发表科技论文数)的调整判定系数R 2=0.996。
这主要适用于多个解释变量的时候。
第二列:被解释变量(毕业人数)的总离差平方和
=449963.199,被分解为两部分:回归平方和=448318.664;剩余平方和=1644.535.
F 检验统计量的值=3271.335,对应概率的P 值=0.000,小于显着性水平0.05,应拒绝回归方程显着性检验的原假设(回归系数与0不存在显着性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显着的,可以建注解:回归方程的回归系数和常数项的估计值,以及回归系数的显着性检验。
第二列:常数项估计值=-316.259;回归系数估计值=0.001. 第三列:回归系数的标准误差=0.000 第四列:标准化回归系数=0.998.
第五、六列:回归系数T检验的t统计量值=57.196,对应的概率P值=0.000,小于显着性水平0.05,拒绝原假设(回归系数与0不存在显着性差异),结论:回归系数不为0,被解释变量(毕业人数)与解释变量(发表科技论文数)的线性关系是显着的。
于是,回归方程为:
y i=-316.259+0.001x
2.回归方程的进一步分析
(1)在统计量中选中误差条图的表征,水平百分之95.
点击继续,然后点击确定,输出每个非标准化回归系数的95%置信区间:
选中统计量中的描述性,点击继续,然后确定,输出变量的均值、标准差相关系数矩阵
(2)残差分析
选中统计量中的个案诊断,所有个案,点击继续,然后确定:
Residuals Statistics a
Minimum Maximum Mean Std. Deviation N
从上表可以看出,第8例的残差和标准化残差最大。