广东广州中考数学真题测试卷有答案
2024广东省广州市天河区中考一模数学试题含答案解析

2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。
2022年广东省广州市中考数学试卷(附答案)【电子版 已排版】

2022年广州市初中学业水平考试数 学注意事项:1. 答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3. 非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域的相应位置上,涉及作图的题目,用2B 铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域,不准使用铅笔(作图除外)、涂改液和修正带。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个几何体的侧面展开图,这个几何体可以是(*)A .圆锥B .圆柱C .棱锥D .棱柱2.下列图形中,是中心对称图形的是(*)A .B .C .D .3.x 应满足的条件为(*)A .1≠-x B .1>-x C .1<-x D .1≤-x4.点(3,﹣5)在正比例函数=y kx (0≠k )的图象上,则k 的值为(*)A .15-B .15C .35-D .53-5.下列运算正确的是(*)A 2=B .11+-=a a a a(0≠a )C .=D .235⋅=a a a 6.如图,抛物线2=++y ax bx c (0≠a )的对称轴为2=-x ,下列结论正确的是(*)A .a <0B .c >0C .当x <﹣2时,y 随x 的增大而减小D .当x >﹣2时,y 随x 的增大而减小7.实数a ,b 在数轴上的位置如图所示,则(*)A .=a bB .>a bC .<a bD .>a b8.为了疫情防控,某小区需要从甲、乙、丙、丁4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是(*)A .12B .14C .34D .5129.如图,正方形ABCD 的面积为3,点E 在边CD 上,且CE =1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则MN 的长为(*)A B C .2D 10.如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n 个图形需要2022根小木棒,则n 的值为(*)A .252B .253C .336D .337第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.在甲、乙两位射击运动员的10次考核成绩中,两人的考核成绩的平均数相同,方差分别为2 1.45=甲S ,20.85=乙S ,则考核成绩更为稳定的运动员是*.(填“甲”、“乙”中的一个).12.分解因式:2321-=a ab *.13.如图,在ABCD 中,AD =10,对角线AC 与BD 相交于点O ,AC +BD =22,则△BOC 的周长为*.14.分式方程3221=+x x 的解是*.15.如图,在△ABC 中,AB =AC ,点O 在边AC 上,以O 为圆心,4为半径的圆恰好过点C ,且与边AB 相切于点D ,交BC 于点E ,则劣弧DE 的长是*.(结果保留π)16.如图,在矩形ABCD 中,BC =2AB ,点P 为边AD 上的一个动点,线段BP 绕点B 顺时针旋转60°得到线段BP ′,连接PP ′,CP ′.当点P ′落在边BC 上时,∠PP ′C 的度数为*;当线段CP ′的长度最小时,∠PP ′C 的度数为*.三、填空题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分4分)解不等式:324-<x .18.(本小题满分4分)如图,点D ,E 在△ABC 的边BC 上,∠B =∠C ,BD =CE ,求证:△ABD ≌△ACE .19.(本小题满分6分)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表请根据图表中的信息解答下列问题:(1)频数分布表中的a =,b =,n =;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.某燃气公司计划在地下修建一个容积为V (V 为定值,单位:m 3)的圆柱形天然气储存室,储存室的底面积S (单位:m 2)与其深度d (单位:m )是反比例函数关系,它的图象如图所示.(1)求储存室的容积V 的值;(2)受地形条件限制,储存室的深度d 需要满足16≤d ≤25,求储存室的底面积S 的取值范围.21.(本小题满分8分)已知()()()2232323=+++-+T a b a b a b a .(1)化简T ;(2)若关于x 的方程2210+-+=x ax ab 有两个相等的实数根,求T 的值.22.(本小题满分10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,且AC =8,BC =6.(1)尺规作图:过点O 作AC 的垂线,交劣弧AC 于点D ,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O 到AC 的距离及sin ∠ACD 的值.23.(本小题满分10分)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB 的影子为BC ,与此同时在C 处立一根标杆CD ,标杆CD 的影子为CE ,CD =1.6m ,BC =5CD .(1)求BC 的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB 的高度.条件①:CE =1.0m ;条件②:从D 处看旗杆顶部A 的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:1sin54.460.8︒≈,8cos54.460.5︒≈,0cos54.46 1.4︒≈已知直线l:=+y kx b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在44155≤≤+m mx的图象的最高点的坐标.25.(本小题满分12分)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且=BE.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,+CE的值是否也最小?如果是,求CE的最小值;如果不是,请说明理由.2022年广东省广州市中考数学试卷参考答案与试题解析选择题一、选择题(本大题共10小题,每小题3分,满分30分。
2023年广州市中考数学真题试卷及答案

2023年广州市初中学业水平考试数学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. ()2023--=( ) A. 2023-B. 2023C. 12023-D.120232. 一个几何体的三视图如图所示,则它表示的几何体可能是( )A. B. C. D.3. 学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12,下列关于这组数据描述正确的是( ) A. 众数为10B. 平均数为10C. 方差为2D. 中位数为94. 下列运算正确的是( ) A. ()325a a =B. 824a a a ÷=(0a ≠)C. 358a a a ⋅=D. 12(2)a a-=(0a ≠) 5. 不等式组21,1223x x x x ≥-⎧⎪+⎨>⎪⎩的解集在数轴上表示为( )A.B.C. D.6. 已知正比例函数1y ax =的图象经过点1,1,反比例函数2by x=的图象位于第一,第三象限,则一次函数y ax b =+的图象一定不经过( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,海中有一小岛A ,在B 点测得小岛A 在北偏东30°方向上,渔船从B 点出发由西向东航行10n mile 到达C 点,在C 点测得小岛A 恰好在正北方向上,此时渔船与小岛A 的距离为( )n mileA.B.C. 20D. 8. 随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是( ) A.36048060x x =+ B.36048060x x=- C.36048060x x =- D.36048060x x=+ 9. 如图,ABC ∆的内切圆⊙I 与BC ,CA ,AB 分别相切于点D ,E ,F ,若⊙I 的半径为r ,A α∠=,则()BF CE BC +-的值和FDE ∠的大小分别为( )A. 2r ,90α︒-B. 0,90α︒-C. 2r ,902α︒-D. 0,902α︒-10. 已知关于x 的方程()222210x k x k --+-=有两个实数根,2的化简结果是( ) A.1-B. 1C. 12k --D. 23k -第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11. 近年来,城市电动自行车安全充电需求不断攀升.截至2023年5月底,某市已建成安全充电端口逾280000个,将280000用科学记数法表示为____________.12. 已知点()11,A x y ,()22,B x y 在抛物线23y x =-上,且120x x <<,则1y _________2y .(填“<”或“>”或“=”)13. 2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一,二,三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a 的值为____________.若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为___________.14. 如图,正方形ABCD 的边长为4,点E 在边BC 上,且1BE =,F 为对角线BD 上一动点,连接CF ,EF ,则CF EF +的最小值为___________.15. 如图,已知AD 是ABC ∆的角平分线,DE ,DF 分别是ABD △和ΔACD 的高,12AE =,5DF =,则点E 到直线AD 的距离为____________.16. 如图,在Rt ABC △中,90ACB ∠=︒,10AB =,6AC =,点M 是边AC 上一动点,点D ,E 分别是AB ,MB 的中点,当 2.4AM =时,DE 的长是___________.若点N 在边BC 上,且CN AM =,点F ,G 分别是MN ,AN 的中点,当 2.4AM >时,四边形DEFG 面积S 的取值范围是____________.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤.)17. 解方程:2650x x -+=.18. 如图,B 是AD 的中点,BC DE ∥,BC DE =.求证:C E ∠=∠.19. 如图,在平面直角坐标系v 中,点()2,0A -,()0,2B ,AB 弧所在圆的圆心为O .将AB 弧向右平移5个单位,得到CD 弧(点A 平移后的对应点为C ).(1)点D 的坐标是___________,CD 弧所在圆的圆心坐标是___________; (2)的图中画出CD 弧,并连接AC ,BD ;(3)求由AB 弧,BD ,DC ,CA 首尾依次相接所围成的封闭图形的周长.(结果保留π) 20. 已知3a >,代数式:228A a =-,236B a a =+,3244C a a a =-+. (1)因式分解A ;(2)在A ,B ,C 中任选两个代数式,分别作为分子,分母,组成一个分式,并化简该分式. 21. 甲,乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A ,B ,C ,D ),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C 的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?22. 因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用1y (元)与该水果的质量x (千克)之间的关系如图所示;在乙商店购买该水果的费用2y (元)与该水果的质量x (千克)之间的函数解析式为210y x =(0x ≥).(1)求1y 与x 之间的函数解析式;(2)现计划用600元购买该水果,选甲,乙哪家商店能购买该水果更多一些? 23. 如图,AC 是菱形ABCD 的对角线.(1)尺规作图:将ABC ∆绕点A 逆时针旋转得到ADE ,点B 旋转后的对应点为D (保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD ,CE ; ①求证:ABD ACE ∆∆∽;①若1tan 3BAC ∠=,求cos DCE ∠的值.24. 已知点(),P m n 在函数()20y x x=-<的图象上.(1)若2m =-,求n 的值;(2)抛物线()()y x m x n =--与x 轴交于两点M ,N (M 在N 的左边),与y 轴交于点G ,记抛物线的顶点为E .①m 为何值时,点E 到达最高处;①设GMN ∆的外接圆圆心为C ,C 与y 轴的另一个交点为F ,当0m n +≠时,是否存在四边形FGEC 为平行四边形?若存在,求此时顶点E 的坐标;若不存在,请说明理由.25. 如图,在正方形ABCD 中,E 是边AD 上一动点(不与点A ,D 重合).边BC 关于BE 对称的线段为BF ,连接AF .(1)若15ABE ∠=︒,求证:ABF △是等边三角形; (2)延长FA ,交射线BE 于点G ;①BGF ∆能否为等腰三角形?如果能,求此时ABE ∠的度数;如果不能,请说明理由;①若AB =,求BGF ∆面积的最大值,并求此时AE 的长.2023年广州市初中学业水平考试数学答案一、选择题9. 解:如图,连接IF IE ,.∵ABC ∆的内切圆⊙I 与BC ,CA ,AB 分别相切于点D ,E ,F . ∴BF BD CD CE IF AB IE AC ==⊥⊥,,,.∴0BF CE BC BD CD BC BC BC +-=+-=-=,90AFI AEI ∠=∠=︒. ∴180EIF α∠=︒-. ∴119022EDF EIF α∠=∠=︒-. 10. 解:∵关于x 的方程()222210x k x k --+-=有两个实数根.∴判别式()()22224110k k ⎡⎤∆=---⨯⨯-≥⎣⎦. 整理得:880k -+≥. ∴1k ≤.∴10k -≤,20k ->.2()()12k k =----1=-.故选:A .二、填空题14.解:如图,连接AE 交BD 于一点F ,连接CF . ∵四边形ABCD 是正方形. ∴点A 与点C 关于BD 对称. ∴AF CF =.∴CF EF AF EF AE +=+=,此时CF EF +最小. ∵正方形ABCD 的边长为4. ∴4,90AD ABC =∠=︒. ∵点E 在AB 上,且1BE =.∴AE =,即CF EF +.15. 解:∵AD 是ABC ∆的角平分线,DE ,DF 分别是ABD △和ΔACD 的高,5DF =. ∴5DE DF ==. 又12AE =.∴13AD =. 设点E 到直线AD 的距离为x . ∵1122AD x AE DE ⋅=⋅. ∴6013AE DE x AD ⋅==. 故答案为:6013. 16. 解:①点D ,E 分别是AB ,MB 的中点. ∴DE 是ABM ∆的中位线.∴11.22DE AM ==; 如图,设AM x =.由题意得,DE AM ∥,且12DE AM =. ∴1122DE AM x ==. 又F ,G 分别是MN AN 、的中点. ∴FG AM ∥,12FG AM =. ∴DE FG ∥,DE FG =. ∴四边形DEFG 是平行四边形. 由题意得,GF 与AC 的距离是12x .∴8BC ==.∴DE 边上的高为142x ⎛⎫-⎪⎝⎭. ①四边形DEFG 面积211142224S x x x x ⎛⎫=⋅-=- ⎪⎝⎭()21444x =--+. ∵2.46x <≤. ∴34S <≤.故答案为:1.2,34S <≤.三、解答题17. 11x =,25x =18.证明:∵B 是AD 的中点. ∴AB BD =. ∵BC DE ∥.∴ABC D ∠=∠. 在ABC ∆和BDE △中.AB BD ABC D BC DE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC BDE ≌ΔΔ. ∴C E ∠=∠.19. (1)()5,2,()5,0 (2)见解析 (3)10π++ 【小问1详解】解:①()0,2B ,AB 弧所在圆的圆心为()0,0O . ①()5,2D ,CD 弧所()5,0在圆的圆心坐标是()5,0. 故答案为:()5,2 【小问2详解】解:如图所示:CD 弧即为所求;【小问3详解】 解:连接CD . ①()2,0A -,()0,2B . ①AB 弧的半径为2. ①弧902180AB ππ⨯==. ①将AB 弧向右平移5个单位,得到CD 弧. ①()()5,3,0,5,2AC BD C D ==.①CD =.①由AB 弧,BD ,DC ,CA 首尾依次相接所围成的封闭图形的周长5210ππ=+⨯+=++20. (1)()()222a a +- (2)见解析 【小问1详解】解:()()()222824222A a a a a =-=-=+-;【小问2详解】 解:①当选择A ,B 时:()()()22323222236248a a B aA a a a a a a +===++---. ()()()22222243228363a a A aB a a aa a a ++=+---==; ②当选择A ,C 时:()()()2322222222244428a a C a a a a a a A a a a ---===-+-++. ()()()2322222228424224a a A a C a a a a a a a a +---+-+===-; ③当选择B ,C 时:()()2322224432364436a a C a a a a a B a a a a a --+==-+++=+. ()()2222336443236442a B a a a a a a a C a a a a ++===+-++--.21. (1)14(2)公平.22. (1)当05x <≤时,115y x =;当5x >时,1930y x =+ (2)选甲家商店能购买该水果更多一些 23. (1)作法,证明见解答; (2)①证明见解答;②cos DCE ∠的值是35. 【小问1详解】 解:如图1,ADE 就是所求的图形..【小问2详解】证明:①如图2,由旋转得AB AD =,AC AE =,BAC DAE ∠=∠. ∴AB ADAC AE=,BAC CAD DAE CAD ∠+∠=∠+∠. BAD CAE ∴∠=∠. ABD ACE ∴△∽△.②如图2,延长AD 交CE 于点F .AB AD =,BC DC =,AC AC =.()SSS ABC ADC ∴△≌△. BAC DAC ∴∠=∠. BAC DAE ∠=∠.DAE DAC ∴∠=∠. AE AC =. AD CE ∴⊥. 90CFD ∴∠=︒.设CF m =,CD AD x ==.1tan tan 3CF DAC BAC AF =∠=∠=. 33AF CF m ∴==. 3DF m x ∴=-.222CF DF CD +=. 222(3)m m x x ∴+-=.∴解关于x 的方程得53x m =. 53CD m ∴=.3cos 553CF m DCE CD m ∴∠===.cos DCE ∴∠的值是35.24. (1)n 的值为1; (2)①m =;②假设存在,顶点E的坐标为72⎛⎫- ⎪ ⎪⎝⎭,或72⎫-⎪⎪⎝⎭. 【小问1详解】 解:把2m =-代入2(0)y x x =-<得212n =-=-; 故n 的值为1; 【小问2详解】解:①在()()y x m x n =--中,令0y =,则()()0x m x n --=.解得x m =或x n =.(,0)M m ∴,(,0)N n .点(,)P m n 在函数2(0)y x x=-<的图象上. 2mn ∴=-.令2m n x +=,得2211()()()2()244y x m x n m n m n =--=--=--+≤-. 即当0m n +=,且mn 2=-.则22m =,解得:m =(正值已舍去).即m =时,点E 到达最高处; ②假设存在,理由:对于()()y x m x n =--,当0x =时,2y mn ==-,即点(0,2)G -. 由①得(,0)M m ,(,0)N n ,(0,2)G -,21(())24m n E m n +--,,对称轴为直线2m n x +=.由点(,0)M m ,(0,2)G -的坐标知,2tan OG OMG OM m∠==-. 作MG 的中垂线交MG 于点T ,交y 轴于点S ,交x 轴于点K ,则点112T m ⎛⎫ ⎪⎝-⎭,. 则1tan 2MKT m ∠=-. 则直线TS 的表达式为:11()122y m x m =---. 当2m n x +=时,111()1222y m x m =---=-.则点C 的坐标为122m n +⎛⎫-⎪⎝⎭,.由垂径定理知,点C 在FG 的中垂线上,则12()2(2)32C G FG y y =-=⨯-+=. 四边形FGEC 为平行四边形. 则132C E E CE FG y y y ===-=--. 解得:72E y =-. 即217()42m n --=-,且mn 2=-.则m n +=∴顶点E 的坐标为722⎛⎫-- ⎪ ⎪⎝⎭,或722⎛⎫- ⎪ ⎪⎝⎭.25. (1)见解析 (2)①BGF ∆能为等腰三角形,22.5ABE =︒∠;①AE =【小问1详解】证明:由轴对称的性质得到BF BC =. ∵四边形ABCD 是正方形. ∴90ABC ∠=︒. ∵15ABE ∠=︒. ∴75CBE ∠=︒.∵BC 于BE 对称的线段为BF , ∴75FBE CBE ∠=∠=︒. ∴60ABF FBE ABE ∠=∠-∠=︒. ∴ABF △是等边三角形; 【小问2详解】①∵BC 于BE 对称的线段为BF , ∴BF BC =∵四边形ABCD 是正方形. ∴BC AB =. ∴BF BC BA ==. ∵E 是边AD 上一动点. ∴BA BE BG <<.∴点B 不可能是等腰三角形BGF 的顶点.若点F 是等腰三角形BGF 的顶点. 则有FGB FBG CBG ∠=∠=∠. 此时E 与D 重合,不合题意.∴只剩下GF GB =了,连接CG 交AD 于H .∵BC BF CBG FBG BG BG =∠=∠=,, ∴()SAS CBG FBG ∆∆≌ ∴FG CG =. ∴BG CG =.∴BGF ∆为等腰三角形, ∵BA BC BF ==. ∴BFA BAF ∠=∠. ∵CBG FBG ∆∆≌. ∴BFG BCG ∠=∠ ∴AD BC ∥ ∴AHG BCG ∠=∠∴18090BAF HAG AHG HAG BAD ∠+∠=∠+∠=︒∠=︒- ∴18090FGC HAG AHG ∠=︒-∠-∠=︒. ∴1452BGF BGC FGH ∠=∠=∠=︒ ∵GB GC = ∴()118067.52GBC GCB BGC ∠=∠=︒-∠=︒ ∴9067.522.5ABE ABC GBC ∠=∠-∠=︒-︒=︒; ②由①知,CBG FBG ∆∆≌要求BGF ∆面积的最大值,即求BGC ∆面积的最大值. 在BGC ∆中,底边BC 是定值,即求高的最大值即可.如图2,过G 作GP BC ⊥于P ,连接AC ,取AC 的中点M ,连接GM ,作MNBC ⊥于N .设2AB x =,则AC =. ∵=90AGC ∠︒,M 是AC 的中点.∴11,22GM AC MN AB x ====.∴1)PG GM MN x ≤+=. 当G ,M ,N 三点共线时,取等号. ∴BGF ∆面积的最大值.BGF ∆的面积1·2BC PG =)21x =)2114=+⨯=如图3,设PG 与AD 交于Q .则四边形ABPQ 是矩形.∴2AQ PB x PQ AB x ====,.∴,QM MP x GM ===.∴)112GQ =.∵QE AE AQ x +==.∴AQ AE =.∴)21AE x = 21)12⨯==.2022年广东省初中学业水平考试数学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于( ) A. 2B. 12-C.12D. ﹣22. 计算22的结果是( )A. 1B.C. 2D. 43. 下列图形中具有稳定性的是( ) A. 平行四边形B. 三角形C. 长方形D. 正方形4. 如图,直线a,b 被直线c 所截,a ∥b,∥1=40°,则∥2等于( )A. 30°B. 40°C. 50°D. 60°5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A.14B.12C. 1D. 26. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A. ()3,1B. ()1,1-C. ()1,3D. ()1,1-7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A.14B.13C.12D.238. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A. 1yB. 2yC. 3yD. 4y10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( ) A. 2是变量B. π是变量C. r 是变量D. C 是常量二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____.12. 单项式3xy 的系数为___________.13. 菱形的边长为5,则它的周长为____________.14. 若1x =是方程220x x a -+=的根,则=a ____________.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩.17. 先化简,再求值:211a a a -+-,其中5a =.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20. 物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系=+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.15y kx(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =1AD =,求CD 的长度.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ ∆面积的最大值,并求此时P 点坐标.2022年广东省初中学业水平考试数学答案一、选择题.二、填空题.三、解答题.16. 12x <<17. 21a +,1118. 证明:∵AOC BOC ∠=∠.∴OC 为AOB ∠的角平分线.又∵点P 在OC 上,PD OA ⊥,PE OB ⊥.∴PD PE =,90PDO PEO ∠=∠=︒.又∵PO PO =(公共边).∴()HL OPD OPE ≌.四、解答题.19. 学生人数为7人,该书的单价为53元..20. (1)215y x =+(2)所挂物体的质量为2.5kg21. (2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元; (3)月销售额定为7万元合适.五、解答题22. AB =,1AD =,求CD 的长度.(1)△ABC 是等腰直角三角形;证明见解析;(2【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°.∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB .∴∠ACB =∠CAB .∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形.∴BC =AB .∴AC 2=.Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD 23. (1)223y x x =+-(2)2;P (-1,0)【小问1详解】解:∵点A (1,0),AB =4.∴点B 的坐标为(-3,0). 将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩. 解得:b =2,c =-3.∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-.顶点式为:2y (x 1)4=+-.则C 点坐标为:(-1,-4).由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6. 由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2. ∵PQ ∥BC .设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭. 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭. ∵P 在线段AB 上. ∴312n -<<. ∴n 的取值范围为-6<n <2.则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.。
广东广州市2023年中考数学真题试题

广东广州市2023年中考数学真题试题一. 选择题1. 下列四组中,哪一组中数0的个数最少?A. 1,4,9,16B. -1,-4,-9,-16C. -1,0,1,2D. 1,2,4,82. 若正方形的面积是16平方米,那么它的边长是多少?A. 2米B. 4米C. 8米D. 16米3. 一根铁条长3.6米,要锯成两段,其中一段长1.8米,剩下的一段长多少米?A. 0.6米B. 1.2米C. 1.6米D. 2.2米4. 某超市比市场价七折出售一批商品,若市场价是1000元,超市的售价是多少元?A. 100元B. 300元C. 700元D. 1000元5. 在计算n的平方时,n的值可能是什么?A. 负数B. 零C. 正数D. 全体实数二. 客观题1. 形如1.73...的无限循环小数0.173...A. 有限小数B. 前无限循环小数C. 后无限循环小数D. 前后无限循环小数2. 平行四边形一般的对角线相等A. 正确B. 错误3. 甲、乙两人一起做同一工作,若甲比乙每分钟多干1/5,那么乙用时比甲多多少时间?A. 2分钟B. 5分钟C. 10分钟D. 15分钟三. 应用题1. 小红乘坐校车一共走了120千米,平均时速为60千米/小时,她一共花了多少时间?A. 60分钟B. 80分钟C. 120分钟D. 180分钟2. 一部手机新品上市,售价为600元,过了一段时间涨价10%,现在的售价是多少?A. 610元B. 660元C. 6600元D. 元3. 若两个锐角的和是60°,那么两个锐角中,较大的角度是多少度?A. 20°B. 30°C. 40°D. 50°四. 解答题1. 已知(A)PE=12cm,(B)PF=9cm,A与B是线段PE和PF的中点,求线段EF的长度。
2. 小明想要把一个边长为10厘米的正方形剪成两个面积相等的长方形,并且每个长方形的宽是4厘米,那么每个长方形的长是多少厘米?。
2021年广东省广州市数学中考真题含答案解析及答案(word解析版)

解:从几何体的正面看可得图形.点评:从几何体的正面看可得图形.向下移动1格 B 向上移动1格 C 向上移动2格 D分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图可以将图形N向下移动2格.故选点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位是一道基础题:电视,C:网络,D:身边的人,E:其名中学生进行该问卷调查,根据调查的结分析:根据等量关系为:两数x,y之和是得:.故选:点评:此题主要考查了由实际问题抽象出二元一次方程组)分析:根据二次根式的性质和分式的意义解:根据题意得:,解得:点评:本题考查的知识点为:分式有意义EF=AB=2,∵==1,,AF==4,则AC=2AF=8,tanB===2.故选D=AOD=OA=3,OP=,OD=3,PD===2,BO==3,===x+y=1+2+12=2,∴△BA′E≌△DCE点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2021年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率。
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数。
(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率。
2020年广东省广州中考数学试卷附答案解析版

D. 12 5
数学试卷 第 3 页(共 8 页)
第二部分 非选择题(共 120 分)
二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分.)
11.已知A 100 ,则 A 的补角等于
.
12.计算: 20 5
.
13.方程 x 3 的解是
.
x 1 2x 2
14.如图 6,点 A 的坐标为1,3 ,点 B 在 x 轴上,把△OAB 沿 x 轴向右平移到△ECD ,
若四边形 ABDC 的面积为 9,则点C 的坐标为
.
图6 15.如图 7,正方形 ABCD 中, △ABC 绕点 A 逆时针旋转到△ABC , AB , AC 分别
交对角线 BD 于点 E , F ,若 AE 4 ,则 EF ED 的值为
.
图7
16.对某条线段的长度进行了 3 次测量,得到 3 个结果(单位: mm )9.9,10.1,10.0,
毕业学校
姓名
考生号
绝密★启用前
在
2020 年广东省广州市初中毕业生学业考试
数学
此
本试卷分选择题和非选择题两部分,共三大题 25 小题,共 8 页,满分 150 分.考
试用时 120 分钟.
注意事项:
1. 答卷前,考生务必在答题卡第 1 面、第 3 面、第 5 面上用黑色字迹的钢笔或签
卷
字笔填写自己的考生号、姓名;填写考点考场号、座位号,再用 2B 铅笔把对应
来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域,不准使用
答
铅笔、圆珠笔和涂改液,不按以上要求作答的答案无效.
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.
2023年广州市中考数学真题试卷及答案
2023年广州市初中学业水平考试数学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. ()2023--=( ) A. 2023-B. 2023C. 12023-D.120232. 一个几何体的三视图如图所示,则它表示的几何体可能是( )A. B. C. D.3. 学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12,下列关于这组数据描述正确的是( ) A. 众数为10B. 平均数为10C. 方差为2D. 中位数为94. 下列运算正确的是( ) A. ()325a a =B. 824a a a ÷=(0a ≠)C. 358a a a ⋅=D. 12(2)a a-=(0a ≠) 5. 不等式组21,1223x x x x ≥-⎧⎪+⎨>⎪⎩的解集在数轴上表示为( )A.B.C. D.6. 已知正比例函数1y ax =的图象经过点1,1,反比例函数2by x=的图象位于第一,第三象限,则一次函数y ax b =+的图象一定不经过( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,海中有一小岛A ,在B 点测得小岛A 在北偏东30°方向上,渔船从B 点出发由西向东航行10n mile 到达C 点,在C 点测得小岛A 恰好在正北方向上,此时渔船与小岛A 的距离为( )n mileA.B.C. 20D. 8. 随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是( ) A.36048060x x =+ B.36048060x x=- C.36048060x x =- D.36048060x x=+ 9. 如图,ABC ∆的内切圆⊙I 与BC ,CA ,AB 分别相切于点D ,E ,F ,若⊙I 的半径为r ,A α∠=,则()BF CE BC +-的值和FDE ∠的大小分别为( )A. 2r ,90α︒-B. 0,90α︒-C. 2r ,902α︒-D. 0,902α︒-10. 已知关于x 的方程()222210x k x k --+-=有两个实数根,2的化简结果是( ) A.1-B. 1C. 12k --D. 23k -第二部分 非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11. 近年来,城市电动自行车安全充电需求不断攀升.截至2023年5月底,某市已建成安全充电端口逾280000个,将280000用科学记数法表示为____________.12. 已知点()11,A x y ,()22,B x y 在抛物线23y x =-上,且120x x <<,则1y _________2y .(填“<”或“>”或“=”)13. 2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一,二,三等奖和优胜奖,根据获奖结果绘制如图所示的条形图,则a 的值为____________.若将获奖作品按四个等级所占比例绘制成扇形统计图,则“一等奖”对应扇形的圆心角度数为___________.14. 如图,正方形ABCD 的边长为4,点E 在边BC 上,且1BE =,F 为对角线BD 上一动点,连接CF ,EF ,则CF EF +的最小值为___________.15. 如图,已知AD 是ABC ∆的角平分线,DE ,DF 分别是ABD △和ΔACD 的高,12AE =,5DF =,则点E 到直线AD 的距离为____________.16. 如图,在Rt ABC △中,90ACB ∠=︒,10AB =,6AC =,点M 是边AC 上一动点,点D ,E 分别是AB ,MB 的中点,当 2.4AM =时,DE 的长是___________.若点N 在边BC 上,且CN AM =,点F ,G 分别是MN ,AN 的中点,当 2.4AM >时,四边形DEFG 面积S 的取值范围是____________.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤.)17. 解方程:2650x x -+=.18. 如图,B 是AD 的中点,BC DE ∥,BC DE =.求证:C E ∠=∠.19. 如图,在平面直角坐标系v 中,点()2,0A -,()0,2B ,AB 弧所在圆的圆心为O .将AB 弧向右平移5个单位,得到CD 弧(点A 平移后的对应点为C ).(1)点D 的坐标是___________,CD 弧所在圆的圆心坐标是___________; (2)的图中画出CD 弧,并连接AC ,BD ;(3)求由AB 弧,BD ,DC ,CA 首尾依次相接所围成的封闭图形的周长.(结果保留π) 20. 已知3a >,代数式:228A a =-,236B a a =+,3244C a a a =-+. (1)因式分解A ;(2)在A ,B ,C 中任选两个代数式,分别作为分子,分母,组成一个分式,并化简该分式. 21. 甲,乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A ,B ,C ,D ),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C 的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?22. 因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用1y (元)与该水果的质量x (千克)之间的关系如图所示;在乙商店购买该水果的费用2y (元)与该水果的质量x (千克)之间的函数解析式为210y x =(0x ≥).(1)求1y 与x 之间的函数解析式;(2)现计划用600元购买该水果,选甲,乙哪家商店能购买该水果更多一些? 23. 如图,AC 是菱形ABCD 的对角线.(1)尺规作图:将ABC ∆绕点A 逆时针旋转得到ADE ,点B 旋转后的对应点为D (保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD ,CE ; ①求证:ABD ACE ∆∆∽;①若1tan 3BAC ∠=,求cos DCE ∠的值.24. 已知点(),P m n 在函数()20y x x=-<的图象上.(1)若2m =-,求n 的值;(2)抛物线()()y x m x n =--与x 轴交于两点M ,N (M 在N 的左边),与y 轴交于点G ,记抛物线的顶点为E .①m 为何值时,点E 到达最高处;①设GMN ∆的外接圆圆心为C ,C 与y 轴的另一个交点为F ,当0m n +≠时,是否存在四边形FGEC 为平行四边形?若存在,求此时顶点E 的坐标;若不存在,请说明理由.25. 如图,在正方形ABCD 中,E 是边AD 上一动点(不与点A ,D 重合).边BC 关于BE 对称的线段为BF ,连接AF .(1)若15ABE ∠=︒,求证:ABF △是等边三角形; (2)延长FA ,交射线BE 于点G ;①BGF ∆能否为等腰三角形?如果能,求此时ABE ∠的度数;如果不能,请说明理由;①若AB =,求BGF ∆面积的最大值,并求此时AE 的长.2023年广州市初中学业水平考试数学答案一、选择题9. 解:如图,连接IF IE ,.∵ABC ∆的内切圆⊙I 与BC ,CA ,AB 分别相切于点D ,E ,F . ∴BF BD CD CE IF AB IE AC ==⊥⊥,,,.∴0BF CE BC BD CD BC BC BC +-=+-=-=,90AFI AEI ∠=∠=︒. ∴180EIF α∠=︒-. ∴119022EDF EIF α∠=∠=︒-. 10. 解:∵关于x 的方程()222210x k x k --+-=有两个实数根.∴判别式()()22224110k k ⎡⎤∆=---⨯⨯-≥⎣⎦. 整理得:880k -+≥. ∴1k ≤.∴10k -≤,20k ->.2()()12k k =----1=-.故选:A .二、填空题14.解:如图,连接AE 交BD 于一点F ,连接CF . ∵四边形ABCD 是正方形. ∴点A 与点C 关于BD 对称. ∴AF CF =.∴CF EF AF EF AE +=+=,此时CF EF +最小. ∵正方形ABCD 的边长为4. ∴4,90AD ABC =∠=︒. ∵点E 在AB 上,且1BE =.∴AE =,即CF EF +.15. 解:∵AD 是ABC ∆的角平分线,DE ,DF 分别是ABD △和ΔACD 的高,5DF =. ∴5DE DF ==. 又12AE =.∴13AD =. 设点E 到直线AD 的距离为x . ∵1122AD x AE DE ⋅=⋅. ∴6013AE DE x AD ⋅==. 故答案为:6013. 16. 解:①点D ,E 分别是AB ,MB 的中点. ∴DE 是ABM ∆的中位线.∴11.22DE AM ==; 如图,设AM x =.由题意得,DE AM ∥,且12DE AM =. ∴1122DE AM x ==. 又F ,G 分别是MN AN 、的中点. ∴FG AM ∥,12FG AM =. ∴DE FG ∥,DE FG =. ∴四边形DEFG 是平行四边形. 由题意得,GF 与AC 的距离是12x .∴8BC ==.∴DE 边上的高为142x ⎛⎫-⎪⎝⎭. ①四边形DEFG 面积211142224S x x x x ⎛⎫=⋅-=- ⎪⎝⎭()21444x =--+. ∵2.46x <≤. ∴34S <≤.故答案为:1.2,34S <≤.三、解答题17. 11x =,25x =18.证明:∵B 是AD 的中点. ∴AB BD =. ∵BC DE ∥.∴ABC D ∠=∠. 在ABC ∆和BDE △中.AB BD ABC D BC DE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC BDE ≌ΔΔ. ∴C E ∠=∠.19. (1)()5,2,()5,0 (2)见解析 (3)10π++ 【小问1详解】解:①()0,2B ,AB 弧所在圆的圆心为()0,0O . ①()5,2D ,CD 弧所()5,0在圆的圆心坐标是()5,0. 故答案为:()5,2 【小问2详解】解:如图所示:CD 弧即为所求;【小问3详解】 解:连接CD . ①()2,0A -,()0,2B . ①AB 弧的半径为2. ①弧902180AB ππ⨯==. ①将AB 弧向右平移5个单位,得到CD 弧. ①()()5,3,0,5,2AC BD C D ==.①CD =.①由AB 弧,BD ,DC ,CA 首尾依次相接所围成的封闭图形的周长5210ππ=+⨯+=++20. (1)()()222a a +- (2)见解析 【小问1详解】解:()()()222824222A a a a a =-=-=+-;【小问2详解】 解:①当选择A ,B 时:()()()22323222236248a a B aA a a a a a a +===++---. ()()()22222243228363a a A aB a a aa a a ++=+---==; ②当选择A ,C 时:()()()2322222222244428a a C a a a a a a A a a a ---===-+-++. ()()()2322222228424224a a A a C a a a a a a a a +---+-+===-; ③当选择B ,C 时:()()2322224432364436a a C a a a a a B a a a a a --+==-+++=+. ()()2222336443236442a B a a a a a a a C a a a a ++===+-++--.21. (1)14(2)公平.22. (1)当05x <≤时,115y x =;当5x >时,1930y x =+ (2)选甲家商店能购买该水果更多一些 23. (1)作法,证明见解答; (2)①证明见解答;②cos DCE ∠的值是35. 【小问1详解】 解:如图1,ADE 就是所求的图形..【小问2详解】证明:①如图2,由旋转得AB AD =,AC AE =,BAC DAE ∠=∠. ∴AB ADAC AE=,BAC CAD DAE CAD ∠+∠=∠+∠. BAD CAE ∴∠=∠. ABD ACE ∴△∽△.②如图2,延长AD 交CE 于点F .AB AD =,BC DC =,AC AC =.()SSS ABC ADC ∴△≌△. BAC DAC ∴∠=∠. BAC DAE ∠=∠.DAE DAC ∴∠=∠. AE AC =. AD CE ∴⊥. 90CFD ∴∠=︒.设CF m =,CD AD x ==.1tan tan 3CF DAC BAC AF =∠=∠=. 33AF CF m ∴==. 3DF m x ∴=-.222CF DF CD +=. 222(3)m m x x ∴+-=.∴解关于x 的方程得53x m =. 53CD m ∴=.3cos 553CF m DCE CD m ∴∠===.cos DCE ∴∠的值是35.24. (1)n 的值为1; (2)①m =;②假设存在,顶点E的坐标为72⎛⎫- ⎪ ⎪⎝⎭,或72⎫-⎪⎪⎝⎭. 【小问1详解】 解:把2m =-代入2(0)y x x =-<得212n =-=-; 故n 的值为1; 【小问2详解】解:①在()()y x m x n =--中,令0y =,则()()0x m x n --=.解得x m =或x n =.(,0)M m ∴,(,0)N n .点(,)P m n 在函数2(0)y x x=-<的图象上. 2mn ∴=-.令2m n x +=,得2211()()()2()244y x m x n m n m n =--=--=--+≤-. 即当0m n +=,且mn 2=-.则22m =,解得:m =(正值已舍去).即m =时,点E 到达最高处; ②假设存在,理由:对于()()y x m x n =--,当0x =时,2y mn ==-,即点(0,2)G -. 由①得(,0)M m ,(,0)N n ,(0,2)G -,21(())24m n E m n +--,,对称轴为直线2m n x +=.由点(,0)M m ,(0,2)G -的坐标知,2tan OG OMG OM m∠==-. 作MG 的中垂线交MG 于点T ,交y 轴于点S ,交x 轴于点K ,则点112T m ⎛⎫ ⎪⎝-⎭,. 则1tan 2MKT m ∠=-. 则直线TS 的表达式为:11()122y m x m =---. 当2m n x +=时,111()1222y m x m =---=-.则点C 的坐标为122m n +⎛⎫-⎪⎝⎭,.由垂径定理知,点C 在FG 的中垂线上,则12()2(2)32C G FG y y =-=⨯-+=. 四边形FGEC 为平行四边形. 则132C E E CE FG y y y ===-=--. 解得:72E y =-. 即217()42m n --=-,且mn 2=-.则m n +=∴顶点E 的坐标为722⎛⎫-- ⎪ ⎪⎝⎭,或722⎛⎫- ⎪ ⎪⎝⎭.25. (1)见解析 (2)①BGF ∆能为等腰三角形,22.5ABE =︒∠;①AE =【小问1详解】证明:由轴对称的性质得到BF BC =. ∵四边形ABCD 是正方形. ∴90ABC ∠=︒. ∵15ABE ∠=︒. ∴75CBE ∠=︒.∵BC 于BE 对称的线段为BF , ∴75FBE CBE ∠=∠=︒. ∴60ABF FBE ABE ∠=∠-∠=︒. ∴ABF △是等边三角形; 【小问2详解】①∵BC 于BE 对称的线段为BF , ∴BF BC =∵四边形ABCD 是正方形. ∴BC AB =. ∴BF BC BA ==. ∵E 是边AD 上一动点. ∴BA BE BG <<.∴点B 不可能是等腰三角形BGF 的顶点.若点F 是等腰三角形BGF 的顶点. 则有FGB FBG CBG ∠=∠=∠. 此时E 与D 重合,不合题意.∴只剩下GF GB =了,连接CG 交AD 于H .∵BC BF CBG FBG BG BG =∠=∠=,, ∴()SAS CBG FBG ∆∆≌ ∴FG CG =. ∴BG CG =.∴BGF ∆为等腰三角形, ∵BA BC BF ==. ∴BFA BAF ∠=∠. ∵CBG FBG ∆∆≌. ∴BFG BCG ∠=∠ ∴AD BC ∥ ∴AHG BCG ∠=∠∴18090BAF HAG AHG HAG BAD ∠+∠=∠+∠=︒∠=︒- ∴18090FGC HAG AHG ∠=︒-∠-∠=︒. ∴1452BGF BGC FGH ∠=∠=∠=︒ ∵GB GC = ∴()118067.52GBC GCB BGC ∠=∠=︒-∠=︒ ∴9067.522.5ABE ABC GBC ∠=∠-∠=︒-︒=︒; ②由①知,CBG FBG ∆∆≌要求BGF ∆面积的最大值,即求BGC ∆面积的最大值. 在BGC ∆中,底边BC 是定值,即求高的最大值即可.如图2,过G 作GP BC ⊥于P ,连接AC ,取AC 的中点M ,连接GM ,作MNBC ⊥于N .设2AB x =,则AC =. ∵=90AGC ∠︒,M 是AC 的中点.∴11,22GM AC MN AB x ====.∴1)PG GM MN x ≤+=. 当G ,M ,N 三点共线时,取等号. ∴BGF ∆面积的最大值.BGF ∆的面积1·2BC PG =)21x =)2114=+⨯=如图3,设PG 与AD 交于Q .则四边形ABPQ 是矩形.∴2AQ PB x PQ AB x ====,.∴,QM MP x GM ===.∴)112GQ =.∵QE AE AQ x +==.∴AQ AE =.∴)21AE x = 21)12⨯==.2022年广东省初中学业水平考试数学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于( ) A. 2B. 12-C.12D. ﹣22. 计算22的结果是( )A. 1B.C. 2D. 43. 下列图形中具有稳定性的是( ) A. 平行四边形B. 三角形C. 长方形D. 正方形4. 如图,直线a,b 被直线c 所截,a ∥b,∥1=40°,则∥2等于( )A. 30°B. 40°C. 50°D. 60°5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A.14B.12C. 1D. 26. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( ) A. ()3,1B. ()1,1-C. ()1,3D. ()1,1-7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A.14B.13C.12D.238. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A. 1yB. 2yC. 3yD. 4y10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( ) A. 2是变量B. π是变量C. r 是变量D. C 是常量二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____.12. 单项式3xy 的系数为___________.13. 菱形的边长为5,则它的周长为____________.14. 若1x =是方程220x x a -+=的根,则=a ____________.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩.17. 先化简,再求值:211a a a -+-,其中5a =.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20. 物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系=+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.15y kx(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =1AD =,求CD 的长度.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ ∆面积的最大值,并求此时P 点坐标.2022年广东省初中学业水平考试数学答案一、选择题.二、填空题.三、解答题.16. 12x <<17. 21a +,1118. 证明:∵AOC BOC ∠=∠.∴OC 为AOB ∠的角平分线.又∵点P 在OC 上,PD OA ⊥,PE OB ⊥.∴PD PE =,90PDO PEO ∠=∠=︒.又∵PO PO =(公共边).∴()HL OPD OPE ≌.四、解答题.19. 学生人数为7人,该书的单价为53元..20. (1)215y x =+(2)所挂物体的质量为2.5kg21. (2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元; (3)月销售额定为7万元合适.五、解答题22. AB =,1AD =,求CD 的长度.(1)△ABC 是等腰直角三角形;证明见解析;(2【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°.∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB .∴∠ACB =∠CAB .∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形.∴BC =AB .∴AC 2=.Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD 23. (1)223y x x =+-(2)2;P (-1,0)【小问1详解】解:∵点A (1,0),AB =4.∴点B 的坐标为(-3,0). 将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩. 解得:b =2,c =-3.∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-.顶点式为:2y (x 1)4=+-.则C 点坐标为:(-1,-4).由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6. 由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2. ∵PQ ∥BC .设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭. 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭. ∵P 在线段AB 上. ∴312n -<<. ∴n 的取值范围为-6<n <2.则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.。
2021年广东省广州市中考数学试卷及答案(word解析版)
广州市初中毕业生学业考试第一部分选择题(共30分)一、选择题:1.(2013年广州市)比0大的数是()A -1 B12C 0D 1分析:比0的大的数一定是正数,结合选项即可得出答案解:4个选项中只有D选项大于0.故选D.点评:本题考查了有理数的大小比较,注意掌握大于0的数一定是正数2.(2013年广州市)图1所示的几何体的主视图是()(A)(B) (C) (D)正面分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从几何体的正面看可得图形.故选:A.点评:从几何体的正面看可得图形.故选:A..3.(2013年广州市)在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格分析:根据题意,结合图形,由平移的概念求解解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选D.点评:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.4.(2013年广州市)计算:()23m n 的结果是( )A 6m nB 62m nC 52m nD 32m n分析:根据幂的乘方的性质和积的乘方的性质进行计算即可解:(m 3n )2=m 6n 2.故选:B .点评:此题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键,是一道基础题5、(2013年广州市)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( )A 全面调查,26B 全面调查,24C 抽样调查,26D 抽样调查,24分析:根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选:D .点评:此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据6.(2013年广州市)已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩分析:根据等量关系为:两数x ,y 之和是10;x 比y 的3倍大2,列出方程组即可 解:根据题意列方程组,得:.故选:C .点评:此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x 比y 的3倍大2”,找出等量关系,列出方程组是解题关键.7.(2013年广州市)实数a 在数轴上的位置如图4所示,则 2.5a -=( )A 2.5a -B 2.5a -C 2.5a +D 2.5a --分析:首先观察数轴,可得a <2.5,然后由绝对值的性质,可得|a ﹣2.5|=﹣(a ﹣2.5),则可求得答案解:如图可得:a <2.5,即a ﹣2.5<0,则|a ﹣2.5|=﹣(a ﹣2.5)=2.5﹣a .故选B .点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大. 8.(2013年广州市)若代数式x 有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围解:根据题意得:,解得:x ≥0且x ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数9.(2013年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A 没有实数根B 有两个相等的实数根C 有两个不相等的实数根D 无法判断分析:根据已知不等式求出k 的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况解:∵5k+20<0,即k <﹣4,∴△=16+4k <0,则方程没有实数根.故选A图3点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.(2013年广州市)如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( ) A 23B 22C 114D 55 分析:先判断DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,由等腰三角形的性质,可得点F 是AC 中点,继而可得EF 是△CAB 的中位线,继而得出EF 、DF 的长度,在Rt △ADF 中求出AF ,然后得出AC ,tanB 的值即可计算. 解:∵CA 是∠BCD 的平分线,∴∠DCA=∠ACB ,又∵AD ∥BC ,∴∠ACB=∠CAD ,∴∠DAC=∠DCA ,∴DA=DC ,过点D 作DE ∥AB ,交AC 于点F ,交BC 于点E ,∵AB ⊥AC ,∴DE ⊥AC (等腰三角形三线合一的性质),∴点F 是AC 中点,∴AF=CF ,∴EF 是△CAB 的中位线,∴EF=AB=2,∵==1,∴EF=DF=2, 在Rt △ADF 中,AF==4,则AC=2AF=8,tanB===2.故选B .点评:本题考查了梯形的知识、等腰三角形的判定与性质、三角形的中位线定理,解答本题的关键是作出辅助线,判断点F 是AC 中点,难度较大.第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11. (2013年广州市)点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .分析:根据线段垂直平分线的性质得出PA=PB ,代入即可求出答案解:∵点P 在线段AB 的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.点评:本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等12. (2013年广州市)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ . 分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13. (2013年广州市)分解因式:=+xy x 2_______________.分析:直接提取公因式x 即可解:x 2+xy=x (x+y ) C B C'D A点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解14. (2013年广州市)一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 分析:根据图象的增减性来确定(m+2)的取值范围,从而求解解:∵一次函数y=(m+2)x+1,若y 随x 的增大而增大,∴m+2>0,解得,m >﹣2.故答案是:m >﹣2.点评:本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0.15. (2013年广州市)如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .分析:根据旋转的性质得到A ′B ′=AB=16,然后根据直角三角形斜边上的中线性质求解即可解:∵Rt △ABC 绕点O 顺时针旋转后得到Rt △A ′B ′C ′,∴A ′B ′=AB=16,∵C ′D 为Rt △A ′B ′C ′的斜边A ′B ′上的中线,∴C ′D=A ′B ′=8.故答案为8.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了直角三角形斜边上的中线性质.16. (2013年广州市)如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.分析:过点P 作PD ⊥x 轴于点D ,连接OP ,先由垂径定理求出OD 的长,再根据勾股定理求出PD 的长,故可得出答案.解:过点P 作PD ⊥x 轴于点D ,连接OP ,∵A (6,0),PD ⊥OA ,∴OD=OA=3,在Rt △OPD 中,∵OP=,OD=3,∴PD===2,∴P (3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分9分)(2013年广州市)解方程:09102=+-x x .分析:分解因式后得出两个一元一次方程,求出方程的解即可解:x 2﹣10x+9=0,(x ﹣1)(x ﹣9)=0,x ﹣1=0,x ﹣9=0,x 1=1,x 2=9.点评:本题啊扣除了解一元一次方程和解一元二次方程的应用,关键是能把解一元二次方程转化成解一元一次方程.18.(本小题满分9分)(2013年广州市)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.分析:根据菱形的性质得出AC ⊥BD ,再利用勾股定理求出BO 的长,即可得出答案解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6.点评:此题主要考查了菱形的性质以及勾股定理,根据已知得出BO 的长是解题关键19.(本小题满分10分)(2013年广州市)先化简,再求值:y x y y x x ---22,其中.321,321-=+=y x 分析:分母不变,分子相减,化简后再代入求值解:原式===x+y=1+2+1﹣2=2.点评:本题考查了分式的化简求值和二次根式的加减,会因式分解是解题的 题的关键20.(本小题满分10分)(2013年广州市)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .分析:(1)首先作∠A ′BD=∠ABD ,然后以B 为圆心,AB 长为半径画弧,交BA ′于点A ′,连接BA ′,DA ′,即可作出△A ′BD .(2)由四边形ABCD 是平行四边形与折叠的性质,易证得:∠BA ′D=∠C ,A ′B=CD ,然后由AAS 即可判定:△BA ′E ≌△DCE .解:(1)如图:①作∠A ′BD=∠ABD ,②以B 为圆心,AB 长为半径画弧,交BA ′于点A ′,③连接BA ′,DA ′,则△A ′BD 即为所求;(2)∵四边形ABCD 是平行四边形, ∴AB=CD ,∠BAD=∠C ,由折叠的性质可得:∠BA ′D=∠BAD ,A ′B=AB ,∴∠BA ′D=∠C ,A ′B=CD ,在△BA ′E 和△DCE 中,,∴△BA ′E ≌△DCE (AAS ).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.21.(本小题满分12分)(2013年广州市)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 82 8 10 17 6 13 7 5 7 312 10 7 11 3 6 8 14 15 12(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率. 分析:(1)由抽取30个符合年龄条件的青年人中A级的有15人,即可求得样本数据中为A级的频率;(2)根据题意得:1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽得2个人的“日均发微博条数”都是3的情况,再利用概率公式求解即可求得答案.解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.点评:本题考查的是用列表法或画树状图法求概率、频数与频率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比22.(本小题满分12分)(2013年广州市)如图10,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断解:(1)过点P作PE⊥AB于点E,由题意得,∠PAE=32°,AP=30海里,在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,则BP=≈19.4,A船需要的时间为:=1.5小时,B船需要的时间为:=1.3小时,故B船先到达.点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(本小题满分12分)(2013年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。
广东省广州市中考数学试题(含答案)
2022年中考往年真题练习: 广州市初中毕业生学业考试数 学第一部分 挑选题(共30分)一、 挑选题(本大题共10小题, 每小题3分, 满分30分。
在每小题给出的 4个选项中只有一项是 符合题目要求的 ) 1.实数3的 倒数是 ( ) 。
(A) 、 31-(B) 、31(C) 、 3-(D) 、 32.将二次函数2x y =的 图象向下平移1个单位, 则平移后的 二次函数的 解析式为( ) 。
(A) 、 12-=x y(B) 、12+=x y (C) 、 2)1(-=x y(D) 、 2)1(+=x y3.一个几何体的 三视图如图1所示, 则这个几何体是 ( ) 。
(A) 、 四棱锥 (B) 、 四棱柱 (C) 、 三棱锥 (D) 、 三棱柱4.下面的 计算正确的 是 ( ) 。
(A) 、 156=-a a (B) 、223a a a =+(C) 、 b a b a +-=--)((D) 、 b a b a +=+2)(25.如图2, 在等腰梯形ABCD 中, BC ∥AD , AD =5, DC =4, DE ∥AB 交BC 于点E, 且EC =3, 则梯形ABCD 的 周长是 ( ) (A) 、 26 (B) 、 25 (C) 、 21 (D) 、 206.. 已知,071=++-b a 则=+b a ( ) 。
(A) 、 -8 (B) 、 -6 (C) 、 6(D) 、 87. Rt ABC △中, ∠C=900, AC =9, BC =12, 则点C 到AB 的 距离是 ( ) 。
(A) 、536 (B) 、2512 (C) 、 49 (D) 、433 8. 已知a >b . 若c 是 任意实数, 则下列不等式中总是 成立的 是 ( ) 。
(A) 、 a+c <b+c (B) 、 a-c >b-c (C) 、ac <bc (D) 、 ac >bc9. 在平面中, 下列命题为真命题的 是 ( ) 。
2023年广东省广州市中考数学试卷真题
秘密★启用前2023年广州市初中学业水平考试(中考)数学考生号:姓名:本试卷共7页,四大题,满分120分。
考试用时120分钟。
注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3.非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10 小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. - (-2023)=(*).(A) -2023(B)2023 (C) −12023(D)12023数学试卷第1页(共7页)2. 一个几何体的三视图如图1所示, 则它表示的几何体可能是( * ).3. 学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10, 11, 9, 10, 12. 下列关于这组数据描述正确的是( * ). (A) 众数为 10 (B) 平均数为10 (C) 方差为2 (D) 中位数为94. 下列运算正确的是( * ).(A) (a ²)³=a ⁵ (B) a ⁸÷a ²=a ⁴(a ≠0) (C) a ³·a ⁵=a ⁸ (D) (2a )−1=2a (a ≠0) 5. 不等式组 {2x ≥x −1,x+12>2x 3的解集在数轴上表示为( * ).(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限(A )10√33(B)20√33(C) 20 (D ) 10√3数学试卷 第 2页(共 7页)6. 已知正比例函数.y ₁=ax |的图象经过点(1,-1),反比例函数. y 2=bx的图象位于第一、第三象限,则一次函数y =ax +b 的图象一定不经过(*).7. 如图2,海中有一小岛A ,在B 点测得小岛A 在北偏东30°方向上,渔船从B 点出发由西向东航行 10nm ile 到达C 点,在 C 点测得小岛A 恰好在正北方向上,此时渔船与小岛A 的距离为( * ) n m ile.8. 随着城际交通的快速发展, 某次动车平均提速 60km /h ,动车提速后行驶 480km 与提速前行驶 360 km 所用的时间相同. 设动车提速后的平均速度为 x km /h ,则下列方程正确的是( * ). (A) 360x=480x+60 (B)360x−60=480x(C)360x=480x−60(D)360x+60=480x(A) 2r , 90°-α (B) 0, 90°-α (C) 2r , 900∘−α2 (D) 0, 90∘−α210. 已知关于x 的方程. x ²-(2k -2)x +k ²-1=0; 有两个实数根,则 √(k −1)2−(√2−k)2的化简结果是( * ).(A) -1 (B)1 (C) -1-2k (D) 2k -3第二部分 非选择题 (共90分)二、填空题(本大题共6小题,每小题3分,满分 18分.)11. 近年来,城市电动自行车安全充电需求不断攀升. 截至2023年5月底,某市已建成安全充电端口逾280000个,将280 000用科学记数法表示为 * .数学试卷 第 3页(共 7页)9. 如图3, △ABC 的内切圆⊙I 与 BC, CA,AB 分别相切于点 D, E, F, 若⊙I 的半径为 r ,∠A=α, 则(BF+CE-BC)的值和∠FDE 的大小分别为( * ).12. 已知点A(x ₁,y ₁), B(x ₂,y ₂)在抛物线y =x ²-3 上,且( 0<x ₁<x ₂, 则y 1 ∗ y 2(填 “<” 或 “>” 或“=” )数学试卷 第 4页(共 7页)13.2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图4 所示的条形图,则a 的值为 * .若将获奖作品按四个等级所占比例绘制成扇形统计图, 则“一等奖”对应扇形的圆心角度数为* °.14. 如图5, 正方形ABCD 的边长为4, 点E 在边BC 上,且BE=1, F 为对角线BD 上一动点, 连接CF, EF,则CF+EF 的最小值为 * .15. 如图6, 已知AD 是△ABC 的角平分线, DE, DF 分别是△ABD 和△ACD 的高, AE=12, DF=5, 则点E 到直线 AD 的距离为 * .16. 如图7, 在 R t △ABC 中, ∠ACB=90°, AB= 10, AC=6,点 M 是边 AC上一动点, 点 D, E 分别是 AB, MB 的中点, 当AM= 2.4时, DE 的长是 * . 若点 N 在边 BC 上, 且CN=AM,点 F, G 分别是 MN, AN 的中点,当AM>2.4时, 四边形DEFG 面积S 的取值范围是 * .三、解答题(本大题共 9 小题,满分 72分. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分4分)解方程:x ²-6x +5=0.19. (本小题满分6分)如图9,在平面直角坐标系x O y 中,点A(-2,0), B(0,2), AB 所在圆的圆心为O.20. (本小题满分6分)已知a >3, 代数式: A=2a ²-8, B=3a ²+6a , C=a ³-4a ²+4a . (1) 因式分解A;(2) 在A ,B ,C 中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.数学试卷 第5页(共7页)18.(本小题满分4分)如图8, B 是AD 的中点, BC∥DE, BC=DE. 求证: ∠C=∠E.将AB 向右平移5个单位,得到 CD (点A平移后的对应点为C).(1) 点D 的坐标是 * , CD̂所在圆的圆心坐标是 * ;(2) 在图中画出 CD ̂,并连接 AC, BD;(3)求由 AB, BD,DC, CA 首尾依次相接所围成的封闭图形的周长.(结果保留π)21. (本小题满分 8分)甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A ,B , C ,D), 若甲先从中随机选取1个, 乙再从余下的球拍中随机选取1个,求乙选中球拍C 的概率; (2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球. 这个约定是否公平?为什么?22. (本小题满分 10分)(1) 求y ₁与x 之间的函数解析式;(2) 现计划用 600元购买该水果,选甲、 乙哪家商店能购买该水果更多一些?23. (本小题满分 10分)数学试卷 第 6页(共7页)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y ₁(元)与该水果的质量x (千克)之间的关系如图10所示;在乙商店购买该水果的费用y ₂(元)与该水果的质量 x (千克)之间的函数解析式为 y ₂=10x (x ≥0).如图11, AC 是菱形ABCD 的对角线.(1) 尺规作图: 将△ABC绕点A 逆时针旋转得到△ADE,点B 旋转后的对应点为D(保留作图痕迹,不写作法); (2) 在(1)所作的图中, 连接BD, CE.①求证: △ABD ∽△ACE;②若 tan∠BAC =13,求c os ∠DCE 的值.24. (本小题满分 12分)已知点P(m ,n )在函数 y =−2x (x <0)的图象上. (1) 若m =-2, 求n 的值;(2)抛物线y =(x -m )(x -n )与x 轴交于两点M, N (M 在N 的左边),与y 轴交于点 G ,记抛物线的顶点为E.① m 为何值时, 点E 到达最高处;②设△GMN 的外接圆圆心为C , ⊙C 与y 轴的另一个交点为F ,当m +n ≠0时, 是否存在四边形FGEC 为平行四边形?若存在,求此时顶点E 的坐标;若不存在,请说明理由.25. (本小题满分 12分)如图12, 在正方形ABCD 中, E 是边AD 上一动点(不与点A , D 重合).边BC 关于BE 对称的线段为BF , 连接AF.②若 AB =√3+√6,求△BGF 面积的最大值,并求此时AE 的长.数学试卷 第 7页(共 7页)(1)若∠ABE=15°, 求证: △ABF是等边三角形; (2)延长FA, 交射线BE 于点 G.①△BGF 能否为等腰三角形?如果能, 求此时∠ABE的度数;如果不能,请说明理由;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年广东省广州市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.四个数﹣3.14,0,1,2中为负数的是 ………………………….( )A . ﹣3.14B .0C .1D .22.将图1所示的图案以圆心为中心,旋转180°后得到的图案是( )(A ) (B ) (C ) (D ) 图1 3.已知⊙O 的半径是5,直线l 是⊙O 的切线,在点O 到直线l 的距离是( )A .2.5B .3C .5D .104.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们的成绩的( )A . 众数B .中位数C .方差D .以上都不对5.下列计算正确的是( )A . 2ab ab ab ⋅=B . 33(2)2a a =C . 33(0)a a a -=≥D . (0,0)a b ab a b ⋅=≥≥6.如图2是一个几何体的三视图,则这几何体的展开图可以是( )A .B .C .D .7.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩,则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .28.下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形②两组对角分别相等的四边形是平行四边形③一组对边平行,另一组对边相等的四边形是平行四边形A . 3个B .2个C .1个D .0个9.已知圆的半径是23,则该圆的内接正六边形的面积是( )A . 33B .93C .183D .36310.已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A . 10B .14C .10或14D .8或10二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图3,AB ∥CD ,直线l 分别与AB ,CD 相交, 若∠1=50°,则∠2的度数为______________.12.根据环保局公布的广州市2013年至2014年PM 2.5的主要来源的数据,制成扇形统计图(如图4),其中所占百分比最大的主要来源是___________________(填主要来源的名称).13分解因式:26mx my -=_______________°.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为_________________.15.如图5, 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cosC =_________________.16.如图6,四边形ABCD 中,∠A =90°,AB =33,AD =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为_________________.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.解方程:53(4)x x =-.18.如图7,正方形ABCD 中,点E 、F 分别在AD ,CD 上,且AE=DF ,连接BE ,AF . 求证:BE=AF .19.已知222111x x x A x x ++=---.[ (1)化简A ;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.20.已知反比例函数7myx-=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图8,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A 关于x轴对称,若OAB∆的面积为6,求m的值.21.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.22.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?23.如图9,AC是⊙O的直径,点B在⊙O上,∠ACB=30°.(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.24.如图10,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB的距离.25.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=-3x+t 上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2-5n的最小值..参考答案一、选择题1.A解析:根据正负数意义识别即可.﹣3.14是负数,0既不是正数也不是负数,1和2都是正数,故选择A .点评:本题考查了正负数的识别,解题的关键是掌握有理数的分类.2. D解析:根据旋转的概念分别判断出图1分别旋转多少度才能得到各选项中的图形.将图1以圆心为中心,顺时针旋转90°,270°,360°,180°分别得到A,B,C,D中的图案.,故选择D .点评:本题考查了图形的旋转,解题的关键是理解旋转的概念.3.C解析:根据“直线与圆相切时,圆心到直线距离d等于圆的半径”求解.∵直线l是圆O的切线,∴点O到直线l的距离等于圆的半径5,故选择C .点评:本题考查了直线与圆的位置关系,解题的关键是知道“直线与圆的位置关系和圆心到直线距离d 与圆半径的大小关系”之间的关系.4.C解析:对于两名同学的成绩,谁的方差越小谁的成绩越稳定,故选择C .点评:本题考查了方差的应用,解题的关键是理解方差与数据稳定性的关系.5.D解析:ab·ab =(a·a )·(b·b )=a 2b 2,故选项A 不正确;(2a )3=23×a 3=8a 3,故选项B 不正确;3a -a =(3-1)a =2a ,故C 不正确;()==00a b a b ab a b ≥≥,,故选择D .点评:本题考查了整式的运算和二次根式的运算,解题的关键是掌握相应的运算法则.6.A解析:由三视图可知该几何体是圆柱,它的侧面展开图是矩形,两个底面的展开图是圆,故选择A .点评:本题考查了几何体的三视图和展开图,解题的关键是由三视图确定出几何体的形状.7.B解析:对于方程组5=123=4a b a b +⎧⎨-⎩①②,②×5,得15a -5b =20③,①+③,得16a =32,解得a=2.将a =2代入①,得2+5b =12,解得b =2.∴a +b =2+2=4.故选择B .点评:本题考查了二元一次方程组和求代数式的值,解题的关键是掌握二元一次方程组的解法.8.B解析:根据平行四边形的判定方法对各个命题的真假作出判断.:①②是真命题;如图,在四边形ABCD 中,AD ∥BC ,AB =CD ,但这个四边形不是平行四边形,故③是假命题. 故选择B .点评:本题考查了平行四边形的判定方法,解题的关键是知道平行四边形的判定方法.9.C解析:正六边形的六条半径把正六边形分成六个全等的等边三角形,故根据已知条件求出其中一个等边三角形的面积即可.如图,圆O 的内接正六边形为ABCDEF ,圆O 的半径为23.连接OA ,OB ,过点O 作OG ⊥AB ,垂足为点G .∵OA =OB =23,∠AOB =3606︒=60°,∴△AOB 是等边三角形,∴AB =23.∵OG ⊥AB ,∴AG =12AB =3.在Rt △AOG 中,根据勾股定理,得OG =()()2222=233=9AO AG --=3,∴S △AOB =12AB ×OG =12×23×3=33.∴S 六边形ABCDEF = 6 S △AOB =6×33=183.故选择C .点评:本题考查了圆内接正多边形面积的计算,解题的关键是掌握圆与正多边形的关系.10.B解析:先将x=2代入原方程求得m的值,再解一元二次方程求得它的根,最后分类讨论等腰三角形的边的可能情形,从而求出三角形的周长.解:将x=2代入方程x2-2mx+3m=0,得4-4m+3m=0,解得m=4.将m=4代入原方程,得x2-8x+12=0,解得x1=2,x2=6.∵6+6>2,∴当等腰三角形ABC的三边长可以是2,6,6,此时△ABC的周长为2+6+6=14;∵2+2<6,∴等腰三角形ABC的三边长不可以是2,2,6.故选择B.点评:本题考查了一元二次方程的根及其解法、三角形的三边关系及分类讨论思想,解题的关键是正确求出一元二次方程的根.二、填空题(本大题共6小题,每小题3分,满分18分.)11.50解析:∵AB∥CD,∴∠1=∠2(两直线平行,内错角相等).∵∠1=50°,∴∠2=50°,故答案为50.点评:本题考查了平行线的性质,解题的关键是正确应用平行线的性质.12.机动车尾气解析:从统计图中获取各个来源所占的百分比,并进行比较即可.在扇形统计图中,因为“机动车尾气”所占百分比最大,故答案为“机动车尾气”.点评:本题考查了扇形统计图,解题的关键是观察统计图并从中获取有用的信息.13.2m(x-3y)解析:先找出两项的公因式,再提取公因式即可.:2mx-6my=2m·x+2m·(﹣3y)=2m(x -3y),故答案为2m(x-3y).点评:本题考查了多项式的因式分解,解题的关键是掌握因式分解的方法.14.y=0.3x+6解析:根据题意,得x小时水位上升的高度为0.3x米,再加上初始的水位高度6米,故水库的水位高度y=0.3x+6,故答案为y=0.3x+6.点评:本题考查了列函数关系式,解题的关键是弄清题目中的数量关系.15.2 3解析:先根据垂直平分线的性质和定义求出EC和CD的长度,再在Rt△EDC中根据余弦的定义求出cos C.解:∵DE是BC的的垂直平分线, BE=9,BC=12,∴∠EDC=90°,EC=9,DC=6.在Rt△EDC中,cos C=62==93CDEC,故答案为23.点评:本题考查了垂直平分线的性质和锐角三角函数的求法,解题的关键是掌握余弦的求法.16. 3解析:根据三角形的中位线定理可知EF =12DN ,故当DN 长度最大时,EF 长度有最大值.容易知道,当点N 运动到点B 时,DN 的长度最大,故求出此时DN 的长度即可求解.解:如图,连接DN .∵E ,F 分别是DM 和MN 的中点,∴EF 是△DMN 的中位线,∴EF =12DN ,故当DN 长度最大时,EF 长度有最大值.当点N 运动到点B 时,DN 的长度最大.在Rt △ABD 中,∠A =90°,AD =3,AB =33,根据勾股定理,得BD =22(33)36+=,∴EF 最大值=12DN =12BD =3.故答案为3. 点评:本题考查了勾股定理、三角形的中位线定理,解题的关键是线段最值问题的转化.三、解答题17.解析:按照去括号、移项、合并同类项、系数化为1的步骤求解.解:去括号,得5x =3x -12移项,得5x -3x =﹣12合并同类项,得2x =﹣12系数化为1,得x =﹣6.点评:本题考查了解一元一次方程,解题的关键是掌握一元一次方程的解法.18.解析:根据正方形的性质得到判定△EAB 与△FDA 全等的条件,进而根据全等三角形的性质得到BE =AF .解:∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠EAB =90°.在△EAB 和△FDA 中,∵AE =DF ,∠EAB =∠D =90°,AB =AD ,∴△EAB ≌△FDA (SAS ).∴BE =AF .点评:本题考查了正方形的性质、全等三角形的判定和性质,解题的关键是掌握全等三角形的判定方法.19.解析:先化简分式,再解不等式组得到整数x ,最后代入求值.解:(1)A =()()()2+1111=+1111111x x x x x x x x x x x x x ++---==------; (2)解不等式组,得1≤x <3.∵x 为整数,∴x =1或2.∵A =11x -,∴x ≠1.当x=2时,A=11==1.121x--点评:本题考查了分式的化简与求值及不等式组的解法,解题的关键是掌握分式的加减运算.20.解析:(1)由反比例函数的图像位置与k的关系可知m-7>0,解不等式组即可求得m 的取值范围;(2)设点A的坐标为(x,y),根据S△OAB=6可求得xy的值,进而求得m的值.解:(1)该函数图像的另一支在第三象限.∵图像位于第一、三象限,∴m-7>0,解得m>7.即m的取值范围为m>7.(2)设A的坐标为(x,y).∵点B和点A关于x轴对称,∴点B的坐标为(x,﹣y).∴AB的距离为2y.∵S△OAB=6,∴12×2y×x=6,∴xy=6.∵y=7mx-,∴m-7=6,解得m=13.即m的值为13.点评:本题考查了反比例函数的图像和性质,解题的关键是掌握反比例函数的图像的性质与k的几何意义.21.解析:(1)根据“2013年投入的教育经费×(1+平均增长率)2=2015投入的教育经费”列方程求解;(2)根据“2015年投入的教育经费×(1+平均增长率)=2016投入的教育经费”计算.解:(1)设2013年至2015年该地区投入教育经费的年平均增长率为x,根据题意,得2500(1+x)2=3025.解得x1=0.1,x2=﹣2.1(舍去).答:2013年至2015年该地区投入教育经费的年平均增长率为10%.(2)3025(1+10%)=3327.5(万元).答:预计2016年该地区将投入教育经费3327.5万元.点评:本题考查了一元二次方程的实际应用,解题的关键是理解增长率问题中的数量关系.22.解析:(1)根据概率计算公式“P(A)=A事件包含的可能结果数所有可能结果数”计算;(2)先列表或画树形图列举出所有可能的结果,再根据概率计算公式计算;(3)根据“在大量重复实验中频率稳定到概率”可知抽到合格品的概率约为0.95,从而得到3+0.954xx=+,解之即可.解:(1)P(抽到的是不合格品)=111+34=.(2)列树形图表示所有可能的结果:由树形图可知共有12种等可能的结果,其中抽到的都是合格品的情况有6种,∴P (抽到的都是不合格品)=61122=. (3)由题意,得3+0.954x x =+,解得x =16. 答:x 的值大约是16.点评:本题考查了概率的计算,列表或画树形图,列举出所有可能的结果是解题的关键.23.解析:(1)按照用尺规作角的平分线的步骤作图即可;(2)易证△ABE ∽△DCE ,故只需求出这两个三角形的相似比即可.设⊙O 的半径为r ,在Rt △ABE 中,根据“在直角三角形中,30°角所对的直角边等于斜边的一半”可知AB =12r ;连接OD ,可推出△ODC 是直角三角形,根据勾股定理可求得CD =22=2OD OC r +,从而得到△ABE 与△DCE 的相似比为1==22AB r CD r ,问题得解. 解:(1)如图所示:(2)如图,连接OD ,设⊙O 的半径为r .∵AC 是⊙O 的直径,∴∠ABC =90°.又∵∠ACB =30°,∴AB =12AC =12r . ∵BD 平分∠ABC ,∴∠ABD =12×90°=45°. ∴∠ACD =45°.∵OD =OC ,∴∠OCD =45°.∴∠DOC =90°.在Rt △ODC 中,CD =22=2OD OC r +.在△ABE 和△DCE 中,∵∠BAE =∠CDE ,∠AEB =DEC ,∴△ABE ∽△DCE . ∴22211222ABE CDE S AB r S CD r ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.点评:本题考查了尺规作图、圆的有关性质和相似三角形的性质,解题的关键是掌握圆的有关性质.24.解析:(1)根据线段垂直平分线的判定定理或全等三角形的判定判定和性质进行证明;(2)①若A ,B ,C ,D 四个点共圆,则AC 为所求圆的直径,易证△ABM ∽△ACB ,进而得到AB AM AC AB=,由此解得AC 的长度即可;②由△BME ∽△BFD 求得DF 的长,进而求得EF 和BF 的长;作FG ⊥AB ,交AB 于点G ,由△BGF ∽△EFD 求得FG 的长(点F 到AB 的距离).解:(1)猜想:筝形对角线互相垂直,即OT ⊥MN .证明一:如图,∵OM=ON ,TM=TN ,∴点O 和T 都在MN 的垂直平分线上,∴OT 是MN 的垂直平分线,即OT ⊥MN .证明二:在MOT 和ONT 中,∵OM =ON ,MT =NT ,OT =OT ,∴△OMT ≌△ONT ,∴∠MOT =NOT .又∵OM =ON ,∴OT ⊥MN .(2)①存在.设AC 与BD 交于点M ,由(1)可知AC ⊥BD ,AM =BM .在Rt △AMB 中,AB =5,BM =12BD =12×8=4. ∴AM =2253=4.-∵A ,B ,C ,D 四点共圆,∴∠ABC +∠ADC =180°.又∵△ABC ≌△ADC ,∴∠ABC =∠ADC =90°.∴AC 为所求圆的直径.∵∠BAM =∠BAC ,∠ABC =∠AMB =90°,∴△ABM ∽△ACB .∴AB AMAC AB=,即535AC=,解得AC=253.∴圆的半径为112525= 2236 AC⨯=.②如图,∵四边形ABED是菱形,∴AB=AD=BE=DE=5.∴BM=MD=4,AM=ME=3,BD⊥AE,∠BME=90°.又∵BF⊥CD,∠BFD=90°,∴△BME∽△BFD.∴BE EMBD DF=,即538DF=,解得DF=245.在Rt△DEF中,根据勾股定理,得EF =2222247555 DE DF⎛⎫-=-=⎪⎝⎭.∴BF=BE+EF=5+75=325.∵AB∥DE,∴∠ABF=∠DEF.作FG⊥AB,交AB于点G,∴∠BGF=∠EFD=90°.∴△BGF∽△EFD.∴BF FGDE DF=,即3252455FG=,解得FG=768125.即点F到AB的距离为768 125.点评:本题考查了线段垂直平分线的判定,相似三角形的判定和性质,菱形的性质等知识,解题的关键是掌握相关性质和正确作出辅助线.25.解析:(1)由O,C两点间的距离为3求出点C的坐标;(2)将点C的坐标代入y2=-3x+t 求出t,进而求出点A的坐标,再根据x1•x2<0,|x1|+|x2|=4求出x1,x2,进而求得二次函数的表达式,最后根据二次函数的性质求出自变量x的取值范围;(3)由平移情况表示出平移后抛物线和直线的表达式,由平移后的直线与P有公共点时得出n的取值范围,进而根据二次函数的性质求出2n2-5n的最小值.解:(1)当x=0时,y=c,∴C(0,c).∵OC的距离为3,∴|c|=3,即c=±3,∴C(0,3)或(0,-3).(2)∵x1·x2<0,∴x1,x2异号.①当c=3时,将C(0,3)代入y2=-3x+t,得0+t=3,即t=3,∴y2=-3x+3.将A(x1,0)代入y2=-3x+3,得-3x1+3=0,即x1=1,∴A(1,0),∵x1,x2异号,x1=1>0,∴x2<0,∵|x1|+|x2|=4,∴1-x2=4,解得x2=-3,∴B(-3,0).将A(1,0),B(﹣3,0)代入y1=ax2+bx+3,得+30, 9330 a ba b+=⎧⎨-+=⎩,解得1,2. ab=-⎧⎨=-⎩∴y1=-x2-2x+3=-(x+1)2+4,∴二次函数的图像开口向下,对称轴为x=﹣1.∴当x≤-1时,y随x增大而增大.②当c=-3时,将C(0,-3)代入y2=-3x+t,得0+t=-3,即t=-3,∴y2=-3x-3,把A(x1,0),代入y2=-3x-3,得-3x1-3=0,即x1=-1,∴A(-1,0),∵x1,x2异号,x1=-1<0,∴x2>0,∵|x1|+|x2|=4,∴1+x2=4,解得x2=3,∴B(3,0),将A(﹣1,0),B(3,0)代入y1=ax2+bx+3,得30, 9330 a ba b--=⎧⎨+-=⎩,解得1,2. ab=⎧⎨=-⎩∴y1=x2-2x-3=(x-1)2-4,∴二次函数的图像开口向上,对称轴为x=1.∴当x≥1时,y随x增大而增大.综上所述,当c=3时,当y随x增大而增大时,x≤-1;当c=-3,当y随x增大而增大时,x≥1.(3)①当c=3时,则y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,y1向左平移n个单位后的解析式为y3=-(x+1+n)2+4,即当x≤-1-n时,y随x增大而增大,y2向下平移n个单位后的解析式为y4=-3x+3-n.要使平移后直线与P有公共点,则当x=-1-n,y3≥y4,即-(-1-n+1+n)2+4≥-3(-1-n)+3-n,解得n≤-1,∵n>0,∴n≤-1不符合条件,应舍去;②当c=-3时,y1=x2-2x-3=(x-1)2-4,y2=-3x-3,y1向左平移n个单位后的解析式为y3=(x-1+n)2-4,即当x≥1-n时,y随x增大而增大,y2向下平移n个单位后的解析式为y4=-3x-3-n,要使平移后直线与P有公共点,则当x=1-n,y3≤y4,即(1-n-1+n)2-4≤-3(1-n)-3-n,解得n≥1.综上所述n≥1.∵2n2-5n=2(n-54)2-258,∴当n=54时,2n2-5n的最小值为:-258.点评:本题考查了二次函数的表达式及性质,解题的关键是根据二次函数的性质求出其表达式.。