广西大学 现代控制理论选择题

合集下载

现代控制理论试卷答案3套

现代控制理论试卷答案3套

现代控制理论试卷 1一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打×(1)用独立变量描述的系统状态向量的维数是唯一。

()(2)线性定常系统经过非奇异线性变换后,系统的能观性不变。

()(3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。

()(4)状态反馈不改变被控系统的能控性和能观测性。

()(5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。

()二、(12分)已知系统1001010,(0)00121x x x⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求()x t.三、(12分) 考虑由下式确定的系统:2s+2(s)=43Ws s++,求其状态空间实现的能控标准型和对角线标准型。

四、(9分)已知系统[]210020,011003x x y⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性.[]xy u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=六、(17分)已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦求出串联后系统的状态模型和传递函数.七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦为完全能控时,待定参数的取值范围。

八、(8分)已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。

现代控制理论 试卷 1参考答案一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1) 用独立变量描述的系统状态向量的维数是唯一。

《现代控制理论》课后习题全部答案(最完整打印版)

《现代控制理论》课后习题全部答案(最完整打印版)

《现代控制理论》课后习题全部答案(最完整打印版)第⼀章习题答案1-1试求图1-27系统的模拟结构图,并建⽴其状态空间表达式。

解:系统的模拟结构图如下:系统的状态⽅程如下:阿令,则所以,系统的状态空间表达式及输出⽅程表达式为状态变量的状态⽅程,和以电阻上的电压作为输出量的输出⽅程。

解:由图,令,输出量有电路原理可知:既得写成⽮量矩阵形式为:1-4两输⼊,,两输出,的系统,其模拟结构图如图1-30所⽰,试求其状态空间表达式和传递函数阵。

解:系统的状态空间表达式如下所⽰:1-5系统的动态特性由下列微分⽅程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。

解:令,则有相应的模拟结构图如下:1-6(2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式(1)画出其模拟结构图(2)求系统的传递函数解:(2)1-8求下列矩阵的特征⽮量(3)解:A的特征⽅程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征⽅程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和W2(s)试求两⼦系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所⽰的系统,其中⼦系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-22所⽰的系统,其中⼦系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-12已知差分⽅程为试将其⽤离散状态空间表达式表⽰,并使驱动函数u的系数b(即控制列阵)为(1)解法1:解法2:求T,使得得所以所以,状态空间表达式为第⼆章习题答案2-4⽤三种⽅法计算以下矩阵指数函数。

(2)A=解:第⼀种⽅法:令则,即。

现代控制理论1-8三习题库

现代控制理论1-8三习题库
12.线性变换不改变系统的(状态空间,传递函数矩阵)。
13.若矩阵A的n个特征值互异,则可通过线性变换将其化为 角阵,雅可比阵)。
14.状态变量是确定系统状态的(最小,最大)一组变量。
15.以所选择的一组状态变量为坐标轴而构成的正交(线性,非线性)
空间,称之为_,(传递函数,状态空间)。
1.试求图1-27系统的模拟结构图,并建立其状态空间表达式。
自动控制领域的科学研究方法,已经由最早的经典控制中以输入输出模型为主,发展为
现今的现代控制中以状态空间模型为主。因而,“现代控制理论”是从事自动化专业必备的
知识。“现代控制理论”的教学目标是使学生牢固树立线性系统中状态空间的概念、进一步 理解系统稳定性这一控制学科最为重要的概念,掌握能控与能观、状态反馈与状态估计等核
重点内容:逆矩阵、线性无关与线性相关定义、非齐次方程求解、哈密顿定理、定号性 理论等。
系统的数学描述可分为哪两种类型
自然界存在两类系统:静态系统和动态系统,有何区别 现代控制理论研究的主要内容是什么
现代控制理论研究对象
现代控制理论所使用的数学工具有哪些 现代控制理论问题的解决方法是什么
第二章(单元):
心方法。通过本课程学习,使学生做到各章概念融会贯通,解题方法灵活运用,分析解决实 际问题。从宏观角度把握课程的体系结构,建立起现代控制理论的基本框架。主要培养学生
以下三个方面的能力:
1、分析建模能力
根据系统的工作原理或实验数据,建立合理的数学模型。
2、认知和理解能力理解与Leabharlann 握能控性、能观测性与系统设计的关系,
合。这些信息对于确定系统(过去,未来)的行为是充分且必要
的。
10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时,

现代控制理论试题(详细答案)

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。

2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。

状态变量个数是2。

…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。

(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。

若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。

…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。

现代控制理论习题及答案

现代控制理论习题及答案

现代控制理论习题及答案现代控制理论习题及答案现代控制理论是控制工程领域的重要分支,它研究如何设计和分析控制系统,以实现对动态系统的稳定性、响应速度、精度等方面的要求。

在学习现代控制理论过程中,习题是一个非常重要的环节,通过解答习题可以帮助我们巩固理论知识,提高问题解决能力。

本文将介绍一些常见的现代控制理论习题及其答案,希望对读者有所帮助。

1. 题目:给定一个开环传递函数 G(s) = 10/(s+5),求其闭环传递函数 T(s) 和稳定性判断。

解答:闭环传递函数 T(s) 可以通过公式 T(s) = G(s) / (1 + G(s)) 计算得到。

代入G(s) 的表达式,得到 T(s) = 10/(s+15)。

稳定性判断可以通过判断开环传递函数G(s) 的极点是否在左半平面来进行。

由于 G(s) 的极点为 -5,位于左半平面,因此系统是稳定的。

2. 题目:给定一个系统的状态空间表达式为 dx/dt = Ax + Bu,其中 A = [[-1, 2], [0, -3]],B = [[1], [1]],求系统的传递函数表达式。

解答:系统的传递函数表达式可以通过状态空间表达式进行求解。

首先,计算系统的特征值,即矩阵 A 的特征值。

通过求解 det(sI - A) = 0,可以得到系统的特征值为 -1 和 -3。

然后,将特征值代入传递函数表达式的分母,得到传递函数的分母为 (s+1)(s+3)。

接下来,计算传递函数的分子,可以通过求解 C = D(sI - A)^(-1)B 得到,其中 C 和 D 分别为输出矩阵和输入矩阵。

代入给定的 A、B 矩阵,计算得到 C = [1, 0] 和 D = [0]。

因此,系统的传递函数表达式为 G(s) = C(sI - A)^(-1)B = [1, 0] * [(s+1)^(-1), -2(s+3)^(-1); 0, (s+3)^(-1)] * [1; 1] =(s+1)^(-1) + 2(s+3)^(-1)。

现代控制理论试卷与答案.docx

现代控制理论试卷与答案.docx

、名词解释与简答题(共3题,每小题5分,共15分)U i21 这甲 3!::l即U['4 _3 111 02 7 ^23 -u 2⑶尖用芷養变换送求取状壽空问表込5t 对賀分产 程⑶在零初Ife 条井下取拉氏娈换笹Jv(J)+ ⅛⅛(r)+3⅛ru) + 5K⅛)=5ιt⅛j)+7Γ(i) Γ⅛⅜g√⅛7LF(O =S 7Ti?+JijTS在用传诺两數求系绑的状态空何表达式IL 一定要 注咸传递函JS 足百为严搐H 育瑾分SL 即■是百小 于札 ⅛ffl =ri WPflTSt 理*U C1R 2 _ U 2U C 21、经典控制理论与现代控制理论的区别2、对偶原理的内容3、李雅普诺夫稳定5、已知系统的微分方程 y - 2y 3y7u。

试列写出状态空间表达式。

6、试将下列状态方程化为对角标准型或者约当标准型。

二、分析与计算题(共8小题,其中4-10小题每题10分,第11小题15分,共 85分)4、电路如图所示,设输入为U 1 ,输出为U 2 ,试自选状态变量并列写出其状态空间表达式。

麻曙秋恋爱■为J l*i ζlX i甘态空闿枝达式为 IHl IitBG 迦睾样机理分箭法,首先帳撼电踣定律则 ^ffl⅛⅛SS ・苒选澤就JS 娈■・求欄粗应的糸筑狀 盃空珂舌达式B 也珂以先由电路邀求袴糸址f⅛递函 ≡,再由悟越塑救求潯系臧帝空间表达式 采厢机理分护走“设G 两鋼电∣1⅛*ΓP G 两睛的电丘為越小则气 I *+ M TJ C M l⑴j Of ", ⅝+⅞c j i 1口白逐求得条统吠态△■期表込丄(刊 -13」LX3」L5ff It i.IW 1I⅛GV ∙K2 Lu试将下处伏越程化为朋融感P-I-I•-^S∣9U[-3-a 1•u≡IIZ7 4J u..,U.则猖对吊标■壯理l∣⅞^tη=Kn代入求聲公弍轉—⅛l- —<,i*2 f1 丿 1 ,j,1 ⅛'3f,-t i,rt<r-⅛* ft r2 2 2 1-r,(0J- JM(My IM MW-女"C F-3⅛"λf乩* J⅛4f丄■■i⅛,≡≡^Ll J——-一JfJOI-------- ---- X i(O)+βf- Iι7 -.∙Kl⅛ιp TΓl«期于占=-ι¾-I -L d-3 -( -2IJ Il∣2) IK:(IJ液转证追® 求4,j tf-3-3-1-2P llF l aLπIl%二i-3127J如n"Jf Ij= -3^f,A尸U1-12-41■'3 ⅛f,'=H1 -351 -21-I91-S5-21-12I35J7*5-27-Zfl -1I5 3 15J17I27JA_ 2*J22—_屯尸a371-15-27-202716HΛJ-A∣= -J Λs*^⅛r7、已知系统状态空间表达式为X -1-3 y =h:X Iu1 Ix求系统的单位阶跃响应。

现代控制理论试题与答案

现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u u y y 222++=+&&&&&&&,试求其状态空间最小实现。

广西大学现代控制理论期末考试题库之填空题 含答案

1. 对任意传递函数00()m nj j j j j j G s b sa s ===∑∑,其物理实现存在的条件是 。

(传递函数为s 的真有理分式函数或m n ≤)2. 系统的状态方程为齐次微分方程x Ax =,若初始时刻为0,x (0)=x 0则其解为___________。

其中, _____称为系统状态转移矩阵。

(0()e ,0A x x t t t =≥;e A t )3. 对线性连续定常系统,渐近稳定等价于大范围渐近稳定,原因是___________________。

(线性系统的稳定性与初值无关,只与系统的特征根有关)4. 系统1111(,,)∑=A B C 和2222(,,)∑=A B C 是互为对偶的两个系统,若1∑使完全能控的,则2∑是__________的。

(能观)5. 能控性与能观性的概念是由__________提出的,基于能量的稳定性理论是由__________构建的。

(卡尔曼李亚普诺夫)6. 线性定常连续系统x Ax Bu =+,系统矩阵是___________,控制矩阵是__________。

(A ; B )7. 系统状态的可观测性表征的是状态可由 完全反映的能力。

(输出)8. 线性系统的状态观测器有两个输入,即_________和__________。

(原系统的输入和原系统的输出)状态空间描述包括两部分,一部分是_________,另一部分是__________。

(状态微分方程;输出方程)9. 系统状态的可控性表征的是状态可由 完全控制的能力。

(输入)10. 由系统的输入-输出的动态关系建立系统的_______________,这样的问题叫实现问题。

(状态空间描述)11. 某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统是否存在?__________。

(存在)12. 对线性定常系统,状态观测器的设计和状态反馈控制器的设计可以分开进行,互不影响,称为______原理。

《现代控制理论》课后习题全部答案(最完整打印版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。

《现代控制理论》课后习题全部答案(最完整打印版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CC L L R L L R x x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.下面关于建模和模型说法错误的是( )。

A.无论是何种系统,其模型均可用来提示规律或因果关系。

B.建模实际上是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。

C.为设计控制器为目的建立模型只需要简练就可以了。

D.工程系统模型建模有两种途径,一是机理建模,二是系统辨识。

2.系统()3()10()++=的类型是( ) 。

y t y t u tA.集中参数、线性、动态系统。

B.集中参数、非线性、动态系统。

C.非集中参数、线性、动态系统。

D.集中参数、非线性、静态系统。

3.下面关于控制与控制系统说法错误的是( )。

A.反馈闭环控制可以在一定程度上克服不确定性。

B.反馈闭环控制不可能克服系统参数摄动。

C.反馈闭环控制可在一定程度上克服外界扰动的影响。

D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。

x Pz说法错误的是( )。

4.下面关于线性非奇异变换=A.非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。

B.对于线性定常系统,线性非奇异变换不改变系统的特征值。

C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。

D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。

5.下面关于稳定线性系统的响应说法正确的是( )。

A.线性系统的响应包含两部分,一部是零状态响应,一部分是零输入响应。

B.线性系统的零状态响应是稳态响应的一部分。

C.线性系统暂态响应是零输入响应的一部分。

D.离零点最近的极点在输出响应中所表征的运动模态权值越大。

6.下面关于连续线性时不变系统的能控性与能观性说法正确的是( ) 。

A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。

B.能控性是指存在受限控制使系统由任意初态转移到零状态的能力。

C.能观性表征的是状态反映输出的能力。

D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。

7.下面关于系统Lyapunov稳定性说法正确的是( ) 。

A.系统Lyapunov稳定性是针对平衡点的,只要一个平衡点稳定,其他平衡点也稳定。

B.通过克拉索夫斯基法一定可以构造出稳定系统的Lyapunov函数。

C.Lyapunov第二法只可以判定一般系统的稳定性,判定线性系统稳定性,只可以采用Lyapunov方程。

D.线性系统Lyapunov局部稳定等价于全局稳定性。

8.下面关于时不变线性系统的控制综合说法正确的是( ) 。

A.基于极点配置实现状态反馈控制一定可以使系统稳定。

B.不可控的系统也是不可镇定的。

C.不可观的系统一定不能通过基于降维观测器的状态反馈实现系统镇定。

D.基于观测器的状态反馈实际是输出动态补偿与串联补偿的复合。

9.SISO线性定常系统和其对偶系统,它们的输入输出传递函数是( ) 。

A.不一定相同B.一定相同的C.倒数关系D.互逆关系10.对SISO线性定常连续系统,传递函数存在零极点对消,则系统状态( ) 。

A.不能控且不能观B.不能观C.不能控D.ABC三种情况都有可能11.对于能控能观的线性定常连续系统,采用静态输出反馈闭环系统的状态( ) 。

A.能控且能观B.能观C.能控D.ABC三种情况都有可能12..线性SISO定常系统(,,)∑=A b c,输出渐近稳定的充要条件是( ) 。

A.其不可简约的传递函数()G s的全部极点位于s的左半平面。

B.矩阵A的特征值均具有负实部。

C.其不可简约的传递函数()G s的全部极点位于s的右半平面。

D.矩阵A的特征值均具有非正实部。

13. 线性定常系统的状态转移矩阵0()t t -Φ,其逆是( ) 。

A .0()t t +ΦB .0()t t -ΦC .0()t t -ΦD .0()t t --Φ14. 下面关于线性定常系统的反馈控制表述正确的是( ) 。

A .基于状态观测器的反馈闭环系统与直接状态反馈闭环系统的响应在每一时刻都是相等的。

B .不可控的系统也可能采用反馈控制对其进行镇定。

C .对可控系统,输出反馈与状态反馈均可以实现极点任意配置。

D .Lyapunov 函数方法只能用来判定稳定性,不能用于设计使系统稳定的控制器。

15. 下面关于线性连续系统的状态转移矩阵表述错误的是( ) 。

A .0000(,)()(,),(,)t t t t t t t ==ΦA ΦΦIB .100(,)(,)t t t t -=ΦΦC .100212(,)(,)(,)t t t t t t =ΦΦΦD .状态转移矩阵不唯一16. 系统前向通道传递函数阵为G 1(s ),反馈通道传递函数阵为G 2(s ),则系统闭环传递函数为( ) 。

A .1121()[()()]s s s -+G G G IB .1112()[()()]s s s -+G G G IC .1122[()()]()s s s -+G G G ID .1212[()()]()I s s s -+G G G17. 已知信号的最高频为ωf ,则通过离散化后能复原原信号的采样频率为( ) 。

A .小于等于ωfB .ωfC .1.5ωfD .大于等于2ωf18. 传递函数G (s )的分母多项式为()G s α导出的状态空间描述的特征多项式为()s α,则必有( ) 。

A .()()G s s αα=B .()()G s s αα>C .()()G s s αα<D .deg ()deg ()G s s αα≤19. 已知闭环系统的传递函数为1(1)s s +,则它是( ) 。

A .Lyapunov 渐近稳定B .Lyapunov 大范围渐近稳定C .Lyapunov 稳定D .Lyapunov 不稳定20. 已知时变系统的状态转移矩阵为,则10(,)t t -Φ等于( ) 。

A .0(,)(t)t t ΦAB . 0(,)()t t t -ΦAC .0()(,)t t t A ΦD . 0()(,)t t t A Φ 21. [(1),]k T kT +Φ在0t kT =附近泰勒展开的一阶近似为( ) 。

A .0()t T AB .0()t T +A IC .()t T +A ID .0()t T -A I22. 下面关于线性连续定常系统的最小实现说法中( )是不正确的。

A .最小实现的维数是唯一的。

B .最小实现的方式是不唯的,有无数个。

C .最小实现的系统是能观且能控的。

D .最小实现的系统是稳定的。

23. 对确定性线性连续时不变系统,设计的线性观测器输入信号有2类信号,即( )。

A .原系统的输入和输出B .原系统的输入和状态C .原系统的状态和输出D .自身的状态和原系统的输入24. 关于线性系统与非线性系统说法正确的是( )。

A .凡是输入和状态关系满足叠加性的系统就是线性系统。

B .非线性方程一定表示非线性系统。

C .系统中含有非线性元件的系统一定是非线性系统。

D .因为初始条件与冲激输入的效果是完全等效,所以将(,,,)∑=A B C D 在任何情况下都看成线性系统。

25. 线性定常系统的状态转移矩阵e t A 的性质错误的是( )。

A .若t 和τ是独立的自变量,则有()e e e t t ττ+=A A AB . e =e t t A A A AC .11e =e t t --A A A AD . ()e =e e t t τ+A B A B26. 下面关于连续线性系统的能控性说法正确的是( )。

A .若0t 时刻的状态0x 能控,设f 0t t >且在系统的时间定域内,则必有f000(,)()()t t t d ττττ=-⎰x ΦB u 。

B .能控性是指存在受限控制使系统由任意初态转移到零状态的能力。

C .常数非奇异变换改变系统的能控性。

D .系统状态若不完全能控,则一定可以将状态分成完全能控子空间和不完全能控的子空间,这两个子空间完全正交。

27. 下面关于连续线性系统的能观性说法错误的是( )。

A .一个系统不能观,意味着存在0()t x 满足000f ()(,)()0,[,]t t t t t t t =∈C Φx 。

B.能观性表征了输出反映内部状态的能力。

C.常数非奇异变换不改变系统的能观性。

D.系统状态若不完全能观,则一定可以将状态分成完全能观子空间和不完全能观的子空间,这两个子空间完全正交。

28.下面关于线性时不变系统的观测器说法正确的是( )。

A.观测器在任何情况下一定存在。

B.观测器只有在不能观的部分渐近稳定时才存在。

C.全维观测器要比降维观测器简单。

D.观测器观测的状态在任意时刻与原系统的状态是相等的。

29.下面关于状态空间模型描述正确的是( )。

A.对一个系统,只能选取一组状态变量。

B.对于线性定常系统的状态空间模型,经常数矩阵非奇异变换后的模型,其传递函数阵是的零点是有差别的。

C.代数等价的状态空间模型具有相同的特征多项式和稳定性。

D.模型的阶数就是系统中含有储能元件的个数。

30.下面关于线性时不变系统的系统矩阵说法错误的是( )。

A.由系统矩阵可以得到系统的运动模态。

B.系统矩阵的形式决定着系统的稳定性质。

C.具有相同特征值的系统矩阵,鲁棒稳定性是一样的。

D.系统矩阵不同,系统特征值可能相同。

31.下面关于离散系统状态空间描述方程的解说法错误的是( )。

A.递推迭代法适用于所有定常、时变和非线性情况,但并不一定能得到解析解。

B.解析法是针对线性系统的,其解分成两部分,一部分是零状态响应,一部分是零输入响应。

C.线性系统解的自由运动和强近运动分别与零状态响应和零输入响应一一对应。

D.线性时不变离散系统的系统矩阵G对解的收敛性起到决定性的作用。

32.下面关于线性时不变连续系统的镇定性说法正确的是( )。

A.所有的系统均可镇定。

B.不可镇定的系统是那些不可控的系统。

C.不可控的系统在不可控部分渐近稳定时,仍是可镇定的。

D.镇定性问题是不能用极点配置方法来解决的。

33.下面关于线性时不变连续系统Lyapunov方程说法错误的是( )。

A.A渐近稳定,Q正定,P一定正定。

B.A渐近稳定,Q半正定,P一定正定。

C.Q半正定,P正定,不能保证A渐近稳定。

D.A渐近稳定,Q半正定,且T x Qx沿方程的非零解不恒为0,P一定正定。

34.下面关于非线性系统近似线性化的说法错误的是( )。

A.近似线性化是基于平衡点的线性化。

B.系统只有一个平衡点时,才可以近似线性化。

C.只有不含本质非线性环节的系统才可以近似线性化。

D.线性化后系统响应误差取决于远离工作点的程度:越远,误差越大。

35.永磁他励电枢控制式直流电机对象的框图如下,下面选项中,哪一个是其模拟结构图?( )。

36. 53x x =-+A .能控不能观的 B .能控能观的 C . 不能控能观的 D .不能控不能观的37. 对于三维状态空间(各坐标值用123,,x x x 表示),下面哪一个函数不是正定的。

相关文档
最新文档