高中数学竞赛辅导-解析几何(一)
高中数学解析几何大题(附有答案及详解)

47. 已知椭圆E :()222210x y a b a b +=>>,其短轴为2.(1)求椭圆E 的方程;(2)设椭圆E 的右焦点为F ,过点()2,0G 作斜率不为0的直线交椭圆E 于M ,N 两点,设直线FM 和FN 的斜率为1k ,2k ,试判断12k k +是否为定值,若是定值,求出该定值;若不是定值,请说明理由.48. 如图,椭圆()2222:10x y C a b a b +=>>⎛ ⎝⎭,P 为椭圆上的一动点.(1)求椭圆C 的方程;(2)设圆224:5O x y +=,过点P 作圆O 的两条切线1l ,2l ,两切线的斜率分别为1k ,2k . ①求12k k 的值;①若1l 与椭圆C 交于P ,Q 两点,与圆O 切于点A ,与x 轴正半轴交于点B ,且满足OPA OQB S S =△△,求1l 的方程.49. 已知椭圆E :22221x y a b +=(a >b >0)的左、右焦点分別为12,F F ,离心率为e =左焦点1F 作直线1l 交椭圆E 于A ,B 两点,2ABF 的周长为8. (1)求椭圆E 的方程;(2)若直线2l :y =kx +m (km <0)与圆O :221x y +=相切,且与椭圆E 交于M ,N 两点,22MF NF +是否存在最小值?若存在,求出22MF NF +的最小值和此时直线2l 的方程.50. 已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,动点M 的轨迹为曲线C .(1)求C 的轨迹方程,并说明其形状;(2)过直线3x =上的动点()()3,0P p p ≠分别作C 的两条切线PQ 、PR (Q 、R 为切点),N 为弦QR 的中点,直线l :346x y +=分别与x 轴、y 轴交于点E 、F ,求NEF 的面积S的取值范围.51. 在平面直角坐标系xOy 中,已知直线l :20x y ++=和圆O :221x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标; (2)求线段PA 长的最小值;(3)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若存在,求出点T ;若不存在,请说明理由.52. 已知以1C 为圆心的圆221:1C x y +=.(1)若圆222:(1)(1)4C x y -+-=与圆1C 交于,M N 两点,求||MN 的值;(2)若直线:l y x m =+和圆1C 交于,P Q 两点,若132PC PQ ⋅=,求m 的值. 53. 已知圆()22:21M x y +-=,点P 是直线:20l x y +=上的一动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B .(1)当切线P A P 的坐标;(2)若PAM △的外接圆为圆N ,试问:当P 运动时,圆N 是否过定点?若存在,求出所有的定点的坐标;若不存在,请说明理由; (3)求线段AB 长度的最小值.54. 已知圆22:2O x y +=,直线:2l y kx =-.(1)若直线l 与圆O 交于不同的两点,A B ,当90AOB ∠=︒时,求实数k 的值;(2)若1,k P =是直线l 上的动点,过P 作圆O 的两条切线PC 、PD ,切点为C 、D ,试探究:直CD 是否过定点.若存在,请求出定点的坐标;否则,说明理由.55. 在平面直角坐标系xOy中,(A,B ,C 是满足π3ACB ∠=的一个动点. (1)求ABC 垂心H 的轨迹方程;(2)记ABC 垂心H 的轨迹为Γ,若直线l :y kx m =+(0km ≠)与Γ交于D ,E 两点,与椭圆T :2221x y +=交于P ,Q 两点,且||2||DE PQ =,求证:||k > 56. 平面上一动点C的坐标为),sin θθ.(1)求点C 轨迹E 的方程;(2)过点()11,0F -的直线l 与曲线E 相交于不同的两点,M N ,线段MN 的中垂线与直线l 相交于点P ,与直线2x =-相交于点Q .当MN PQ =时,求直线l 的方程.答案及解析47.(1)2212x y +=;(2)是定值,该定值为0.【分析】(1)依题意求得,a b ,进而可得椭圆E 的方程;(2)设直线MN 的方程为()()20y k x k =-≠,与椭圆E 方程联立,利用韦达定理和斜率公式即可求得12k k +的值. 【详解】(1)由题意可知:22b =,1b =,椭圆的离心率c e a ==a =①椭圆E 的标准方程:2212x y +=;(2)设直线MN 的方程为()()20y k x k =-≠.22(2)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得:()2222128820k x k x k +-+-=.设()11,M x y ,()22,N x y , 则2122812k x x k +=+,21228212k x x k -=+,()()()1212121212121212222211111k x k x y y x x k k k x x x x x x x x ⎡⎤--+-+=+=+=-⎢⎥-----++⎢⎥⎣⎦222222228242122208282111212k k k k k k k k k k ⎡⎤-⎢⎥⎛⎫-+=-=-=⎢⎥ ⎪--⎝⎭⎢⎥-+⎢⎥++⎣⎦. ①120k k +=为定值.【点睛】关键点点睛:第(2)问的关键点是:得出()12121212221x x k k k x x x x ⎡⎤+-+=-⎢⎥-++⎢⎥⎣⎦.48.(1)2214x y +=;(2)①14- ;①yy =+【分析】(1)根据已知条件结合222c a b =-列关于,a b 的方程,解方程即可求解;(2)①设()00,P x y ,切线:l 00()y y k x x -=-,利用圆心到切线的距离列方程,整理为关于k 的二次方程,计算两根之积结合点P 在椭圆上即可求12k k ;①由OPA OQB S S =△△可得PA BQ =,可转化为A B P Q x x x x +=+,设1l :y kx m =+,与椭圆联立可得P Q x x +,再求出A x 、B x ,即可求出k 的值,进而可得出m 的值,以及1l 的方程. 【详解】(1)因为22222234c a b e a a -===,所以2a b =,因为点⎛ ⎝⎭在椭圆上,所以221314a b +=即2213144b b +=, 解得:1b =,2a =,所以椭圆方程为:2214x y +=;(2)①设()00,P x y ,切线:l 00()y y k x x -=-即000kx y y kx -+-= 圆心()0,0O到切线的距离d r ==整理可得:2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,所以2020122200441451544455x y k k x x ⎛⎫-- ⎪-⎝⎭===---,①因为OPA OQB S S =△△所以PA BQ =,所以A P Q B x x x x -=-,所以A B P Q x x x x +=+, 设切线为1:l y kx m =+,由2244y kx m x y =+⎧⎨+=⎩可得:()222418440k x kmx m +++-= 所以2841P Q kmx x k -+=+, 令0y =可得B mx k=-,设(),A A A x kx m +, 则1A OA A kx m k x k +==-,所以21A km x k -=+, 所以228411P Q km m kmx x k k k --+==-+++, 整理可得:()()()2222814121k k k k +=++,所以221k =,解得:k =, 因为圆心()0,0O 到1:l y kx m =+距离d ,所以mm =,因为0B mx k=->,所以当k =m =k =时,m =;所以所求1l的方程为y =或y = 【点睛】思路点睛:圆锥曲线中解决定值、定点的方法(1)从特殊入手,求出定值、定点、定线,再证明定值、定点、定线与变量无关; (2)直接计算、推理,并在计算、推理的过程中消去变量是此类问题的特点,设而不求的方法、整体思想和消元思想的运用可以有效的简化运算.49.(1)2214x y +=;(2)最小值为2,0x =或0x +-=.【分析】(1)由椭圆定义结合已知求出a ,半焦距c 即可得解;(2)由直线2l 与圆O 相切得221m k =+,联立直线2l 与椭圆E 的方程消去y ,借助韦达定理表示出22MF NF +,利用函数思想方法即可作答. 【详解】(1)依题意,结合椭圆定义知2ABF 的周长为4a ,则有4a =8,即a =2,又椭圆的离心率为c e a =c =2221b a c =-=, 所以椭圆E 的方程为2214x y +=;(2)因直线2l :y =kx +m (km <0)与圆O :221x y +=1=,即221m k =+,设()()()112212,,,,2,2M x y N x y x x ≤≤,而点M 在椭圆E 上,则221114x y +=,即221114x y =-,又2F ,21|2|MF x =-=12x -,同理222NF x =,于是得)22124MF NF x x +=+, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩消去y 得:()222148440k x kmx m +++-=,显然Δ0>,则122814km x x k +=-+, 又km <0,且221m k =+,因此得1228||14km x x k +=+令2411t k =+≥,则12x x +=113t =,即t =3时等号成立,于是得22MF NF +存在最小值,且)221242MF NF x x +=+≥,22MF NF +的最小值为2,由2221413m k k ⎧=+⎨+=⎩,且km <0,解得k m ⎧=⎪⎪⎨⎪=⎪⎩或k m ⎧=⎪⎪⎨⎪=⎪⎩. 所以所求直线2l的方程为y x =y x =0x =或0x +=.【点睛】关键点睛:解决直线与椭圆的综合问题时,要注意:(1)观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 50.(1)()2214x y ++=,曲线C 是以1,0为圆心,半径为2的圆;(2)5542⎡⎤⎢⎥⎣⎦,.【分析】(1)设出动点M 坐标,代入距离比关系式,化简方程可得;(2)先求切点弦方程,再根据切点弦过定点及弦中点性质得出N 点轨迹,然后求出动点N 到定直线EF 的距离最值,最后求出面积最值.切点弦方程的求法可用以下两种方法.法一:由两切点即为两圆公共点,利用两圆相交弦方程(两圆方程作差)求出切点弦方程;法二:先分别求过Q 、R 两点的切线方程,再代入点P 坐标,得到Q 、R 两点都适合的同一直线方程,即切点弦方程. 【详解】解:(1)设(),M x y ,由12MO MA =12=. 化简得22230x y x ++-=,即()2214x y ++=. 故曲线C 是以1,0为圆心,半径为2的圆.(2)法一(由两圆相交弦方程求切点弦方程):由题意知,PQ 、PR 与圆相切,Q 、R 为切点,则DQ PQ ⊥,DR PR ⊥,则D 、R 、P 、Q 四点共圆,Q 、R 在以DP 为直径的圆上(如图).设()1,0D -,又()()3,0P p p ≠,则DP 的中点为1,2p ⎛⎫⎪⎝⎭,DP .以线段DP 为直径的圆的方程为()22212p x y ⎛⎫-+-= ⎪⎝⎭⎝⎭, 整理得22230x y x py +---=①(也可用圆的直径式方程()()()()1300x x y y p +-+--=化简得. ) 又Q 、R 在C :22230x y x ++-=①上, 由两圆方程作差即①-①得:40x py +=. 所以,切点弦QR 所在直线的方程为40x py +=. 法二(求Q 、R 均满足的同一直线方程即切点弦方程): 设()1,0D -,()11,Q x y ,()22,R x y .由DQ PQ ⊥,可得Q 处的切线上任一点(,)T x y 满足0QT DQ ⋅=(如图), 即切线PQ 方程为()()()()1111100x x x y y y -++--=.整理得()221111110x x y y x y x ++---=.又22111230x y x ++-=,整理得()111130x x y y x +++-=.同理,可得R 处的切线PR 方程为()222130x x y y x +++-=. 又()3,P p 既在切线PQ 上,又在切线PR 上,所以()()11122231303130x py x x py x ⎧+++-=⎪⎨+++-=⎪⎩,整理得11224040x py x py +=⎧⎨+=⎩. 显然,()11,Q x y ,()22,R x y 的坐标都满足直线40x py +=的方程. 而两点确定一条直线,所以切点弦QR 所在直线的方程为40x py +=. 则QR 恒过坐标原点()0,0O .由()2240,14x py x y +=⎧⎪⎨++=⎪⎩消去x 并整理得()22168480p y py +--=. 设()11,Q x y ,()22,R x y ,则122816py y p +=+.点N 纵坐标1224216N y y py p +==+. 因为0p ≠,显然0N y ≠,所以点N 与点()1,0D -,()0,0O 均不重合.(或者由对称性可知,QR 的中点N 点在x 轴上当且仅当点P 在x 轴上,因为0p ≠,点P 不在x 轴上,则点N 也不在x 轴上,所以点N 与D 、O 均不重合.) 因为N 为弦QR 的中点,且()1,0D -为圆心,由圆的性质,可得DN QR ⊥,即DN ON ⊥(如图).所以点N 在以OD 为直径的圆上,圆心为1,02G ⎛⎫- ⎪⎝⎭,半径12r =.因为直线346x y +=分别与x 轴、y 轴交于点E 、F ,所以()2,0E ,30,2F ⎛⎫⎪⎝⎭,52EF =.又圆心1,02G ⎛⎫- ⎪⎝⎭到直线3460x y +-=的距离32d ==. 设NEF 的边EF 上的高为h ,则点N 到直线346x y +=的距离h 的最小值为31122d r -=-=; 点N 到直线346x y +=的距离h 的最大值为31222d r +=+=(如图).则S 的最小值min 1551224S =⨯⨯=,最大值max 1552222S =⨯⨯=.因此,NEF 的面积S 的取值范围是5542⎡⎤⎢⎥⎣⎦,.【点睛】设00(,)P x y 是圆锥曲线外一点,过点P 作曲线的两条切线,切点为A 、B 两点,则 A 、B 两点所在的直线方程为切点弦方程.常见圆锥曲线的切点弦方程有以下结论: 圆222()()x a y b r -+-=的切点弦方程:200()()()()x a x a y b y b r --+--=, 圆220x y Dx Ey F ++++=的切点弦方程: 0000022x x y yx x y y D E F ++++++= 椭圆22221x y a b+=的切点弦方程:00221x x y y a b +=;双曲线22221x y a b-=的切点弦方程:00221x x y y a b -=;抛物线22y px =的切点弦方程为:00()y y p x x =+.特别地,当00(,)P x y 为圆锥曲线上一点时,可看作两切线重合,两切点A 、B 重合,以上切点弦方程即曲线在P 处的切线方程.51.(1)()1,1P --;(2)1;(3)存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.理由见解析.【分析】(1)依题意可得四边形PAOB 为正方形,设(),2P x x --,利用平面直角坐标系上两点的距离公式得到方程,计算可得;(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小,利用点到线的距离公式求出PO 的最小值,即可得解;(3)设()00,2P x x --,求出以OP 为直径的圆的方程,即可求出公共弦AB 所在直线方程,从而求出动点Q 的轨迹方程,即可得解; 【详解】解:(1)若PA PB ⊥,则四边形PAOB 为正方形, 则P①P 在直线20x y ++=上,设(),2P x x --,则OP =,解得1x =-,故()1,1P --.(2)由221PA PO =-可知当线段PO 长最小时,线段PA 长最小. 线段PO 长最小值即点O 到直线l的距离,故min PO ==所以min 1PA =.(3)设()00,2P x x --,则以OP 为直径的圆的方程为()2222000022224x x x x x y +----⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得()220020x x x x y y -+++=,与221x y +=联立,可得AB 所在直线方程为()0021x x x y -+=,联立()002221,1,x x x y x y ⎧-+=⎨+=⎩得()222000002443024x x x x x x x ++----=, ①Q 的坐标为002200002,244244x x x x x x --++++⎛⎫⎪⎝⎭,可得Q 点轨迹为22111448x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,圆心11,44⎛⎫-- ⎪⎝⎭,半径R =.其中原点()0,0为极限点(也可以去掉).故存在点11,44T ⎛⎫-- ⎪⎝⎭,使得线段TQ 长为定值.【点睛】本题考查了直线与圆的位置关系、方程思想、数形结合方法、转化方法,考查运算求解能力和应用意识.52.(1;(2)m = 【分析】(1)由两个圆相交,可将两个圆的方程相减求得直线MN 的方程.利用圆心到直线的距离,结合垂径定理即可求得||MN 的值.(2)设()()1122,,,P x y Q x y ,利用向量的坐标运算表示出1,PC PQ .将直线方程与圆的方程联立,化简后由>0∆求得m 的取值范围,并表示出12x x +,12x x ,进而由直线方程表示出12y y .根据平面向量数量积的坐标运算,代入化简计算即可求得m 的值. 【详解】(1)直线MN 的方程为2222(1)(1)410x y x y -+----+=, 即2 2 10x y ++=;故圆1C 的圆心到2210x y ++=的距离d =故||MN == (2)设()()1122,,,P x y Q x y ,则()()1112121,,,PC x y PQ x x y y =--=--,由22,1,y x m x y =+⎧⎨+=⎩化简可得222210x mx m ++-=, 故()222481840,m m m ∆=--=->解得m < 12x x m +=-,2121,2m x x -=所以()()()212121212y y x m x m x x m x x m =++=+++,又()()2211121211212113,,2PC PQ x y x x y y x x y y x y ⋅=--⋅--=--++=, 又22111x y +=故121212x x y y +=-,故()21212122x x m x x m +++=-, 将12x x m +=-,2121,2m x x -=代入可得222112m m m --+=-,解得m =又因为m <所以2m =± 【点睛】本题考查了圆与圆的位置关系及公共弦长度的求法,直线与圆位置关系的综合应用,由韦达定理求参数的值,平面向量数量积的运算,综合性强,计算量大,属于难题.53.(1)()0,0P 或84,55P ⎛⎫- ⎪⎝⎭;(2)圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭;(3)当25b =时,AB 有最小【分析】(1)设()2,P b b -,由MP b ,得出结果;(2)因为A 、P 、M 三点的圆N 以MP 为直径,所以圆N 的方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭,化简为()()222220x y b x y y -+++-=,由方程恒成立可知2222020x y x y y -+=⎧⎨+-=⎩,即可求得动圆所过的定点; (3)由圆M 和圆N 方程作差可得直线AB 方程,设点()0,2M 到直线AB 的距离d ,则AB =.【详解】(1)由题可知,圆M 的半径1r =,设()2,P b b -, 因为P A 是圆M 的一条切线,所以90MAP ∠=︒,所以2MP ==,解得0b =或45b =, 所以点P 的坐标为()0,0P 或84,55P ⎛⎫- ⎪⎝⎭.(2)设()2,P b b -,因为90MAP ∠=︒, 所以经过A 、P 、M 三点的圆N 以MP 为直径, 其方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()()222220x y b x y y -+++-=,由2222020x y x y y -+=⎧⎨+-=⎩, 解得02x y =⎧⎨=⎩或4525x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以圆过定点()0,2,42,55⎛⎫- ⎪⎝⎭.(3)因为圆N 方程为()()222242224b b b x b y +-+⎛⎫++-=⎪⎝⎭, 即()222220x y bx b y b ++-++=①又圆22:430M x y y +-+=①①-①得圆M 方程与圆N 相交弦AB 所在直线方程为 ()22230bx b y b --+-=.点()0,2M 到直线AB的距离d =所以相交弦长AB == 所以当25b =时,AB【点睛】本题考查直线和圆的位置关系,考查定点问题和距离的最值问题,难度较难. 54.(1)k =(2)直线CD 过定点(1,1)- 【分析】(1)由已知结合垂径定理求得圆心到直线的距离,再由点到直线的距离公式列式求得k ; (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,求出两条切线方程,计算出直线CD 的方程,从而得到定点坐标;解法2:由题意可知,O 、P 、C 、D 四点共圆且在以OP为直径的圆上,求出公共弦所在直线方程,再由直线系方程求得定点坐标. 【详解】(1)2AOB π∠=,∴点O 到l 的距离2d r =,k = (2)解法1:设切点11(,)C x y ,22(,)D x y ,动点00(,)P x y ,则圆在点C 处的切线方程为 1111()()0y y y x x x -+-=,所以221111x x y y x y +=+,即112x x y y +=同理,圆在点D 处的切线方程为222x x y y += 又点00(,)P x y 是两条切线的交点, 10102x x y y ∴+=,20202x x y y +=,所以点()11,C x y ,()22,D x y 的坐标都适合方程002x x y y +=, 上述方程表示一条直线,而过C 、D 两点的直线是唯一的, 所以直线CD 的方程为:002x x y y +=. 设(,2)P t t -,则直线CD 的方程为(2)2tx t y +-=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-.解法2:由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, 设(,2)P t t -,则此圆的方程为:()(2)0x x t y y t -+-+=, 即:22(2)0x tx y t y -+--=, 又C 、D 在圆22:2O x y +=上,两圆方程相减得():220CD l tx t y +--=, 即()(22)0x y t y +-+=, ∴0220x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,故直线CD 过定点(1,1)-. 【点睛】本题考查了直线与圆的相交问题,由弦长求直线斜率,只需结合弦长公式计算圆心到直线的距离,然后求得结果,在求直线恒过定点坐标时,一定要先表示出直线方程,然后在求解. 55.(1)22(1)4x y ++=(2y ≠-);(2)证明见解析. 【分析】(1)由题可求出顶点C 的轨迹方程,再利用相关点法可求垂心H 的轨迹方程;(2)利用弦长公式可求||DE ,再利用韦达定理法求||PQ ,由||2||DE PQ =得出2221m k ≥+,然后结合判别式大于零即可证. 【详解】设ABC 的外心为1O ,半径为R ,则有22sin ABR ACB==∠,所以1πcos 13OO R ==即1(0,1)O ,设(,)C x y ,()00,H x y ,有1O C R =,即有22(1)4x y +-=(0y ≠), 由CH AB ⊥,则有0x x =,由AH BC ⊥,则有(00(0AH BC x x y y ⋅=+=,所以有(220(3(1)12x x x y y y yy y---=-===-,则有()220014x y ++=(02y ≠-),所以ABC 垂心H 的轨迹方程为22(1)4x y ++=(2y ≠-); (2)记点(0,1)-到直线l 的距离为d ,则有d =所以||DE==,设()11,P x y,()22,Q x y,联立2221y kx mx y=+⎧⎨+=⎩,有()2222210k x kmx m+++-=,所以()224220k m∆=+->,||PQ==由||2||DE PQ=,可得()()()()()2222222222222418141(1)8412222k m k km mk k kk k++++-=-≤-+++++,所以()22222248(1)212m mk kk++≤+++,即有()()()22222224181(1)22k k mmk k+++≤+++,所以()()()22222222418122(1)22k k mm mk k+++--≥-++,即22222222222221(1)101222k k m k mm mk k k k⎛⎫-=-⇒-≥⇒≥+⎪+++⎝⎭又0∆>,可得2212km<+,所以222112kk+<+,解得22k>,故||k>56.(1)2212xy+=;(2)10x y±-=.【分析】(1)利用22sin cos1θθ+=求得点C的轨迹E的方程.(2)设直线l的方程为1x my=-,联立直线l的方程和曲线E的方程,化简写出根与系数关系,求得MN、PQ,由1PQMN=求得m的值,从而求得直线l的方程.【详解】 (1)设(),C x y ,则,sin x y θθ⎧=⎪⎨=⎪⎩,即cos sin yθθ⎧=⎪⎨⎪=⎩, 所以2212x y +=,所以E 的方程为2212x y +=.(2)由题意知,直线l 的斜率不为0,设直线:1l x my =-,()()()1122,,,,,p p M x y N x y P x y .联立2221,1x y x my ⎧+=⎨=-⎩,消去x ,得()22+2210m y my --=,此时()281m ∆=+0>,且12222m y y m +=+,12212y y m =-+又由弦长公式得MN =整理得2212m MN m ++. 又122+=22p y y m y m =+,所以2212p p x my m -=-=+,所以222222p m PQ x m ++=+,所以1PQMN =, 所以21m =,即1m =±.综上,当1m =±,即直线l 的斜率为±1时,MN PQ =, 此时直线l 为10x y ±-=. 【点睛】求解直线和圆锥曲线相交所得弦长,往往采用设而不求,整体代入的方法来求解.。
高中数学竞赛解析几何

高中数学联赛(预赛题锦)解析几何板块(天津卷2)2.设,B C 是定点且都不在平面π上,动点A 在平面π上且1in 2s ABC ∠=.那么,A 点的轨迹是( )(A )椭圆 (B )抛物线 (C )双曲线 (D )以上皆有可能(天津卷8)8.设M 是椭圆22143x y +=上的动点,又设点F 和点P 的坐标分别是()1,0和()3,1,则2MF MP -的最大值是__________.(天津卷15)在平面直角坐标系中,设,,A B C 是曲线1xy =上三个不同的点,且,,D E F 分别是,,BC CA AB 的中点.求证:DEF ∆的外接圆经过原点O .(河北卷6)6.圆O 的方程为221xy +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .(河北卷12)12. (本题满分14分)在椭圆中定义:过焦点且垂直于长轴的直线被椭圆截得的弦,叫做椭圆的通径.如图,已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,其离心率为12,通径长为3.(Ⅰ)求椭圆的方程;(Ⅱ)过1F 的直线交椭圆于A B 、两点,12I I 、分别为1212F BF F AF ∆∆、的内心,延长2BF 交椭圆于点M .(ⅰ)求四边形1221F I F I 与2AF B ∆的面积的比值p ; (ⅱ)在x 轴上是否存在定点C ,使CM CB ⋅为常数? 若存在,求出点C 的坐标;若不存在,说明理由.(山西卷2)若自椭圆中心到焦点,长轴顶点,以及到准线的距离之长可以组成一个直角三角形。
则该椭圆的离心率是(吉林卷8)8.椭圆22221x y a b +=(0)a b >>的四个顶点为A 、B 、C 、D ,若菱形ABCD 的内切圆半径等于椭圆焦距的66,则椭圆的离心率为 ______.1F M 2F 1I BxA2I y o(山东卷12)12.(本小题满分15分)已知椭圆22143x y +=的内接平行四边形的一组对边分别过椭圆的焦点12,F F ,求该平行四边形面积的最大值.(福建卷12)12.已知A 、B为抛物线C :24y x =上的两个动点,点A 在第一象限,点B 在第四象限。
高中数学解析几何复习 题集附答案

高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
下面我们通过一些例题来复习直线的方程的求解方法。
例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。
解析:首先我们可以求出直线L1的斜率k。
直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。
例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。
解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。
直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。
再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。
二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。
我们可以通过直线的方程和平面的方程来求解交点的坐标。
下面我们通过一些例题来复习直线和平面交点的求解方法。
例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。
高中解析几何典型题

高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
高中数学解析几何试题及答案

解析几何一.命题趋向与解题方法、技巧 1.圆锥曲线基础题 主要是考查以下问题:①圆锥曲线的两种定义、标准方程、焦点、常见距离及其p e c b a ,,,,五个参数的求解;②讨论圆锥曲线的几何性质;③曲线的交点问题,即直线与二次曲线和两圆的交点问题;④圆锥曲线的对称性,一是曲线自身的对称性,二是曲线间的对称性。
2.轨迹问题主要有三种类型:①曲线形状已知,求其方程;②曲线形状未定,求其方程;③由曲线方程讨论其形状(一般含参数)。
此类问题解题步骤通常是通过建立坐标系,设动点的坐标,依题意设条件,列出等式、代入化简整理即得曲线的轨迹方程。
基本方法有:直译法、定义法、代入法、交轨法、几何法、参数法。
3.参数取值范围问题通常依据题设条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围。
基本方法有定义法、函数法、方程法、不等式法及几何法。
4.位置关系常涉及直线与圆锥曲线交点的判定、弦长、弦中点、垂直、对称、共线等问题。
应注意充分利用圆锥曲线的基本性质及韦达定理、方程思想。
根据新教材的特点,常结合平面向量的基本知识进行考查。
5.最值问题通常是依题设条件,建立目标函数,然后用求最值的方法来处理;有时也可用数形结合思想,利用几何法分析。
6.韦达定理在解决解析几何问题中的主要应用韦达定理在解决解析几何问题中起着重要作用,特别是在解决有关弦长、两条直线互相垂直、弦中点、对称、轨迹、定点问题时能化难为易,化繁为简。
【专题训练】一 、选择题1.从一块短轴长为2b 的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是223,4b b ⎡⎤⎣⎦,则这一椭圆离心率e 的取值范围是( )A .]23,35[B .]22,33[C .]22,35[D .]23,33[ 2.已知A 、B 是抛物线px y 22=(0p >)上异于原点O 的两点,则“OA ·0OB =”是“直线AB 恒过定点(0,2p )”的( ) A .充分非必要条件 B .充要条件 C .必要非充分条件 D .非充分非必要条件3.设椭圆的两个焦点分别为12F F ,,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF △为等腰直角三角形,则椭圆的离心率是 ( )A BC .2D 14.已知椭圆22221(0)x ya b a b+=>>与x 轴的正半轴交于点A O ,是原点,若椭圆上存在一点M ,使MA MO ⊥,则椭圆的离心率的取值范围是 ( )A .1,12⎛⎫⎪⎝⎭ B .⎤⎥⎣⎦ C .⎫⎪⎪⎣⎭D .⎫⎪⎪⎝⎭ 5.已知3AB =, A 、B 分别在y 轴和x 轴上运动,O 为原点,1233OP OA OB =+,则动点P 的轨迹方程是( )A . 1422=+y xB . 1422=+y xC .1922=+y xD .1922=+y x 6.已知直线:2430l x y ++=,P 为l 上的动点,O 为坐标原点,点Q 分线段OP 为1:2两部分,则点Q 的轨迹方程为( )A .2410x y ++=B .2430x y ++=C .2420x y ++=D .210x y ++=二、填空题 7.过抛物线214y x =准线上任一点作抛物线的两条切线,若切点分别为,M N ,则直线MN 过定点 .8.过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于,A B 两点,交准线于点C .若2CB BF =,则直线AB 的斜率为 .9.河上有抛物线型拱桥,当水面距拱顶5m 时,水面宽为8m ,一小船宽4m ,高2m ,载货后船露出水面上的部分高34m ,当小船开始不能通航时,水面上涨到距抛物线拱顶相距 m .三、解答题10.椭圆C 的一个焦点F 恰好是抛物线24y x =-的焦点,离心率是双曲线224x y -=离心率的倒数.(1)求椭圆C 的标准方程; (2)设过点F 且不与坐标轴垂直的直线l 交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,当点G 的横坐标为14-时,求直线l 的方程.11.椭圆的对称中心在坐标原点,一个顶点为)2,0(A ,右焦点F 与点,B 的距离为2.(1)求椭圆的方程;(2)是否存在斜率0≠k 的直线l :2-=kx y ,使直线l 与椭圆相交于不同的两点N M ,满足||||AN AM =,若存在,求直线l 的倾斜角α;若不存在,说明理由.12.在ABC ∆中AC =B 是椭圆22154x y +=在x 轴上方的顶点,l 的方程是1y =-,当AC 在直线l 上运动时.(1)求ABC ∆外接圆的圆心P 的轨迹E 的方程;(2)过定点3(0,)2F 作互相垂直的直线12,l l ,分别交轨迹E 于,M N 和,R Q ,求四边形MRNQ 面积的最小值.【专题训练参考答案】1.解析:A 设椭圆方程为()222210x y a b a b+=>>,设矩形在第一象限的顶点坐标为(),x y ,根据对称性该矩形的面积为224422x y x y S xy ab ab ab a b a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==≤+=⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,即划出的矩形的最大面积是2ab ,根据已知22324b ab b ≤≤,即322b a b ≤≤,即1223b a ≤≤,故32c e a ===⎣⎦.2.解析:B3.解析:D 由题意,得1212PF F ===,又由椭圆的定义,得122PF PF a +=.即22c a +=,则1)a c =,得1ce a=,故选D.4.解析:D 设()M x y ,,则MA MO ⊥,得1y yx x a=-·.将其与椭圆方程联立,消去y 得222()()0x a b x a x b a --+=.由x a ≠,得22222ab ab x a b c==-.()M x y ,∵在椭圆上,[]x a a ∈-,∴, 又MA MO ⊥,则(0)x a ∈,,即220ab a c<<,2201b c <<∴,2222212a b c c +<=<,则2212c a >,e ∴.又01e <<∵,1e <<.5.解析:A 设()0,A a ,(),0B b ,则由3AB =得229a b +=.设(),P x y ,由1233OP OA OB =+得()()()12,0,,033x y a b =+,由此得32b x =,3a y =,代入229a b +=得2222999144x y x y +=⇒+=.6.解析:A 设点Q 的坐标为(),x y ,点P 的坐标为()11,x y .∵Q 分线段OP 为1:2,∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=+=211212112111y y x x ,即⎩⎨⎧==y y x x 3311 ∵点P 在直线l 上,∴112430x y ++=,把113,3x x y y ==代入上式并化简,得2410x y ++=,为所求轨迹方程.7.解析:()0,1.8.解析:3± 涉及抛物线的焦点弦的时候,常用应用抛物线的定义.注意本题有两解.9.解析:2 如图 建立适当的坐标系,设拱桥抛物线方程为)0(22>-=p py x ,由题意,将()4,5B -代入方程得58=p ,∴抛物线方程为y x 5162-=.∵ 当船的两侧和拱桥接触时船不能通航. 设此时船面宽为/AA , 则()2,A A y ,由A y 51622-=,得45-=A y ,又知船面露出水面上部分为34m ,324A h y m =+=.即水面上涨到距抛物线拱顶2m 时小船不能通航.10.解析:(1)根据已知该椭圆的一个焦点坐标是()1,0F -,即1c =,双曲线224x y -=2,2,即2c e a ==,故2a =从而1b =, 所以所求椭圆的标准方程是2212x y +=.(2)设直线l 的方程为(1)(0),y k x k =+≠代入221,2x y += 整理得2222(12)4220.k x k x k +++-=(6分)直线AB 过椭圆的左焦点F ,∴方程有两个不等实根. 记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+故20122221k x x x k =+=-+,()002121ky k x k =+=+. (9分)又AB 的垂直平分线NG 的方程为001().y y x x k-=-- (10分) 令0,y =得22200222221112121212424G k k k x x ky k k k k =+=-+=-=-+=-++++,解得2k =±,故直线l的方程为()12y x =±+.11.解析:(1)依题意,设椭圆方程为)0(12222>>=+b a by a x ,则其右焦点坐标为22,)0,(b a c c F -=,由=||FB 2,得2=,即2(24c +=,解得22=c .又 ∵2=b ,∴ 12222=+=b c a ,即椭圆方程为141222=+y x . (2)由||||AN AM =知点A 在线段MN 的垂直平分线上, 由⎪⎩⎪⎨⎧=+-=1412222y x kx y 消去y 得12)2(322=-+kx x 即012)31(22=-+kx x k (*)由0≠k ,得方程(*)的0144)12(22>=-=∆k k ,即方程(*)有两个不相等的实数根.设),(11y x M 、),(22y x N ,线段MN 的中点),(00y x P ,则2213112k kx x +=+,∴22103162k k x x x +=+=, ∴ 22220031231)31(262k k k k kx y +-=++-=-=,即)312,316(22kk k P +-+ ,0≠k ,∴直线AP 的斜率为k k k k k k 6)31(2231623122221+--=+-+-=, 由AP MN ⊥,得16)31(222-=⨯+--k kk , ∴ 66222=++k ,解得:33±=k ,即33tan ±=α,又πα<≤0,故 6πα=,或65πα=,∴ 存在直线l 满足题意,其倾斜角6πα=,或65πα=.12.解析:(1)由椭圆方程22154x y +=得点(0,2),B 直线l 方程是1y =-AC ∴=且AC 在直线l 上运动.可设(1),(1),A m C m --则AC 的垂直平分线方程为x m = ①AB的垂直平分线方程为12y x -= ② P 是ABC ∆的外接圆圆心,∴点P 的坐标(,)x y 满足方程①和②由①和②联立消去m 得26x y =故圆心P 的轨迹E 的方程为26x y =(2)由图可知,直线1l 和2l 的斜率存在且不为零,设1l 的方程为32y kx =+, 12l l ⊥,2l ∴的方程为132y x k =-+.由23216y kx y x ⎧=+⎪⎪⎨⎪=⎪⎩得 2690x kx --= △=226360,k ∆=+>∴直线1l 与轨迹E 交于两点. 设1122(,),(,)M x y N x y ,则12126,9x x k x x +==.2||6(1).MN k ∴===+同理可得:21||6(1).RQ k=+∴四边形MRNQ 的面积2211||||18(2)18(272.2S MN RQ k k =•=++≥+= 当且仅当221k k=,即1k =±时,等号成立.故四边形MRNQ 的面积的最小值为72.。
高中数学复习空间解析几何

高中数学复习空间解析几何高中数学复习:空间解析几何空间解析几何是高中数学中的一个重要部分,涉及到点、直线、平面在空间中的位置关系和运动规律。
通过研究空间解析几何,我们可以更好地理解和应用代数几何中的相关知识,为高考和数学学科的深入学习奠定基础。
本文将系统地介绍空间解析几何的相关内容和重要概念,并提供题目进行巩固练习。
一、空间直角坐标系在空间解析几何中,我们通常使用三维直角坐标系来描述点和几何对象的位置。
三维直角坐标系由三条相互垂直的坐标轴构成,分别表示$x$轴、$y$轴和$z$轴。
点的位置可以用有序三元组$(x, y, z)$来表示,其中$x$、$y$、$z$分别表示点在$x$轴、$y$轴和$z$轴上的坐标。
在三维直角坐标系中,我们可以轻松确定点之间的距离及其他几何对象之间的位置关系。
二、空间向量空间向量是空间解析几何中的重要概念。
在三维直角坐标系中,我们可以用有向线段来表示空间向量。
空间向量具有模和方向两个重要的属性。
两个向量相等,当且仅当它们的模相等,且方向相同。
对于两个向量$\mathbf{a}$和$\mathbf{b}$,它们的和向量$\mathbf{a} +\mathbf{b}$等于将$\mathbf{a}$和$\mathbf{b}$的对应分量相加得到的向量,差向量$\mathbf{a} - \mathbf{b}$等于将$\mathbf{a}$和$\mathbf{b}$的对应分量相减得到的向量。
三、空间中的点和直线在空间解析几何中,我们可以用向量表示点和直线。
对于点$A$,我们可以通过向量$\overrightarrow{OA}$来表示,其中$O$是空间直角坐标系的原点。
对于直线$l$,我们可以通过一个点$P$和一个平行于$l$的向量$\mathbf{v}$来表示,即$l: \overrightarrow{r} =\overrightarrow{OP} + t\mathbf{v}$,其中$t$为参数。
高中数学解析几何压轴题专项拔高训练 (一)

高中数学解析几何压轴题专项拔高训练一.选择题(共15小题)1.已知双曲线的右焦点为F,P是右支上任意一点,以P为圆心,PF长.C D.,,再由双曲线第二定,=,由此能够导出,﹣,=∵,∴.2.已知F1、F2是双曲线(a>0,b>0)的左、右焦点,若在双曲线上的点P满足∠F1PF2=60°,且|OP|=aC D.∴22)﹣∴∴∵∴∴∴4.双曲线x2﹣y2=2的左、右焦点分别为F1,F2,点P n(x n,y n)(n=1,2,3…)在其右支上,且满足|P n+1F2|=|P n F1|,.C|=2,32,则|=3=3=4017,离心率为,则,∴5.如图,B地在A地的正东方向4km处,C地在B地的北偏东30°方向2km处,河流的没岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上一处M建一座码头,向B、C 两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()2,,),根据=1)=2a[|=﹣6.如图,I表示南北方向的公路,A地在公路的正东2km处,B地在A地北偏东60°方向处,河流沿岸PQ (曲线)上任一点到公路l和到A地距离相等,现要在河岸PQ上选一处M建一座码头,向A,B两地转运货物,经测算从M到A,B修建公路的费用均为a万元/km,那么修建这两条公路的总费用最低是(单位万元)().D7.已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若.C,∴8.已知抛物线y2=2px(p>0)与椭圆有相同的焦点F,点A是两曲线的一个交点,.C D.=,把代入椭圆方程求得关于=,=代入椭圆方程得=2ce=﹣9.椭圆C1:的左准线为l,左、右焦点分别为F1、F2,抛物线C2的准线为l,焦点为F2,C1与C2的一个交点为P,线段PF2的中点为G,O是坐标原点,则的值为().可得,最后化简,.|OG|==10.已知双曲线的左、右焦点分别为F1、F2,P为左支一点,P到左准线的距离为d,若.C D.∵∴,又∴≤,即(≤,又>.11.已知点P是双曲线C:﹣=1上的动点,F1,F2分别是双曲线C的左、右焦点O为坐标原点,则的取值范围是(),,],﹣,再由双曲线中=﹣)=,又因为双曲线中∈仍可推出∈的取值范围为(12.已知点P是双曲线左支上的一点,F1,F2分别是双曲线的左、右焦点,∠PF1F2=α,∠PF2F1=β,双曲线离心率为e,则=().C D.中,由正弦定理得:=与合比定理得:=,即,e===tan=•tan∴.13.设F是双曲线的右焦点,双曲线两条渐近线分别为l1,l2,过F作直线l1的垂线,分别交l1,l2于A、B两点,且向量与同向.若|OA|,|AB|,|OB|成等差数列,则双曲线离心率e的大小为().C D向量与同向,<∴|OA|=AOB=,﹣∠∴,∴k=∴,∴=1=e=故答案为:|OA|=14.双曲线的左、右焦点分别为F1、F2,过焦点F2且垂直于x轴的弦为AB,若∠AF1B=90°,.C D.,因为过焦点,±,因为15.设P为双曲线的渐近线在第一象限内的部分上一动点,F为双曲线C的右焦.C D.,,,==二.解答题(共15小题)16.实轴长为的椭圆的中心在原点,其焦点F1,,F2在x轴上.抛物线的顶点在原点O,对称轴为y轴,两曲线在第一象限内相交于点A,且AF1⊥AF2,△AF1F2的面积为3.(Ⅰ)求椭圆和抛物线的标准方程;(Ⅱ)过点A作直线l分别与抛物线和椭圆交于B,C,若,求直线l的斜率k.)设椭圆方程为的方程为由,得,,得.由此能求出直线l的斜率.)设椭圆方程为,由题意知椭圆的方程为…,代入椭圆的方程得的方程为,,∴∴∴整理得:∴的斜率为17.已知:点F是抛物线:x2=2py(p>0)的焦点,过F点作圆:(x+1)2+(y+2)2=5的两条切线互相垂直.(Ι)求抛物线的方程;(Ⅱ)直线l:y=kx+b(k>0)交抛物线于A,B两点.①若抛物线在A,B两点的切线交于P,求证:k﹣k PF>1;②若B点纵坐标是A点纵坐标的4倍,A,B在y轴两侧,且,求l的方程.到圆心的距离为,进而求出)==k+,所以由基本≥.因为,结合题意可得.因为半径为到圆心的距离为,即可得,)x为:……),﹣=k+=>,整理可得:,b=18.已知抛物线C1:y2=4x,圆C2:(x﹣1)2+y2=1,过抛物线焦点F的直线l交C1于A,D两点(点A在x轴上方),直线l交C2于B,C两点(点B在x轴上方).(Ⅰ)求|AB|•|CD|的值;(Ⅱ)设直线OA、OB、OC、OD的斜率分别为m、n、p、q,且满足m+n+p+q=3,并且|AB|,|BC|,|CD|成等差数列,求出所有满足条件的直线l的方程.)得:,∴,∴∴∴的方程为19.如图:过抛物线y2=4x上的点A(1,2)作切线l交x轴与直线x=﹣4分别于D,B.动点P是抛物线y2=4x 上的一点,点E在线段AP上,满足;点F在线段BP上,满足,3λ1+2λ2=15且在△ABP中,线段PD与EF交于点Q.(1)求点Q的轨迹方程;(2)若M,N是直线x=﹣3 上的两点,且⊙O1:(x+2)2+y2=1是△QMN的内切圆,试求△QMN面积的取值范围.==,=,由此能求出点,则(,==,,三点共线,所以,故的定比为,,得y(,t)面积的取值范围20.平面内动点M与点P1(﹣2,0),P2(2,0)所成直线的斜率分别为k1、k2,且满足.(1)求点M的轨迹E的方程,并指出E的曲线类型;(2)设直线l:y=kx+m(k>0,m≠0)分别交x、y 轴于点A、B,交曲线E于点C、D,且|AC|=|BD|,求k的值及△NCD面积取得最大时直线l的方程.,可得,整理可求,CD|=,∴,即±,它的方程是的中点为即﹣k=|m|=±y=21.已知椭圆C1+=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M 是C1与C2在第一象限的交点,且|MF2|=.(1)求椭圆C1的方程;(2)已知菱形ABCD的顶点A,C在椭圆C1上,对角线BD所在的直线的斜率为1.①当直线BD过点(0,)时,求直线AC的方程;②当∠ABC=60°时,求菱形ABCD面积的最大值.))∵,∴,∴∴上,舍去.的方程为.的方程为解得,.为菱形可知,点在直线上,∴.的面积取得最大值22.F1、F2分别是双曲线x2﹣y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b与圆O相切,并与双曲线交于A、B两点.向量在向量方向的投影是p.(1)根据条件求出b和k满足的关系式;(2)当时,求直线l的方程;(3)当=m,且满足2≤m≤4时,求△AOB面积的取值范围.再利用的两个焦点分别是所以有则由根据韦达定理,得.从而.)知又由于所以∴的方程为)可得∴∵时,面积的取值范围是23.已知椭圆的离心率为,其左、右焦点分别为F1、F2,点P是椭圆上一点,且,|OP|=1(O为坐标原点).(Ⅰ)求椭圆C的方程;(Ⅱ)过点且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.)因为,所以,得的方程为:,由得.则)因为,所以∵,∴∴.因此所求椭圆的方程为:.得由假设得对于任意的解得24.已知抛物线y2=4ax(a>0)的焦点为F,以点A(a+4,0)为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点.(I)求证:点A在以M、N为焦点,且过点F的椭圆上;(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由.,×的坐标为25.已知△ABC的边AB所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC所在直线上且.(1)求△ABC外接圆的方程;(2)一动圆过点N(﹣2,0),且与△ABC的外接圆外切,求此动圆圆心的轨迹方程Γ;(3)过点A斜率为k的直线与曲线Γ交于相异的P,Q两点,满足,求k的取值范围.)由为焦点,实轴长为,由)∵,.,即为焦点,实轴长为.∴的取值范围为26.在直角坐标系xoy中,已知三点A(﹣1,0),B(1,0),C(﹣1,);以A、B为焦点的椭圆经过C点,(1)求椭圆方程;(2)设点D(0,1),是否存在不平行于x轴的直线l,与椭圆交于不同的两点M、N,使(+)•=0?若存在.求出直线l斜率的取值范围;(3)对于y轴上的点P(0,n)(n≠0),存在不平行于x轴的直线l与椭圆交于不同两点M、N,使(+)•=0,试求实数n的取值范围.)设椭圆方程为,由焦点,,知,设直线方程.由题知可得(,由)由,可推出,要使)设椭圆方程为,由焦点,,,即椭圆方程是.)∵∴,,,,存在只需,的取值范围是27.在平面直角坐标系xOy中,椭圆上一点到椭圆E的两个焦点距离之和为,椭圆E的离心率为.(1)求椭圆E的方程;(2)若b为椭圆E的半短轴长,记C(0,b),直线l经过点C且斜率为2,与直线l平行的直线AB过点(1,0)且交椭圆于A、B两点,求△ABC的面积S的值.的方程,整理可得:)由题意,得∴的方程为的方程,可得(的面积28.已知点M(0,﹣1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.(1)当m=0时,有,求曲线C的方程;(2)当实数a为何值时,对任意m∈R,都有成立.(3)设动点P满足,当a=﹣2,m变化时,求|OP|的取值范围.的坐标,利用)将条件转化为坐标的形式,从而可表达为关于,∵,∴,∴,∴∴|OP|=29.已知抛物线C:y2=2px,直线l:y=x﹣2与抛物线C交于点A,B,与x轴交于点M.(1)若抛物线焦点坐标为,求直线l与抛物线C围成的面积;(2)直线y=2x与抛物线C交于异于原点的点P,MP交抛物线C于另一点Q,求证:当p变化时,点Q在一条定直线上.解方程组围成的面积为:=得直线方程为30.已知椭圆D:的左焦点为F,其左右顶点为A、C,椭圆与y轴正半轴的交点为B,△FBC的外接圆的圆心P(m,n)在直线x+y=0上.(Ⅰ)求椭圆D的方程;(Ⅱ)已知直线,N是椭圆D上的动点,NM⊥l,垂足为M,是否存在点N,使得△FMN为等腰三角形?若存在,求出点N的坐标,若不存在,请说明理由.的垂直平分线方程为的中点坐标为的垂直平分线的方程为解得:,,上,所以FM|MN|=|FN|==,即的坐标为,的坐标为N。
个人整理!高中数学联赛竞赛平面几何四大定理~及考纲

一、平面几何1.梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时,(AD/DB)*(BE/EC )*(CF/FA)=1逆定理证明:证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1证明四过三顶点作直线DEF的垂线,AA‘,BB',CC'有AD:DB=AA’:BB' 另外两个类似,三式相乘得1得证。
如百科名片中图。
※推论在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
于是AL、BM、CN三线交于一点的充要条件是λμν=-1。
(注意与塞瓦定理相区分,那里是λμν=1)第一角元形式的梅涅劳斯定理如图:若E,F,D三点共线,则(sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBE/sin∠ABE)=1即上图中的蓝角正弦值之积等于红角正弦值之积该形式的梅涅劳斯定理也很实用证明:可用面积法推出:第一角元形式的梅氏定理与顶分顶形式的梅氏定理等价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.圆的参数方程:
x y
a b
R cos R sin
ห้องสมุดไป่ตู้,其中圆心为
(a,b),半径为 R.
3
思考一
1.与直线 2x 3 y 6 0 关于点 (1, 1) 对称的直线是
(D)
(A) 3x 2 y 2 0
(B) 2x 3 y 7 0
42
5
55
5
思考三: 1.自学教程 P308 例 7 2.正方 形 ABCD 的边长为 1, AB, AD 上 各有一点 P, Q ,若 △APQ 的周长为 2,求 PCQ .
3. 在直 线 l : x y 5 0 上4找5一点 P( x, y) , 使 得点
P( x, y) 对 A(1,0), B(3,0) 的视角 APB 最大.
2.过点 (1,4) 引直线 l ,使它在两坐标轴上的截距都是
正数,且截距和为最小,求直线 l 的方程.
2x y 6 0
7
APB 的最大值为 ,
4 点 P 的坐标为 (3, 2)
6
课外思考:
1.当 a, b 均为有理数时,称点 P(a, b) 为有理点,又设
A A( 1998 , 0), B(0, 2000) ,则直线 AB 上( )
(A)不存在有理点
(B)仅有一个有理点
(C)仅有两个有理点 (D)有无穷多个有理点
(C) 3x 2 y 12 0
(D) 2x 3 y 8 0
96 2.(教程 P311 第 5 题)当 k ___ 时,方程
x2 xy 6 y2 20x 20 y k 0 表示两条直线,且它们
间的夹角为_____.
3. ( 教 程 4P311 第 8 题 ) 实 数 x, y 满 足 方 程
竞赛辅导─解析几何(一)
引言
知识要点
思考一
思考二
思考三
课外思考
1
竞赛辅导─解析几何(一)
(直线与圆)
解析几何是通过坐标系、用代数的方法来解决 几何问题的一门学科.
代数理论为几何问题提供了统一的处理方法, 而几何模型以为代数问题提供了直观解释,灵活掌 握数形结合的思想,对于解决数学问题大有好处.关 于这一点,数学界的泰斗──华罗庚写了一首诗:
x2 y2 6x 4y 9 ,则 2x 3y 的最大值与最小值
24 的和为_______.
4
思考二
1. 设 P(2, h)(h 0) 为 光 源 , x2 y2 1( y ≥ 0)
为半圆形障碍线,若光线要照到点 Q(2, 0) ,则 h 的
最小值为__4__3. 2.点 P( x, y)3是圆环 2 ≤ x2 y2 ≤ 4 上的任意一
数形本是相倚依,焉然分作两边飞. 数缺形时少直觉,形缺数时难入微. 数形结合百般好,隔裂分家万事休. 几何代数统一体,永远联系莫分离.
2
竞赛辅导─(直线与圆)
知识点见教程第 301 页至第 302 页.
补充内容:
1.两直线的夹角计算公式: l1 与l2 的夹角为 ,
则 tan k2 k1 ( 00 900 ).
点,则 2x2 3xy 2 y2 的取值范围是_____1_0_.,10
3.( 教 程 P312 16) 求 过 直 线 x 2 y 4 0 和 圆
x2 y2 2x 4y 1 0 的交点,且满足下列条
件之一的圆的方程.
①过原点;②有最小面积.
①x2 y2 7 x 7 y 0;②( x 4)2 ( y 8)2 9