数学建模非线性规划
数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
第二讲 非线性规划问题

1 每个月离开的工人数不能超过总人数的1/3 yi ( Si 1 xi ) 3
每天加班时间不能超过正常时间的25% d S x 1 ( S x ) i i 1 i i 1 i
4
若冗员,此约束不起作用,若缺员,此约束才起作用
最优人员规划方案
建筑工地上的人员规划 二月底(初始)(人) 每转移进一个工人费用(元) 100 八月底(期末)(人) 每转移出一个工人费用(元) 160 每缺员或冗员一个工人(元) 200 每月钢结构安装工需求量 最多到 初始 到来 来3人 离开 三月 3 1 <= 3 0 <= 四月 4 2 <= 3 0 <= 五月 6 0 <= 3 0 <= 六月 6 0 <= 3 0 <= 七月 6 0 <= 3 2 <= 八月 4 0 <= 3 1 <= 总到达人 总离开 数 3.00 人数 3 八月底人数 3 = 3 总目标费用 1780.00 3 3
三月 4 四月 6 五月 7 六月 4 七月 6 八月 2
每天加班时间不能超过正常时间的25%,每个月至多只能新来三名工 人.而根据与工会达成的协议,每个月离开此工地去其他工地的工人 数不能超过总人数1/3,我们假定在二月底此工地上已经有了三名钢 结构安装工,且在二月底没有人离开,并且要求在八月底此工地上仍 然应有三名钢结构安装工,那么每个月到来和离开的工人数为多少 才能使总成本最低?
(3)将上述多目标模型化为单目标模型,按不同的思路可化为如 下四种模型 max R ( x ) 1)固定风险,求收益最大 模型Ⅰ
Q ( x ) k s.t F ( x ) M x 0
S10
S11 S12 S13 S14 S15
非线性规划-优化模型

基于M/M/S排队论的病床安排模型(获2009年大学生数学建模赛全国二等奖)数学与计算科学学院雷蕾信息科学与计算学院黄缨宁信息科学与计算学院丁炜杰指导老师:王其如教授摘要就医排队是一种我们非常熟悉的现象。
在眼科医院的病床安排中,主要从医院高效工作和患者满意度两方面来考虑安排方法。
本文通过确定两方面的权重,确立评价标准。
针对问题二,本文确定了从医院和患者两方面综合考虑的目标函数,医院各种诊疗规则的限制下进行线性规划,使得目标函数值(背离度)最小,得到问题二的解决方案。
用问题一的标准评价,确实优于医院的FCFS模型。
问题三中对每一类病人术后恢复时间做统计,由计算机按照概率给出术后恢复的时间,运用第二问模型的选择方式,对近一段时间内的出入院人数作出合理预测,并根据M的排序确定患者入院的时间区间。
对于问题四,先确立白内障双眼手术的方案(调查支持可以任意不同两天手术),按照问题二的算法,先算出周二四做白内障手术的最小M值及入院前等待时间和术前等待时间。
用计算机模拟出在手术时间可调整情况下M可能的最小值,得到周三五为最佳手术时间。
尤其术前人均等待时间的优化减少使医院病床的有效使用率增加。
模型改进率达到18.11%。
问题五要求确定病床固定分配使人均等待时间最短。
病床的分配使整个排队系统变成了五个M/M/N模型,N为各类病床的数量。
根据排队论中M/M/1模型的条件演化得到服务强度小于1及病床数固定不变。
采取整数规划,在此限制条件下使得平均等待时间最小。
从而算出各类病床的分配比例。
关键词:M/M/S模型泊松(Poisson)分布非线性规划优化模型病人满意度病床有效利用率一.问题的重述有某医院眼科门诊每天开放,住院部有病床79张。
眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。
白内障手术较简单且没有急症。
目前只在周一、三做白内障手术,此类病人的术前准备时间只需1、2天。
如果要做双眼是周一先做一只,周三再做另一只。
数学建模竞赛常用算法

网络流概念
网络流是图论中的一个重要概念,表示在有向图中,通过边进行 传输的流量。
图的表示方法
图的常见表示方法包括邻接矩阵、邻接表和边集数组等。
图与网络基本概念
图论基础
图是由节点(顶点)和边组成的一种数据结构,用于表示对象及 其之间的关系。
在非线性规划中,凸函数和凹函数的 性质对于问题的求解和分析具有重要 意义。
局部最优解与全局最优解
非线性规划问题可能存在多个局部最 优解,而全局最优解是所有局部最优 解中目标函数值最优的解。
非线性规划基本概念
非线性规划定义
凸函数与凹函数
非线性规划是一种数学优化技术,用 于求解目标函数或约束条件为非线性 函数的优化问题。
Gomory割等。
03
迭代过程
在每次迭代中生成一个或多个割平面,将原问题转化为一个更小的子问
题,然后求解子问题并更新最优解。重复此过程直到满足终止条件。
应用案例:物流配送路径优化
问题描述
物流配送路径优化问题是指在满足一定约束条件下,寻找总成本最小的配送路径。该问题 可转化为整数规划问题进行求解。
建模方法
使用单纯形法求解该线性规划模 型,得到最优的生产计划安排。 同时,可以进行灵敏度分析以了 解不同参数变化对生产计划的影
响程度。
应用案例:生产计划优化
问题描述
某企业计划生产多种产品,每种 产品需要不同的原料和加工时间, 且市场需求和原料供应有限。如 何安排生产计划以最大化利润或
最小化成本?
建模过程
将每种产品的产量作为决策变量, 以利润或成本作为目标函数,以 市场需求、原料供应和生产能力 等作为约束条件,构建线性规划
数学建模:第五章 运筹与优化模型

max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数
数学建模常用模型及代码

数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
数学建模常用模型方法总结
数学建模常用模型方法总结无约束优化线性规划连续优化非线性规划整数规划离散优化组合优化数学规划模型多目标规划目标规划动态规划从其他角度分类网络规划多层规划等…运筹学模型(优化模型)图论模型存储论模型排队论模型博弈论模型可靠性理论模型等…运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理优化模型四要素:①目标函数②决策变量③约束条件④求解方法(MATLAB--通用软件LINGO--专业软件)聚类分析、主成分分析因子分析多元分析模型判别分析典型相关性分析对应分析多维标度法概率论与数理统计模型假设检验模型相关分析回归分析方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归传染病模型马尔萨斯人口预测模型微分方程模型人口预测控制模型经济增长模型Logistic 人口预测模型战争模型等等。
灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典NP问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法蚁群算法(ACA)(启发式)常用算法模型神经网络算法蒙特卡罗算法元胞自动机算法穷举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型模糊性数学模型。
数学建模中的优化方法与约束条件
数学建模中的优化方法与约束条件在数学建模中,优化方法与约束条件是两个重要的概念。
优化方法指的是通过对数学模型进行求解,找到使目标函数取得最大(或最小)值的变量取值。
而约束条件是指在优化过程中需要考虑的限制条件,使得变量取值满足一定的限制范围。
本文将介绍数学建模中常用的优化方法和约束条件,并探讨它们在实际问题中的应用。
优化方法是数学建模中常用的一种技术,通过对模型进行求解,找到最优解或近似最优解。
常用的优化方法包括线性规划、整数规划、非线性规划、动态规划等。
线性规划适用于目标函数和约束条件均为线性函数的情况,可以通过单纯形法等方法进行求解。
整数规划适用于目标函数和某些或所有变量取整数值的情况,可以通过分枝定界法等方法进行求解。
非线性规划适用于目标函数和(或)约束条件中含有非线性函数的情况,可以通过梯度下降法、牛顿法等方法进行求解。
动态规划适用于多阶段决策问题,通过构建递推关系式,将原问题转化为一系列子问题进行求解。
约束条件是指在优化过程中需要满足的一系列限制条件。
约束条件可以分为等式约束和不等式约束。
等式约束要求变量取值满足一定的等式关系,常用的方法是拉格朗日乘子法。
不等式约束要求变量取值满足一定的不等式关系,常用的方法是KKT条件或者罚函数法。
在实际问题中,约束条件往往是由问题的实际限制确定的,例如生产能力、资源限制、物理约束等。
对于约束条件的处理,需要根据实际情况选择合适的方法进行建模和求解。
在实际问题中,优化方法和约束条件通常是相互关联的。
优化方法的选择需要根据问题的性质和约束条件的特点来确定。
例如,线性规划适用于目标函数和约束条件均为线性函数的情况,而非线性规划适用于目标函数和(或)约束条件中含有非线性函数的情况。
在建模过程中,需要将问题抽象为数学模型,并根据实际情况选择合适的优化方法和约束条件进行求解。
总而言之,数学建模中的优化方法和约束条件是解决实际问题的基础。
通过选择合适的优化方法和约束条件,可以对问题进行求解并得到最优解或近似最优解。
数学建模中的优化模型
数学建模中的优化模型发展前景
01
随着大数据和人工智能技术的快速发展,优化模型的应用领域将进一 步扩大。
02
优化模型将与机器学习、深度学习等算法结合,实现更加智能化的决 策支持。
03
优化模型将面临更多大规模、复杂问题的挑战,需要发展更加高效、 稳定的算法和求解技术。
04
优化模型将与可持续发展、环境保护等社会问题结合,为解决全球性 挑战提供解决方案。
优化模型的应用领域
工业生产
金融投资
优化模型在工业生产中广泛应用于生产计 划、工艺流程、资源配置等方面,以提高 生产效率和降低成本。
优化模型在金融投资领域中用于资产配置 、风险管理、投资组合等方面,以实现最 优的投资回报和风险控制。
交通运输
科学研究
优化模型在交通运输领域中用于路线规划 、车辆调度、物流配送等方面,以提高运 输效率和降低运输成本。
,为决策提供依据。
优化模型在实际应用中需要考虑各种约束条件和目标 函数,同时还需要处理大规模数据和复杂问题。
优化模型在数学建模中占据重要地位,用于解 决各种实际问题,如生产计划、物流运输、金 融投资等。
优化模型有多种类型,包括线性规划、非线性规 划、动态规划、整数规划等,每种类型都有其适 用的场景和特点。
非线性规划模型
非线性规划模型的定义与特点
总结词
非线性规划模型是一种数学优化模型,用于解决目标函数和约束条件均为非线性函数的 问题。
详细描述
非线性规划模型通常由目标函数、约束条件和决策变量三个部分组成。目标函数是要求 最小化或最大化的非线性函数,约束条件可以是等式或不等式,决策变量是问题中需要 优化的未知数。非线性规划模型的特点在于其非线性性,即目标函数和约束条件不能用
数学建模常用算法
数学建模常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解的过程。
在数学建模中,常用的算法有很多种,下面将介绍一些常见的数学建模算法。
1.最优化算法:-线性规划算法:如单纯形法、内点法等,用于求解线性规划问题。
-非线性规划算法:如最速下降法、牛顿法等,用于求解非线性规划问题。
-整数规划算法:如分支定界法、割平面法等,用于求解整数规划问题。
2.概率统计算法:-蒙特卡洛模拟:通过模拟随机事件的方式,得出问题的概率分布。
-贝叶斯统计:利用先验概率和条件概率,通过数据更新后验概率。
-马尔可夫链蒙特卡洛:用马尔可夫链的方法求解复杂的概率问题。
3.图论算法:-最短路径算法:如迪杰斯特拉算法、弗洛伊德算法等,用于求解两点之间的最短路径。
-最小生成树算法:如普里姆算法、克鲁斯卡尔算法等,用于求解图中的最小生成树。
- 最大流最小割算法: 如Edmonds-Karp算法、Dinic算法等,用于求解网络流问题。
4.插值和拟合算法:-多项式插值:如拉格朗日插值、牛顿插值等,用于通过已知数据点拟合出多项式模型。
-最小二乘法拟合:通过最小化实际数据与拟合模型之间的差异来确定模型参数。
-样条插值:通过使用多段低次多项式逼近实际数据,构造连续的插值函数。
5.遗传算法和模拟退火算法:-遗传算法:通过模拟自然选择、遗传变异和交叉等过程,优化问题的解。
-模拟退火算法:模拟固体退火过程,通过随机策略进行,逐步靠近全局最优解。
6.数据挖掘算法:- 聚类算法: 如K-means算法、DBSCAN算法等,用于将数据分为不同的类别。
-分类算法:如朴素贝叶斯算法、决策树算法等,用于通过已知数据的类别预测新数据的类别。
- 关联分析算法: 如Apriori算法、FP-growth算法等,用于发现数据集中的关联规则。
以上只是数学建模中常用的一些算法,实际上还有很多其他算法也可以应用于数学建模中,具体使用哪种算法取决于问题的性质和要求。