5向量的数乘(2)

合集下载

第二章 §3.1 数乘向量

第二章  §3.1 数乘向量

.
解:(1)原式=6a-4b+3a+15b-20b+5a=14a-9b. (2)原式=16(4a+16b-16a+8b)=16(-12a+24b)=-2a +4b.
首页
上一页
下一页
末页
结束
在几何图形中用已知向量表示未知向量
[典例] 图,D,E,F 分别为△ABC 的边
uuur uur
uuur
BC,CA,AB 的中点,且 BC =a,CA=b.试求 AD,
)=b+12(-b-a)=12b-12a.
首页
上一页
下一页
末页
结束
用已知向量表示其他向量的方法
首页
上一页
下一页
末页
结束
[活学活用]
uur
uuur
如图,四边形 OADB 是以向量OA=a,OB=b 为边的平行四
边形.又
uuur BM
=13
uuur BC
uuur ,CN
=13CuuDur
,试用
a,b
( ×) ( ×)
( √)
首页
上一页
下一页
末页
结束
2.下列各式计算正确的个数是
①(-7)·6a=-42a;
②a-2b+(2a+2b)=3a;
③a+b-(a+b)=0.
A.0
B.1
C.2
D.3
()
解析:选 C 根据实数与向量的积满足的运算律,可知①正确; a-2b+(2a+2b)=a-2b+2a+2b=3a,故②正确;a+b-(a +b)=0.故③错误.
首页
上一页
下一页
末页
结束
3.已知 m,n 是实数,a,b 是向量,则下列命题中正确的是 ( ) ①m(a-b)=ma-mb; ②(m-n)a=ma-na; ③若 ma=mb,则 a=b; ④若 ma=na,则 m=n.

人教高中数学必修二B版《平面向量及其线性运算》平面向量初步说课复习(数乘向量 向量的线性运算)

人教高中数学必修二B版《平面向量及其线性运算》平面向量初步说课复习(数乘向量 向量的线性运算)



三、向量的线性运算
1.填空.
向量的加法、减法、数乘向量以及它们的混合运算,统称为向量
的线性运算.
2.做一做:化简1
1(2a+8b)-(4a-2b)
3
A.2a-b
C.b-a
答案:B
的结果是 (
2
B.2b-a
D.a-b
1
解析:原式=3
1
2
×2-4 a+(4+2)b =-a+2b.故选 B.
)
课堂篇探究学习
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
平面向量初步
问题导学
预习教材 P142-P144 的内容,思考以下问题:
1.一个数 x 的相反数是什么?一个向量 a 有相反向量吗?若有,
如何表示?
2.任何一个数 x 与它相反数的和为 0,那么向量 a 与它的相反
D.9
答案:A
1
1
解析:由题意得 = + = + = + ( −
3
1
3
1
4
3
2
1
4
)=4 + 4 = 4 + 4 × 3 = 4 + 6 ,又
3
1
11
4
6
12
=λ+μ,所以 λ+μ= + =
.故选 A.
课堂篇探究学习
1
(2)原式=
3
1
(a+4b)-(4a-2b) = (-3a+6b)=2b-a.

6.2.3 向量的数乘运算 (精讲)(原卷版)

6.2.3 向量的数乘运算 (精讲)(原卷版)

6.2.3向量的数乘运算 (精讲)目录一、必备知识分层透析二、重点题型分类研究题型1: 几何图形中用已知向量表示未知向量题型2:向量共线的判定题型3:利用向量共线证明线线平行题型4:利用向量共线定理判断三点共线题型5:利用向量共线定理求参数三、高考(模拟)题体验一、必备知识分层透析知识点1:向量的数乘 与向量a 的积是一个向量a λ.它的长度与方向规定如下: |||||a a λλ=0λ>时,a λ的方向与a 的方向相同;当a λ的方向与a 的方向相反;当0时,0a λ=.)向量数乘的几何意义a λ:①从代数角度看,是实数,a 是向量,它们的积仍然是向量.a λ的条件是0a =0.②从几何的角度看,对于长度来说,当时,意味着表示向量a 的有向线段在原方向(0)λ>或相反方向上伸长了λ倍;当时,意味着表示向量a 的有向线段在原方向(010)λ<<上缩短了λ倍.实数与向量可以求积,但不能进行加减运算,如a λ+,a λ-都无意义. 实数与向量的积满足下面的运算律:设是实数,a 、b 是向量,则:)a a μλμ=()a a a λμλμ+=+ ()a b a b λλλ=++ :向量的线性运算向量的加、减、数乘运算统称为向量的线性运算向量线性运算的结果仍是向量. 对于任意向量a ,b ,以及任意实数λ,1μ,2μ,1212)a b a b μλμλμ±=±.:向量共线定理)内容:向量b 与非零向量a 共线,则存在唯一一个实数,b a λ=. )向量共线定理的注意问题:①定理的运用过程中要特别注意0a ≠.特别地,若0a b ==,实数λ仍存在,但不唯一.②定理的实质是向量相等,应从大小和方向两个方面理解,借助于实数λ沟通了两个向量b 与a 的关系.③定理为解决三点共线和两直线平行问题提供了一种方法.任取两点确定两个向量,看能否找到唯一的实数题型.(2023·全国·高三专题练习)如图,在正方形满足2CF FB =,那么EF =1123AB AD - 1132AB AD +1223AB AD -1142AB AD + 2.(2022春·黑龙江哈尔滨·在ABCD 中,AB a =,AD b =,3AN NC =,为BC 的中点,则MN 等于( )1144a b +B .1122a b -+.12a b +D .3344a b -+.(多选)(2022·高一单元测试)在等边三角形ABC 中,,2,BD DC EC AE AD →→→→==交于点F ,则下列结论中正确的是( )1()2AB AC →→=+2133BC BA →→→=+12AF AD →→=D .13BC →高一假期作业)如图所示,在ABC 中,点则DE =( )1136BA BC - 1163BA BC - 5163BA BC -5163BA BC +.(2022秋·吉林长春·高一长春市实验中学校考阶段练习)在ABC 中,设AB a =,AC b =,又2AD DC =,=BE ED ,则AE =( .1123a b +B .1133a b +1126a b +D 2133a b +3.(2022秋·广西百色·高一统考期末)在OAB 中,P 为AB 上的一点,且2BP PA =,OP xOA yOB =+,则( )A .23x =,13y =B .13x =,23y =C .34x =,14y = D .x =例题1.(2022春·甘肃定西·高二统考开学考试)对于非零向量a 、b ,“0a b +=”是“//a b ”的( .充分不必要条件.充分必要条件D .既不充分也不必要条件例题2.(2022·河南·校联考三模)已知a 、b 、c 均为非零向量,且2a b =,3b c =-,则( ) .a 与c 垂直.b 与c 同向C .a 与c 反向.a 与b 反向同类题型演练高一课时练习)已知12a e e =+,1222b e e =--,求证:a 与b 共线.:利用向量共线证明线线平行典型例题例题1.(2022·高一课时练习)已知在四边形中,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,求证:四边形在ABC 中,已知11,33AM AB AN AC ==.用平面向量证明题型4:利用向量共线定理判断三点共线典型例题例题1.(2023·广东·高三统考学业考试)已知向量a ,b 不共线,若2AB a b =+,37BC a b =-+,45CD a b =-,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线例题2.(2022春·江西南昌·高二统考期末)已知空间向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( )A .、、ABC B .B CD 、、 C .A B D 、、 D .A C D 、、例题3.(2022秋·江苏扬州·高一统考期中)已知a ,b 为不共线的向量,且5AB a b =+,28BC a b =-+,42CD a b =+则( )A .,,ABC 共线B .,,A B D 共线C .,,A CD 共线D .,,B C D 共线同类题型演练1.(2022·高一课时练习)已知()1221123,,2AB e e CB e e CD e e =+=-=+,则下列结论中成立的是( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,D ,C 三点共线D .D ,B ,C 三点共线2.(2022·高一课时练习)已知5,28,210AB a b BC a b BD a b =+=-+=+,则共线的三点为( ) A .,,B C DB .,,A B CC .,,A C DD .,,A B D题型5:利用向量共线定理求参数典型例题·全国·高三专题练习)已知向量1e ,2e 是两个不共线的向量,122a e e =-与12b e e λ=+共线,则.22例题2.(2022秋·江苏淮安·高一统考期末)已知1e ,2e 是平面内的一组基底,1232OA e e =+,124OB e ke =+,1254OC e e -=,若A 三点共线,则实数A .1- B .0 C .1 例题3.(2022·上海·高二专题练习)设1e 、2e 是两个不共线的向量,已知1212122,3,2AB e ke BC e e CD e e =+=+=-,若A 、B 、D 三点共线,的值为__________例题4.(2022秋·江西宜春·高一奉新县第一中学校考阶段练习)设a 与b 是两个不共线向量,且向量a b λ+与()2b a --共线,则λ=_______同类题型演练.(2023·全国·高三专题练习)已知向量a ,b 不共线,且c a b λ=+,()21b d a λ=+-,若c 与d 反向共线,则实数λ的值为( ) .1 B .12-.1或12-D .1-或2-.(2022·高一单元测试)已知a ,b 是不共线的向量,,32OA a b OB a b λμ=+=-,23OC a b =+,λμ满足( 5μ=+ .135μλ=-3.(2022秋·陕西咸阳高一统考期中)已知向量a 与b 不共线,且()1AB a mb m =+≠,AC na b =+.若A 、,n 满足的条件为 ) A .1m n +=1mn =D .1mn =-4.(2022春·江苏盐城·高一滨海县五汛中学校考阶段练习)设,a b 是两个不共线的向量,若向量2ka b +与8a kb +的方向相同,则________.5.(2022春·湖北武汉·高三华中师大一附中校考期中)已知向量a 与b 不共线,且3a b λ-与2a b λ-共线,则λ=___________..(2023·全国·高三专题练习)设a ,b 是两个不共线的非零向量,若向量2ka b +与8a kb +的方向相反,则k =________.1.(2022·四川绵阳·校考模拟预测)在ABC 中,点2AM MB =,若3CM CA CB λμ=+,则μA .3 B C ..(2022·河南·校联考模拟预测)已知ABC 的边在ABC 所在平面内,且2BD BE BA →→→=-,若AB →=,则C .D .23.(2022·云南昆明统考模拟预测)梯形ABCD 中,2AB DC =,设AB m =,AD n =,则AC BD +=( )A .122m n -+B .122m n -C .2m n -2m n -+4.(2022·四川绵阳·统考一模)为ABC 所在平面内两点,AD DC =,2CB BE =,则DE =( ).32AB AC -+B .32AB AC -.32AB AC -D .32AB AC -+.(2022·湖南·校联考模拟预测)设E 、F 分别为ABC 三边则23(DA EB FC ++= .12AD 32AD12AC 32AC .(2022·河南·校联考二模)正方形,F 分别是CD ,的中点,那么EF = .1122AB AD + 1122AB AD - 1122AB AD + 1122AB AD - 2022·内蒙古兴安盟·乌兰浩特一中校考模拟预测)在△ABC 中,AD AD 的中点,则EB =3144AB AC - 1344AB AC - 3144+AB AC1344+AB AC。

平面向量数乘运算的坐标表示课件-高一数学人教A版(2019)必修第二册

平面向量数乘运算的坐标表示课件-高一数学人教A版(2019)必修第二册

问题2 如何用坐标表示向量共线的条件?

a // b (b 0) 存在实数λ,使
a b
( x1 , y1 ) ( x2 , y2 ) ( x2 , y2 )
消去λ,得 x1 y2 x2 y1 0
重要结论2:
a // b (b 0) x1 y2 x2 y1 0
们是同向还是反向?
解:法一
ห้องสมุดไป่ตู้
ka+b=k(1,2)+(-3,2)=(k-3,2k+2),a-3b=(1,2)-3(-3,2)=(10,-4),
当 ka+b 与 a-3b 平行时,存在唯一实数λ,使 ka+b=λ(a-3b).
由(k-3,2k+2)=λ(10,-4).

- = ,

解得 k=λ=- .

,
2
2
所以(k-3)×(-4)-10(2k+2)=0,

解得 k=- .







所以 ka+b=(- , )=- (10,-4)=- (a-3b),
故 ka+b 与 a-3b 反向.
【课本例题8】已知A(-1,-1),B(1,3),C(2,5),判断A,B,
C三点之间的位置关系.
【解析】在平面直角坐标系中作出A,B,C三点,观察图形,
=(1 , 1 ),=(2 , 2 )
向量与共线
(1 , 1 ),(2 , 2 )
点满足=
(1 , 1 ),(2 , 2 )
点为中点
1 2 -2 1 =0
1 + 2 1 + ��2

向量数乘运算及其几何意义

向量数乘运算及其几何意义

向量数乘运算及其几何意义夏季的雷雨天,我们往往先看到闪电,后听到雷声,雷闪发生于同一点而传到我们这儿为什么有个时间差?这说明声速与光速的大小不同,光速是声速的88万倍.若设光速为v1,声速为v2,将向量类比于数,则有v1=880 000v2.对于880 000v2,我们规定是一个向量,其方向与v2相同,其长度为v2长度的880 000倍.这样实数与向量的积的运算称为向量的数乘.那么向量数乘的几何意义及运算律是怎样规定的呢?1.向量的数乘2.数乘的几何意义λa的几何意义就是把向量a沿着a的方向或反方向扩大或缩小|λ|倍.[知识点拨](1)λ是实数,a是向量,它们的积λa仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a,λ-a均没有意义.(2)对于非零向量a,当λ=1|a|时,λa表示a方向上的单位向量.(3)注意向量数乘的特殊情况:①若λ=0,则λa=0;②若a=0,则λa=0.应该特别注意的是结果是向量0,而非实数0.3.向量数乘的运算律向量的数乘运算满足下列运算律:设λ、μ为实数,则(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb(分配律).特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使 b =λa . 5.向量的线性运算向量的__加__、__减__、__数乘__运算统称为向量的线性运算,对于任意向量a 、b 以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )= λμ1a ±λμ2b .[知识点拨]向量共线定理的理解注意点及主要应用1.定理中a ≠0不能漏掉.若a =b =0,则实数λ可以是任意实数;若a =0,b ≠0,则不存在实数λ,使得b =λa .2.这个定理可以用一般形式给出:若存在不全为0的一对实数t ,s ,使t a +s b =0,则a 与b 共线;若两个非零向量a 与b 不共线,且t a +s b =0,则必有t =s =0.1.已知非零向量a 、b 满足a =4b ,则( C ) A .|a |=|b | B .4|a |=|b |C .a 与b 的方向相同D .a 与b 的方向相反[解析] ∵a =4b,4>0,∴|a |=4|b |. ∵4b 与b 的方向相同, ∴a 与b 的方向相同.2.将112[2(2a +8b )-4(4a -2b )]化简成最简式为( B )A .2a -bB .2b -aC .a -bD .b -a[解析] 原式=112(4a +16b -16a +8b )=112[(4-16)a +(16+8)b ]=112(-12a +24b )=2b -a3.在▱ABCD 中,AB →=2a ,AD →=3b ,则AC →等于( C ) A .a +b B .a -b C .2a +3bD .2a -3b[解析] AC →=AB →+AD →=2a +3b .4.已知AB →=a +4b ,BC →=2b -a ,CD →=2(a +b ),则( B ) A .A 、B 、C 三点共线 B .A 、B 、D 三点共线 C .A 、C 、D 三点共线 D .B 、C 、D 三点共线[解析] ∵BC →+CD →=a +4b , 即BC →+CD →=AB →,∴BD →=AB →,即存在λ=1使BD →=λAB →. ∴BD →、AB →共线.又∵两向量有公共点B , ∴A 、B 、D 三点共线.命题方向1 ⇨向量的线性运算 典例1 计算:(1)4(a +b )-3(a -b )-8a ; (2)(5a -4b +c )-2(3a -2b +c ); (3)23[(4a -3b )+13b -14(6a -7b )]. [思路分析] 运用向量数乘的运算律求解.[解析] (1)原式=4a +4b -3a +3b -8a =-7a +7b . (2)原式=5a -4b +c -6a +4b -2c =-a -c .(3)原式=23(4a -3b +13b -32a +74b )=23(52a -1112b )=53a -1118b .『规律总结』 向量的线性运算类似于代数多项式的运算,实数运算中去括号、移项、合并同类项、提取公因式等变形手段在向量线性运算中也可以使用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.〔跟踪练习1〕计算:(1)25(a -b )-13(2a +4b )+215(2a +13b ); (2)(m +n )(a -b )-(m -n )(a +b ).[解析] (1)25(a -b )-13(2a +4b )+215(2a +13b )=25a -25b -23a -43b +415a +2615b =(25-23+415)a +(-25-43+2615)b =0a +0b =0. (2)原式=m (a -b )+n (a -b )-m (a +b )+n (a +b ) =(m +n -m +n )a +(-m -n -m +n )b =2n a -2m b . 命题方向2 ⇨共线向量定理及其应用 典例2 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 与a +k b 共线.[思路分析] (1)欲证三点A 、B 、D 共线,即证存在实数λ,使AB →=λBD →,只要由已知条件找出λ即可.(2)由两向量共线,列出关于a 、b 的等式,再由a 与b 不共线知,若λa =μb ,则λ=μ=0.[解析] 证明:(1)∵AB →=a +b ,BC →=2a +8b , CD →=3(a -b )∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B ,∴A 、B 、D 三点共线. (2)∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ) 即k a +b =λa +λk b ,∴(k -λ)a =(λk -1)b , ∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.『规律总结』 用向量法证明三点共线时,关键是能否找到一个实数λ,使得b =λa (a 、b 为这三点构成的其中任意两个向量).证明步骤是先证明向量共线,然后再由两向量有公共点,证得三点共线.〔跟踪练习2〕已知向量AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ), (1)求证:A 、B 、D 三点共线;(2)求证:CA →=xCB →+yCD →(其中x +y =1). [解析] (1)∵BD →=BC →+CD →=-2a +8b +3(a -b ) =a +5b ,AB →=a +5b ,∴AB →=BD →,∴AB ∥BD , 又AB →、BD →有公共点B ,所以A ,B ,D 三点共线. (2)∵CA →=CB →+BA →=-BC →-AB → =2a -8b -a -5b =a -13b , xCB →+yCD →=x (2a -8b )+3y (a -b ) =(2x +3y )a +(-8x -3y )b .∴⎩⎪⎨⎪⎧ 2x +3y =1-8x -3y =-13,所以⎩⎪⎨⎪⎧x =2y =-1 ∴CA →=xCB →+yCD →,其中x +y =1.命题方向3 ⇨用向量的线性运算表示未知向量典例3 如图所示,四边形OADB 是以向量OA →=a ,OB →=b 为邻边的平行四边形,又BM =13BC ,CN =13CD ,试用a ,b 表示OM →、ON →、MN →.[思路分析] 用a ,b 表示BM →→表示OM →,ON →→MN →=ON →-OM → [解析] BM →=13BC →=16BA →=16(OA →-OB →)=16(a -b ), ∴OM →=OB →+BM →=b +16a -16b =16a +56b .∵CN →=13CD →=16OD →,∴ON →=OC →+CN →=12OD →+16OD →=23OD →=23(OA →+OB →) =23a +23b , MN →=ON →-OM →=23(a +b )-16a -56b=12a -16b . 『规律总结』 解决此类问题的思路一般是将所表示向量置于某一个三角形内,用减法法则表示,然后逐步用已知向量代换表示.〔跟踪练习3〕(2018·全国卷Ⅰ理,6)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( A )A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →[解析] 作出示意图如图所示.EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 故选A .命题方向4 ⇨单位向量的应用典例4 O 为平面上的一定点,A 、B 、C 是平面上不共线的三个动点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞ ),则P 的轨迹一定通过△ABC 的( B )A .外心B .内心C .重心D .垂心[思路分析] 题目向量式中有OP →,OA →两共起点的向量,于是可利用移项得:OP →-OA →=AP →,从而将向量式中的点O 去掉,转化为以A 为起点的两向量相等.[解析] 由OP →=OA →+λ(AB →|AB →|+AC →|AC →|),则OP →-OA →=λ(AB →|AB →|+AC →|AC →|),则AP →=λ(AB →|AB →|+AC →|AC →|).而AB →|AB →|是与AB →同向的单位向量,AC →|AC →|是与AC →同向的单位向量,以这两个单位向量为邻边作平行四边形AB 1P 1C 1,易得平行四边形AB 1P 1C 1是菱形,对角线AP 1平分∠B 1AC 1,且AB 1→=AB →|AB →|,AC 1→=AC →|AC →|,所以AB →|AB →|+AC →|AC →|=AB 1→+AC 1→=AP 1→,则AP →=λAP 1→. 由λ∈[0,+∞),可知点P 在∠BAC 的平分线上,即动点P 的轨迹经过△ABC 的内心. 〔跟踪练习4〕若题设中的条件“OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞).”改为“OP→=OA →+λ(AB →+AC →),λ∈[0,+∞).”则P 的轨迹一定通过△ABC 的( B )A .外心B .重心C .垂心D .内心[解析] 由OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),得AP →=λ(AB →+AC →),则AP →与△ABC 中边BC 的中线共线,又由λ∈[0,+∞),知点P 的轨迹通过△ABC 的重心.三点共线定理 1.三点共线的判定定理在实际问题的描述中经常会遇到判断三点共线的问题,那么如何利用向量共线的判定定理来寻找三点共线的判定呢?我们知道,对于平面内任意三点A ,B ,C ,都可以写成AB →,AC →,BC →的形式,若存在一个实数λ使得AB →=λAC →(或AB →=λBC →或AC →=λBC →),则根据向量共线的判定定理可知向量AB →,AC →共线(或AB →,BC →共线或AC →,BC →共线).又由它们具有公共点A (或B 或C )可知三点A ,B ,C 共线.所以我们有:对于平面内任意三点A ,B ,C ,O 为不同于A ,B ,C 的任意一点,设OC →=λOA →+μOB →,若实数λ,μ满足λ+μ=1,则三点A ,B ,C 共线.2.三点共线的性质定理根据向量共线的性质定理及三点共线的判定定理不难得到三点共线的性质定理.若平面内三点A ,B ,C 共线,O 为不同于A ,B ,C 的任意一点,设OC →=λOA →+μOB →,则存在实数λ,μ使得λ+μ=1.典例5 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,求x +y 的值.[解析] 由于A ,B ,P 三点共线,所以向量AB →,AP →在同一直线上,由向量共线定理可知,必定存在实数λ使AP →=λAB →,即OP →-OA →=λ(OB →-OA →),所以OP →=(1-λ)OA →+λOB →,故x =1-λ,y =λ,即x +y =1.,〔跟踪练习5〕在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( D )A .(0,12)B .(0,13)C .(-12,0)D .(-13,0)[解析] 当点O 与点C 重合时AC →=0AB →+(1-0)AC →,所以x =0;当点O 与点D 重合时AD →=-13AB →+43AC →,此时x =-13,所以-13<x <0.向量的起点、终点弄不清楚,导致向量表示错误典例6 已知E ,F 分别为四边形ABCD 的边CD ,BC 的中点,设AD →=a ,BA →=b ,则EF →=( )A .12(a +b )B .-12(a +b )C .-12(a -b )D .12(a -b )[错解] 如图,连接BD ,则EF →=12DB →=12(AD →-AB →)=12(a +b ).故选A .[错因分析] 向量DB →用向量的差表示时,DB →的终点应该为被减向量的终点. [正解] EF →=12DB →=12(CB →-CD →)=12(DA →-BA →)=12(-a -b ) =-12(a +b ),故选B .[点评] 在向量的线性运算中,向量的差、向量的方向都是易错点,在运算中要高度重视.另外,几何图形的性质还要会准确应用.〔跟踪练习6〕已知任意平面四边形ABCD 中,E 、F 分别是AD 、BC 的中点. 求证:EF →=12(AB →+DC →).[解析] 取以点A 为起点的向量,应用三角形法则求证,如图.∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →).又∵AC →=AD →+DC →, ∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).1.(2a -b )-(2a +b )等于( B ) A .a -2b B .-2b C .0D .b -a2.已知λ、μ∈R ,下面式子正确的是( C )A .λa 与a 同向B .0·a =0C .(λ+μ)a =λa +μaD .若b =λa ,则|b |=λ|a |[解析] 对A ,当λ>0时正确,否则错误;对B,0·a 是向量而非数0;对D ,若b =λa ,则|b |=|λa |.3.点C 在直线AB 上,且AC →=3AB →,则BC →等于( D ) A .-2AB →B .13AB →C .-13AB →D .2AB →[解析] BC →=AC →-AB →=3AB →-AB →=2AB →.4.已知向量a =e 1+λe 2,b =2e 1,λ∈R ,且λ≠0,若a ∥b ,则( D ) A .λ=0 B .e 2=0C .e 1∥e 2D .e 1∥e 2或e 1=0 [解析] 当e 1=0时,显然有a ∥b ; 当e 1≠0时,b =2e 1≠0,又a ∥b ,∴存在实数μ,使a =μb ,即e 1+λe 2=2μe 1, ∴λe 2=(2μ-1)e 1,又λ≠0,∴e 1∥e 2.5.已知两个非零向量e 1、e 2不共线,若AB →=2e 1+3e 2,BC →=6e 1+23e 2,CD →=4e 1-8e 2.求证:A 、B 、D 三点共线.[证明] ∵AD →=AB →+B C →+CD →=2e 1+3e 2+6e 1+23e 2+4e 1-8e 2 =12e 1+18e 2=6(2e 1+3e 2)=6A B →, ∴AD →∥AB →.又∵AD 和AB 有公共点A ,∴A 、B 、D 三点共线.A 级 基础巩固一、选择题1.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则AP →=( A ) A .λ(AB →+BC →) λ∈(0,1) B .λ(AB →+BC →) λ∈(0,22)C .λ(AB →-BC →) λ∈(0,1)D .λ(AB →-BC →) λ∈(0,22)[解析] 设P 是对角线AC 上的一点(不含A 、C ),过P 分别作BC 、AB 的平分线,设AP→=λAC →,则λ∈(0,1),于是AP →=λ(AB →+BC →),λ∈(0,1).2.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( A )A .23B .13C .-13D .-23[解析] (方法一):由AD →=2DB →,可得CD →-CA →=2(CB →-CD →)⇒CD →=13CA →+23CB →,所以λ=23.故选A .(方法二):CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23,故选A .3.点P 是△ABC 所在平面内一点,若CB →=λP A →+PB →,其中λ∈R ,则点P 一定在( B ) A .△ABC 内部 B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上 [解析] ∵CB →=λP A →+PB →,∴CB →-PB →=λP A →. ∴CP →=λP A →.∴P 、A 、C 三点共线.∴点P 一定在AC 边所在的直线上.4.已知平行四边形ABCD 中,DA →=a ,DC →=b ,其对角线交点为O ,则OB →等于( C ) A .12a +bB .a +12bC .12(a +b )D .a +b[解析] DA →+DC →=DA →+AB →=DB →=2OB →, 所以OB →=12(a +b ),故选C .5.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( A )A .A 、B 、D B .A 、B 、C C .B 、C 、DD .A 、C 、D [解析] BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2AB →,所以,A 、B 、D 三点共线.6.如图所示,向量OA →、OB →、OC →的终点A 、B 、C 在一条直线上,且AC →=-3CB →.设OA →=p ,OB →=q ,OC →=r ,则以下等式中成立的是( A )A .r =-12p +32qB .r =-p +2qC .r =32p -12qD .r =-q +2p[解析] ∵OC →=OB →+BC →,AC →=-3CB →=3BC →, ∴BC →=13AC →.∴OC →=OB →+13AC →=OB →+13(OC →-OA →).∴r =q +13(r -p ).∴r =-12p +32q .二、填空题7.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x = 12 ;y = -16.[解析] 由题中条件得MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,所以x =12,y =-16.8.(2016·潍坊高一检测)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为 12.[解析] 由已知DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB →+23AC →,∴λ1=-16,λ2=23,从而λ1+λ2=12.三、解答题9.已知▱ABCD 中,AB →=a ,AD →=b ,对角线AC 、BD 交于点O ,用a 、b 表示OA →,BO →. [解析] OA →=12CA →=12(CB →+BA →)=12(-a -b ).BO →=12BD →=12(AD →-AB →)=12(b -a ).10.已知向量e 1、e 2是两个共线向量,若a =e 1-e 2,b =2e 1+2e 2,求证:a ∥b . [证明] 若e 1=e 2=0,则a =b =0, 所以a 与b 共线,即a ∥b ;若e 1、e 2中至少有一个不为零向量,不妨设e 1≠0,则e 2=λe 1(λ∈R ),且a =(1-λ)e 1, b =2(1+λ)e 1,所以a ∥e 1,b ∥e 1. 因为e 1≠0,所以a ∥b . 综上可知,a ∥b .B 级 素养提升一、选择题1.设a 是非零向量,λ是非零实数,下列结论正确的是( C ) A .a 与-λa 的方向相反 B .|-λa |≥|a | C .a 与λ2a 的方向相同D .|-λa |=|λ|a[解析] A 错误,因为λ取负数时,a 与-λa 的方向是相同的;B 错误,因为当|λ|<1时,该式不成立;D 错误,等号左边的结果是一个数,而右边的结果是一个向量,不可能相等;C 正确,因为λ2(λ≠0)一定是正数,故a 与λ2a 的方向相同.故选C .2.设e 1、e 2是两个不共线的向量,则向量a =2e 1-e 2,与向量b =e 1+λe 2(λ∈R )共线,当且仅当λ的值为( D )A .0B .-1C .-2D .-12[解析] ∵向量a 与b 共线,∴存在唯一实数u ,使b =u a 成立.即e 1+λe 2=u (2e 1-e 2)=2u e 1-u e 2.∴⎩⎪⎨⎪⎧1=2u ,λ=-u .解得λ=-12.3.在▱ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线交CD 于点F ,若AC →=a ,BD →=b ,则AF →=( D )A .14a +12bB .13a +23bC .12a +14bD .23a +13b[解析] AF →=AC →+CF →=a +23CD →=a +23(OD →-OC →)=a +23(12BD →-12AC →)=a +13(b -a )=a+13(b -a )=23a +13b . 4.在△ABC 中,点D 在BC 边所在直线上.若CD →=4BD →=sAB →-rAC →,则s +r 等于( C ) A .0 B .43C .83D .3[解析] 由题意可得,CD →=AD →-AC →=AB →+BD →-AC →=AB →+13CB →-AC →=AB →+13(AB →-AC →)-AC →=43AB →-43AC →, ∴s +r =83.二、填空题5.若2(x -13a )-12(b +c -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x = 421a-17b +17c . [解析] ∵2x -23a -12b -12c +32x +b =0,∴72x =23a -12b +12c .∴x =421a -17b +17c . 6.如图所示,在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →= 14(b -a ) .(用a 、b 表示).[解析] MN →=MB →+BA →+AN →=-12BC →+BA →+34AC →=-12AD →-AB →+34(AB →+AD →)=-12b -a +34(a +b )=14b -14a =14(b -a ). 三、解答题7.如图,已知E 、F 、G 、H 分别是四边形ABCD 的边AB 、BC 、CD 、DA 的中点,用向量法证明:四边形EFGH 是平行四边形.[证明] 在△BCD 中,∵G ,F 分别是CD ,CB 的中点, ∴CG →=12CD →,CF →=12CB →.∴GF →=CF →-CG →=12CB →-12CD →=12DB →. 同理HE →=12DB →.∴GF →=HE →,即GF →与HE →共线.又∵G 、F 、H 、E 四点不在同一条直线上, ∴GF ∥HE ,且GF =HE . ∴四边形EFGH 是平行四边形.8.设两个不共线的向量e 1、e 2,若向量a =2e 1-3e 2,b =2e 1+3e 2,向量c =2e 1-9e 2,问是否存在这样的实数λ、μ,使向量d =λa +μb 与向量c 共线?[解析] ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2)=(2λ+2μ)e 1+(3μ-3λ)e 2,要使d 与c 共线,则存在实数k 使d =k ·c ,即:(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 2-9k e 2.由⎩⎪⎨⎪⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ,故存在这样的实数λ和μ, 只要λ=-2μ,就能使d 与c 共线.C 级 能力拔高过△OAB 的重心G 的直线与边OA ,OB 分别交于点P ,Q ,设OP →=h ·OA →,OQ →=kOB →,则1h +1k=__3__. [解析] 延长OG 交边AB 于点M ,则M 为AB 边的中点, ∴OM →=12(OA →+OB →)=12(1h OP →+1k OQ →)=12h OP →+12k OQ →,又OM →=32OG →,∴OG →=13h OP →+13K OQ →.∵P 、Q 、G 三点共线, 且OP →,OQ →是不共线的向量, ∴13h +13k =1, 即1h +1k =3.。

向量及其加减法,向量与数的乘法

向量及其加减法,向量与数的乘法
一、向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以M1为起点,M2 为终点的有向线段.
向量的模: 向量的大小.| a| 或 | M1M2 |
单位向量:模长为1的向量. a0

M1 M 20
零向量:模长为0的向量. 0
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
证 AM MC BM MD
D b
A
a
C
M
B
AD AM MD MC BM BC
AD 与 BC 平行且相等, 结论得证.
四、小结
向量的概念(注意与标量的区别) 向量的加减法(平行四边形法则) 向量与数的乘法(注意数乘后的方向)
思考题
已知平行四边形ABCD的对角线
AC a,
BD b
10、把平行于某一直线的一切单位向量归结到共同的
11、始 要使点,a则b终点a构 b成成__立__,__向__量_a__,_b_应__满__足_____;_____
12、_要__使__a___b___a____b_成_;立,向量a,
b 应满足_______
___________ .
二、用向量方法证明:对角线互相平分的四边形是平 行四边形 .
a
b
负向量:大小相等但方向相反的向量. a
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
二、向量的加减法
[1]
加法:a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若 a‖
a b

向量的运算与性质

向量的运算与性质本文将围绕向量的运算与性质展开论述,探讨向量的基本概念、运算法则以及相关性质。

向量是数学中重要的基本概念之一。

它可以用有向线段表示,具有大小和方向。

向量的运算包括向量的加法和数乘。

一、向量的加法向量的加法满足交换律、结合律和对称律。

设有向量a和向量b,它们的加法运算可表示为a+b。

在几何上,向量a+b的结果是由向量a 和向量b依次相连形成的新向量,它的起点与向量a的起点重合,终点与向量b的终点重合。

向量加法满足交换律,即a+b=b+a;结合律,即(a+b)+c=a+(b+c);对称律,即a+b=b+a。

二、数乘向量的数乘是指将向量与实数相乘的运算。

设有向量a和实数k,它们的数乘运算可表示为ka。

在几何上,向量ka是由向量a按照倍数k进行拉伸或收缩得到的新向量,其大小和a的大小相差k倍,方向与a的方向相同(当k>0)或相反(当k<0)。

三、向量的性质1. 零向量:零向量是指大小为0的向量,记作0或O,它的方向可以是任意的。

2. 负向量:设有向量a,其负向量记作-a,它们的大小相等、方向相反。

3. 相等向量:两个向量a和b相等,当且仅当它们的大小相等、方向相同。

4. 平行向量:如果两个向量a和b的方向相同或相反,即a∥b,它们被称为平行向量。

5. 零向量与任何向量的运算:对于任意向量a,都有a+0=a和a+(-a)=0。

6. 数乘的性质:设有向量a和b,实数k和m,有以下性质:(1)k(a+b)=ka+kb;(2)(k+m)a=ka+ma;(3)k(ma)=(km)a;(4)1a=a,其中1表示实数1。

7. 向量的数量积:向量a和向量b的数量积(也称为点积或内积)记作a·b或(a,b),其结果是一个实数。

数量积的计算公式为a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和向量b的大小,θ表示向量a和向量b之间的夹角。

8. 向量的数量积的性质:设有向量a、向量b和向量c,实数k和m,有以下性质:(1)a·b=b·a(交换律);(2)(ka)·b=k(a·b);(3)(a+b)·c=a·c+b·c;(4)a·a=|a|^2(非负性)。

高中数学(人教B版)必修第二册:数乘向量、向量的线性运算【精品课件】

-a=(-1)a.
名师点析对数乘向量的理解
(1)实数与向量可以求乘积,但不能进行加减运算.如λ+a,λ-a均没有
意义.
(2)若λa=0,则λ=0或a=0.
1
(3)对于非零向量a,当λ= 时;λa表示a方向上的单位向量.
||
激趣诱思
知识点拨
微判断
(1)对于任意的向量a,总有0·a=0.(
)
答案:×
(3)真命题.
(4)假命题.-(b-a)=-b+a=a-b.
(5)假命题.∵0a=0,0与任一向量共线.
当堂检测
探究一
探究二
探究三
探究四
当堂检测
向量的线性运算
例2化简下列各式:
(1)2(5a-4b+c)-3(a-3b+c)-7a;
(2)(m+n)(a-b)-(m+n)(a+b).
分析:根据向量的加法、减法及数乘运算化简即可.
3 1
11
=λ+μ,所以 λ+μ=4 + 6 = 12.故选 A.
答案:A
探究一
探究二
探究三
探究四
当堂检测
3.已知△ABC 和点 M 满足 + + =0.若存在实数 m 使得
+ =m成立,则 m 的值为
.
解析:∵ + + =0,∴点 M 是△ABC 的重心.
(5)若a,b不共线,则0a与b不共线.
2
5;
探究一
探究二
探究三
探究四
解:(1)真命题.∵2>0,
∴2a与a同向,且|2a|=2|a|.
(2)真命题.∵5>0,∴5a与a同向,且|5a|=5|a|.

向量的运算的所有公式

向量的运算的所有公式1.向量加法的定义对于两个向量a和b,它们的和被定义为两个向量的对应分量相加所得的向量,即:a +b = (a1+b1, a2+b2, ... , an+bn)2.向量减法的定义向量减法可以看作是向量加法的逆操作,即a减去b等于a加上-b 的结果,即:a -b = a + (-b) = (a1-b1, a2-b2, ... , an-bn)3.向量数量乘法的定义向量数量乘法是将一个标量与一个向量的每个分量相乘,即:k * a = (k*a1, k*a2, ... , k*an)其中,k为标量。

若数k≠0,且k·a=0,则a=0。

4.向量运算的性质a.交换律:a+b=b+a向量的加法满足交换律,即加法的顺序可以任意调换。

b.结合律:(a+b)+c=a+(b+c)向量的加法满足结合律,即几个向量相加的结果与加法的顺序无关。

c. 分配律:k(a + b) = ka + kb向量的数量乘法满足分配律,即向量加法与数量乘法相互关联。

d.向量加法的零元:a+0=a零向量0是唯一的,满足任何向量与0相加的结果等于它本身。

e.数量乘法的单位元:1·a=a数量乘法的单位元是1,满足任何向量与1相乘的结果等于向量本身。

另外,针对一些常见运算,还存在一些特殊的公式:5.内积的定义两个n维向量a=(a1, a2, ... , an)和b=(b1, b2, ... , bn)的内积被定义为:a·b = a1*b1 + a2*b2 + ... + an*bn6.内积的性质a.交换律:a·b=b·a内积满足交换律,即两个向量的内积与其顺序无关。

b.分配律:(a+b)·c=a·c+b·c内积满足分配律,即内积对于向量的加法满足分配律。

c.数量乘法结合律:(k*a)·b=k*(a·b)=a·(k*b)内积满足数量乘法的结合律。

高中数学第二章平面向量3.1数乘向量课件北师大版必修4


数λ、μ1、μ2,恒有
λ(μ1a±μ2b)=λμ1a+λμ2b
.
[双基自测]
1.4(a-b)-3(a+b)-b 等于( )
A.a-2b
B.a
C.a-6b
D.a-8b
解析:原式=(4-3)a+(-4-3-1)b=a-8b. 答案:D
2.点 C 是线段 AB 的中点,则有A→B=λA→C,那么 λ 等于( )
A.0
B.1
C.2
D.-2
答案:C
3.点 C 在线段 AB 上,且ACCB=32,则A→C=______A→B,B→C=______A→B. 解析:∵ACCB=32, ∴AC=35AB,BC=25AB, ∴A→C=35A→B,B→C=-25A→B. 答案:35 -25
探究一 向量的线性运算 [典例 1] (1)计算下列各式: ①3(a-2b+c)-(2c+b-a); ②25(a-b)-13(2a+4b)+125(2a+13b).
2.已知 e,f 为两个不共线的向量,若四边形 ABCD 满足A→B=e+2f,B→C=-4e-f,C→D =-5e-3f. (1)将A→D用 e,f 表示; (2)证明:四边形 ABCD 为梯形.
解析:(1)A→D=A→B+B→C+C→D=(e+2f)+(-4e-f)+(-5e-3f)=(1-4-5)e+(2-1- 3)f=-8e-2f. (2)证明:因为A→D=-8e-2f=2(-4e-f)=2B→C, 所以根据数乘向量的定义,知A→D与B→C同向,且|A→D|=2|B→C|, 所以在四边形 ABCD 中,AD∥BC,且 AD≠BC,所以四边形 ABCD 是梯形.
3 从速度的倍数到数乘向量 3.1 数乘向量
考纲定位
重难突破
1.掌握数乘向量的运算及其几何意义. 重点:1.向量数乘的意义及运算律的掌握.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材P66页练习1、2、3
习题2.2第5、6、7、8题
自我纠错
本节内容个人掌握情况反思:
课题
2.2.3向量的数乘(2)
编号
4
学习目标
1.能用两个不共线向量来表示另一向量或会将一个向量分解为两个向量;
2.了解平面向量基本定理;
3.能运用平面向量基本定理处理简单的几何问题。
教学重点、难点
重点:能用两个不共线向量来表示另一向量或会将一个向量分解为两个向量
难点:平面向量基本定理的应用;
教学方法
引导探究,讲练结合
学习要点及自主学习导引
学习心得
一.学生活动:
1已知向量 , (如图),求作向量 .
2.如图,平行四边形ABCD的两条对角线相交于点 ,且 , ,用 、 表示 本定理:如果 , 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使 .其中我们把不共线的向量 , 叫做表示这一平面所有向量的一组基底。
注:① , 均非零向量;
② , 不唯一(事先给定);
③ , 唯一;
④ 时, 与 共线; 时, 与 共线; 时, .
三.典例探究
例1如图, 、 不共线, ,
用 、 表示 .
例2已知梯形 中, , , 分别是 、 的中点,若 , ,用 , 表示 、 、 .
例3(教材P65页例4)
思想方法总结
四.课堂练习
相关文档
最新文档