2020年高考文科数学一轮总复习:解析几何高考答题规范
2020届高三数学文科一轮复习_第九章 解析几何课时作业9-8-1

题组一 常识题 1.(教材改编) 过原点的直线 l 被抛物线 x2=4y 截得的线段 长为 4 2,则直线 l 的斜率为____________. 【解析】 设直线 l 的方程为 y=kx,将其代入抛物线方程, 得 x2-4kx=0,所以被截得的线段两端点的坐标分别为(0,0), (4k,4k2),所以 (4k)2+(4k2)2=4 2,解得 k=±1.
π
π
所以∠SOT 最大值为 3 .综上所述:∠SOT 的最大值为 3 ,
ቤተ መጻሕፍቲ ባይዱ
取得最大值时直线
l
的斜率为
k1=±
2 2.
【反思归纳】
跟踪训练 1 已知椭圆 E 的中心在原点,焦点 F1,F2 在 y 轴 上,离心率等于23 2,P 是椭圆 E 上的点.以线段 PF1 为直径的 圆经过 F2,且 9P→F1·P→F2=1.
y=4k21x,
x2=1+8k421k12,y2=1+14k21,
因此|OC|= x2+y2=
11+ +84kk2121.
由题意可知 sin 12∠SOT=r+r|OC|=1+1|OrC|,
而|OrC|=2 3 2·
1+8k21 1+1+k214k211+8k12=34 2·
2k21+1
1+14+k212k121 +k21,
记直线BT的斜率为k1,且k1>0,k1≠k.
则|BT|=1+8|k41|k21 1+k12, 故1+8|k41|k21 1+k21=1+8|k4|k2 1+k2, 所以 1k+12+4kk2141- 1+k2+4kk24=0. 即(1+4k2) k21+k41=(1+4k21) k2+k4, 所以(k2-k21)(1+k2+k21-8k2k21)=0.
解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。
【2020最新】人教版最新高考文科数学解析几何练习题及参考答案

教学资料范本【2020最新】人教版最新高考文科数学解析几何练习题及参考答案编辑:__________________时间:__________________(附参考答案)一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.二.考试要求:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.掌握双曲线的定义、标准方程和双曲线的简单几何性质.掌握抛物线的定义、标准方程和抛物线的简单几何性质.了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题.三.基础知识:椭圆及其标准方程椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.2.椭圆的标准方程:(>>0),(>>0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为(>>0).⑴范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里. ⑵对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.2.椭圆的第二定义⑴定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆(>>0)的参数方程为(θ为参数).说明⑴这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;⑵椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆的参数方程是.5.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6. 椭圆的切线方程椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是双曲线及其标准方程双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹.若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准方程后,运用待定系数法求解.双曲线的简单几何性质双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.双曲线的焦半径公式,.双曲线的内外部点在双曲线的内部.点在双曲线的外部.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.若渐近线方程为双曲线可设为.若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).双曲线的切线方程双曲线上一点处的切线方程是.(2)过双曲线外一点所引两条切线的切点弦方程是.(3)双曲线与直线相切的条件是.抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。
(天津专用)2020届高考数学一轮复习考点规范练40椭圆(含解析)新人教A

考点规范练40椭圆一、基础牢固1 .已知椭圆的焦点坐标为 (-5,0)和(5,0), 椭圆上一点与两焦点的距离和是 26,则椭圆的方程为( )A. =1B.=1C.=1D.=12 .已知椭圆=1(k>- 4)的离心率为,则k 的值为()A.-B.21C.-或21D. 或213 .若曲线ax 2+by 2=1 是焦点在x 轴上的椭圆,则实数a ,b 满足( )A.a 2>b 2B.C.0<a<bD.0<b<a4 .已知圆M :x 2+y 2+2 mx-3=0(m<0)的半径为2,椭圆C :=1的左焦点为F (-c ,0).若垂直于x 轴且经过点F 的直线l 与圆M 相切, 则a 的值为()A.B.1C.2D.45 . (2018 全国Ⅱ , 文11)已知 1,2是椭圆 C 的两个焦点,P 是C 上的一点 . 若1⊥2,且∠210°,FFPFPFPFF=则C 的离心率为()A.1-B.2-C. -D.-16 .已知F 1,F 2是椭圆x 2+2y 2=2 的左、右焦点,点P 是该椭圆上的一个动点 ,则||的最小值是()A.0B.1C.2D.27 .设F 1,F 2为椭圆 =1的两个焦点,点P 在椭圆上.若线段PF 1的中点在y 轴上,则的值为.8 . 如图,在平面直角坐标系xOy 中, F 是椭圆1(0)的右焦点,直线 y= 与椭圆交于,两点,=a>b>BC且∠BFC=0°,则该椭圆的离心率是.9.已知椭圆=1(a>b>0), F1,F2分别为椭圆的左、右焦点,A为椭圆的上极点,直线AF2交椭圆于另一点B.(1)若∠F1AB=0°,求椭圆的离心率;(2)若=2 ,求椭圆的方程.10.已知椭圆C:=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN|·|BM|为定值.二、能力提高11.已知P是椭圆=1上的一点,M,N分别是两圆:(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为( )A.9,12B.8,11C.8,12D.10,1212.已知椭圆=1(a>b>0) 与双曲线=1(m>0,n>0)有同样的焦点(-c,0)和(c,0), 若c是a,m的2 2 2等比中项,n 是2m与c的等差中项,则椭圆的离心率为( )A. B. C. D.13.已知椭圆=1(a>b>0) 的焦点为F1,F2,若椭圆上存在满足的点P,则椭圆的离心率的范围是.14.已知椭圆C的两个极点分别为A(-2,0),B(2,0), 焦点在x轴上,离心率为.(1)求椭圆C的方程;(2)点D为x轴上一点,过点D作x轴的垂线交椭圆C于不一样的两点M,N,过点D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.三、高考展望15.(2018全国Ⅰ,理19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.考点规范练40椭圆1.A 分析由题意知a=13,c=5, 则b 2=a 2-c 2=144.又椭圆的焦点在x 轴上, 因此椭圆的方程为=1. 2.C 分析若a 2=9,b 2=4+k , 则c=-.-由,即, 解得k=-.若a 2=4+k ,b 2=9,则c=-.,即 -由 ,解得k=21.3 .C 分析由ax 2+by 2=1,得 =1.由于椭圆的焦点在x轴上,因此>0,因此0<a<b.4.C 分析圆M 的方程可化为 22222(x+m )+y=3+m ,则由题意得m+3=4,即m=1(m<0).因此m=-1,则圆心M 的坐标为(1,0). 由题意知直线l 的方程为x=-c ,又直线l 与圆M 相切,因此c=1,因此a 2-3=1,因此a=2.5 . D 分析不如设椭圆方程为1(0),1,2分别为椭圆的左、右焦点,则122= a>b> F F|PF|+|PF|= a.∵∠F 2PF 1=0°,∠PF 2F 1=0°, ∴c+c=2a ,即(+1)c=2a.∴e=--1.-6 . C 分析由题意知 1( - 1,0),2(1,0).设(, y 0),FF Px则 (1 0, -y 0 ), (1 0, -y 0),=--x =-x∴ =(-2x 0,-2y 0),∴| |=00=2-00=2-0.∵点P 在椭圆上,∴0≤0≤,∴当=1时,|| 取最小值 2应选C. .7.分析由题意知a=3,b=.由椭圆定义知|PF|+|PF|=6.12在△PFF 中,由于PF 的中点在y 轴上, O 为FF 的中点.1 211 2由三角形中位线性质可推得 PF 2⊥x 轴,因此|PF 2 |= ,因此162,|PF |=-|PF|=因此.8.分析由题意得B -,,C ,,F (c ,0),因此,--,-.由于∠BFC=0°,因此=0.因此c 2- =0.又a 2-b 2=c 2,因此3c 2=2a 2, 即,因此e=.9.解(1)由于∠F 1AB=0°,因此 |OA|=|OF 2|,即b=c.因此a= c ,e=.(2)由题意知A (0,b ),F 1(-c ,0),F 2(c ,0),此中c=-.设B (x ,y ). 由=2,得(c ,-b )=2(x-c ,y ), 解得x=,y=-,即B ,-.将点B 的坐标代入=1,得=1, 即=1,解得a 2=3c 2.① 又由=(-c ,-b )·,-,得b 2-c 2=1,即有a 2-2c 2=1.②由①②解得c 2=1,a 2=3,从而有b 2=2. 因此椭圆的方程为=1.,10.(1)解由题意得 ,,解得,因此椭圆C 的方程为+y 2=1. (2)证明由(1)知,A (2,0),B (0,1). 设P (x 0,y 0),则0+40=4.当x 0≠0时,直线PA 的方程为 y=0(x-2). 0 -令x=0,得y M =-0,0 -从而|BM|=|1-y M |=0.-直线PB 的方程为y=0-x+1.令y=0,得x N =-0, 0 -从而|AN|=| 2-x N|=0-.因此|AN|·|BM|==00 00-0-= 00- 0-0=4.--- -00- 0 -00 0当x 0=0时,y 0=-1,|BM|=2,|AN|=2,因此|AN|·|BM|=4. 综上,|AN|·|BM|为定值.11.C 分析如图,由于两个圆心恰好是椭圆的焦点,由椭圆的定义可知|PF 1|+|PF 2|=10.因此 |PM|+|PN|的最小值为|PF 1|+|PF 2|-2=8,最大值为|PF 1|+|PF 2|+2=12.12.C 分析由于椭圆=1(a>b>0)与双曲线 =1(m>0,n>0)有同样的焦点(-c ,0)和(c ,0), 因此 22222c=a-b=m+n.2222222由于c 是a ,m 的等比中项,n是2m 与c的等差中项,因此c =am ,2n=2m+c ,22,因此m= ,n=因此=c 2,化为,因此e=.13.,分析∵椭圆的焦点为F ,F ,椭圆上存在满足的点P ,12∴| |·| |cos <>=,4c 2=-2||·| |cos < >,| |+||=2a ,可得+2||·||=4a 2,∴4c 2=4a 2-2||·||-b 2.22,∴2||·||=3a-3c ≤当且仅当| |=| |时,等号成立.可得,解得e ≥.又0<e<1,∴e ∈ ,.14 . (1) 解设椭圆C 的方程为 1(0)=a>b>.由题意得,,解得,因此b 2=a 2-c 2=1.因此椭圆C 的方程为+y 2=1.(2)证明设M (m ,n ),则D (m ,0),N (m ,-n ). 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =, 故直线DE 的斜率k DE =-.因此直线DE 的方程为y=-(x-m ). 直线BN 的方程为y=(x-2).---,联立-,-解得点E 的纵坐标y E =--.-由点M 在椭圆C 上,得4-m 2=4n 2,因此y E =-n.又S △BDE =|BD|·|y E |=|BD|·|n|,S △BDN =|BD|·|n|,因此△BDE 与△BDN 的面积之比为4∶5.15 . (1)解由已知得(1,0),l的方程为1,Fx=点A 的坐标为, 或,-.因此AM 的方程为 y=- x+ 或y=x-. (2) 证明当l 与x 轴重合时,∠OMA=∠OMB=0°,当l 与x 轴垂直时,OM 为AB 的垂直均分线,因此∠OMA=∠OMB.当l 与x 轴不重合也不垂直时,设l 的方程为y=k (x-1)(k ≠0),A (x ,y),B (x ,y ),1122则x <,x<,直线MA ,MB 的斜率之和为k+k=.12MAMB--由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =-.--将y=k (x-1)代入+y 2=1, 得(2k 2+1)x 2-4k 2x+2k 2-2=0,-.因此x1+x2= ,x1x2=则2kx x -3k(x+x)+4k= --=0.1 2 1 2从而k+k=0, 故MA,MB的倾斜角互补,因此∠OMA=∠OMB.MA MB综上,∠OMA=∠OMB.。
2020高考数学解析几何内容剖析及备考建议

2020高考数学解析几何内容剖析及备考建议解析几何是高中数学的重要内容。
高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质。
其中直线与圆、直线与圆锥曲线的位置关系是考查重点。
运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法。
试题强调综合性,综合考查数形结合思想、函数与方程思想、特殊与一般思想等思想方法,突出考查考生推理论证能力和运算求解能力。
一、直线与方程1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素.2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式.3.能根据两条直线的斜率判断两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式、一般式),了解斜截式与一次函数的关系.5.能用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间的距离.二、圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判定圆与圆的位置关系.3.能用直线与圆的方程解决一些简单的问题。
4 .初步了解用代数方法处理几何问题的思想。
三、空间直角坐标系1.了解空间直角坐标系,会用空间直角坐标表示点的位置。
2.会简单应用空间两点间的距离公式。
四、圆锥曲线(理科)1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).3.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).4.了解曲线与方程的对应关系。
5.理解数形结合思想。
了解圆锥曲线的简单应用。
四、圆锥曲线(文科)1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称轴、顶点、离心率).4.理解数形结合思想。
高中数学解析几何答题全攻略

高中数学解析几何答题全攻略解析几何由于形式复杂多样,一直是难于解决的问题,很多同学对于解析几何的把握还差很多,很多同学对此知识点提出了相应的问题。
对此清华附中数学老师有针对性的回答了同学们的共性问题。
下面是对本次答疑情况的汇总,希望对大家学习数学尤其是解析几何部分有所帮助。
1考试时间分配问题1:老师我怎么这么短时间内做几道题通解一类题目呢?解析几何也有不少类型题老师:理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。
如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。
如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要!问题2:错题也有很多呀,怎么从错题那里去帮助学习数学呀?都抄几遍和看几遍吗?很多呀!该怎么办呢?老师:对待错题,不要抄也不要只是看,当做新题重新做一遍,有时候一道题我们直接去看答案,总是发现不了问题,我建议把错题的题目直接汇编在一起,不要有答案,每隔一段时间都重新做一下,如果做题的过程很肯定,没有模糊的地方,这道题才可以过。
这个过程比做新题更重要。
问题3:老师我数学只有三四十分马上高考该从哪里开始复习分数会提高呢?老师:简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步!问题4:三视图怎么想也想不出来!有什么好的办法呀!老师!救救我老师:平时见到三视图的题目无论问什么,都是去画他的立体图形,训练自己。
如果考试时真的想不出来了,那么看看能不能判断出这个图形是什么,比如正视图和侧视图都只有一个最高顶点,那么基本可以判断这是一个椎体,如果是求体积的题目,直接底面积乘以高除以3就可以了,但是这个方法不是所有题目都适用。
2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题
2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题【归类解析】题型一 范围问题【解题指导】 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.【解】 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =c a =32. 又∵直线x -y -2=0经过椭圆的右顶点,∴右顶点为点(2,0),即a =2,c =3,b =1,∴椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-11+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2, 则-8k 2m 21+4k2+m 2=0. 由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S △OMN =12|MN |d =12·1+k 2·|x 1-x 2|·|m |1+k 2故由m 的取值范围可得△OMN 面积的取值范围为(0,1).【训练】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围. (1)【证明】 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2. 因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,所以PM 垂直于y 轴.(2)【解】 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22y 20-4x 0. 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=()322003244y x -.因为x 20+y 204=1(-1≤x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 题型二 最值问题1 利用三角函数有界性求最值【解题指导】 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【例】过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是【解】 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ, 则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 2 数形结合利用几何性质求最值【例】在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,求实数c 的最大值为。
高考数学一轮复习高考大题规范解答系列一_函数与导数学案含解析新人教版
高考大题规范解答系列(一)——函数与导数考点一 利用导数解决与函数有关的极、最值问题例1 (2020·北京,19,15分)已知函数f (x )=12-x 2. (1)求曲线y =f (x )的斜率等于-2的切线方程;(2)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.【标准答案】——规范答题 步步得分(1)因为f (x )=12-x 2,所以f ′(x )=-2x ,1分………………………………得分点① 令-2x =-2,解得x =1,2分………………………………………………得分点② 又f (1)=11,所以所求切线方程为y -11=-2(x -1),整理得2x +y -13=0.4分……………………………………………………得分点③ (2)由(1)可知f ′(x )=-2x ,所以曲线y =f (x )在点(t ,f (t ))处的切线斜率k =-2t ,又f (t )=12-t 2,所以切线方程为y -(12-t 2)=-2t (x -t ),6分…………………………得分点④整理得2tx +y -(t 2+12)=0,当x =0时,y =t 2+12,所以切线与y 轴的交点为(0,t 2+12),7分……………………………………………………………………………得分点⑤当y =0时,x =t 2+122t ,所以切线与x 轴的交点为⎝⎛⎭⎫t 2+122t ,0.8分………得分点⑥ ①当t >0时,S (t )=12·t 2+122t ·(t 2+12)=(t 2+12)24t ,9分………………………得分点⑦则S ′(t )=3(t 2-4)(t 2+12)4t 2,10分……………………………………………得分点⑧当0<t <2时,S ′(t )<0,此时S (t )在(0,2)上单调递减; 当t >2时,S ′(t )>0,此时S (t )在(2,+∞)上单调递增,所以S (t )min =S (2)=32.11分…………………………………………………得分点⑨ ②当t <0时,S (t )=-(t 2+12)24t ;12分………………………………………得分点⑩则S ′(t )=-3(t 2-4)(t 2+12)4t 2,13分…………………………………………得分点⑪当t <-2时,S ′(t )<0,此时S (t )在(-∞,-2)上单调递减; 当-2<t <0时,S ′(t )>0,此时S (t )在(-2,0)上单调递增,所以S (t )min =S (-2)=32.14分………………………………………………得分点⑫ 综上所述,当t =±2时,S (t )取最小值,为32.15分………………………得分点⑬【评分细则】 ①求对导函数得1分. ②解对f ′(x )=-2得1分. ③写对切线方程得2分. ④写对切线方程得2分. ⑤求对与y 轴交点得1分. ⑥求对与x 轴交点得1分. ⑦分类讨论t ≥0时写对S (t )得1分. ⑧求对S (t )得1分. ⑨求对S (t )的最小值得1分. ○10分类讨论,t <0时写对S (t )得1分. ⑪求对S ′(t )得1分. ⑫求对S (t )最小值得1分. ⑬总结叙述正确得1分. 【名师点评】 1.核心素养:利用导数研究函数的极、最值问题,首先对函数求导,分解因式,分类讨论函数在给定区间的增减情况确定极最值,重点考查学生数学运算、逻辑推理及分类的数学核心素养.2.解题技巧:(1)求出切线与x 轴、y 轴交点,并写出三角形的积S (t ). (2)对S (t )分类讨论,分别求最值是本题关键点. 〔变式训练1〕(理)(2020·湖南期末统测)已知函数f (x )=ln x +1-2a -x +a x 有两个不同的极值点x 1,x 2.(1)求实数a 的取值范围.(2)求f (x )的极大值与极小值之和的取值范围.(文)(2020·长春市第二次质量监测)已知函数f (x )=(a -1)·ln x -ax -x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若函数f (x )在[1,3]上的最大值为-2,求实数a 的值.[解析] 本题考查利用导数研究函数的单调性、极值和最值.(理)(1)f (x )定义域为(0,+∞),f ′(x )=1x -1-a x 2=-x 2+x -ax 2.因为f (x )有两个不同的极值点x 1,x 2,且x >0,所以x 2-x +a =0有两个不同的正根,所以⎩⎪⎨⎪⎧Δ=1-4a >0,x 1+x 2=1>0,x 1x 2=a >0,解得0<a <14.故实数a 的取值范围为⎝⎛⎭⎫0,14. (2)由(1)知x 1x 2=a ,x 1+x 2=1,不妨设x 1<x 2,所以f (x )极小值=f (x 1),f (x )极大值=f (x 2), 所以f (x )极小值+f (x )极大值=f (x 1)+f (x 2)=ln(x 1x 2)+2(1-2a )+a (x 1+x 2)x 1x 2-(x 1+x 2)=ln a +2-4a .令φ(a )=ln a -4a +2,则φ′(a )=1a -4,当0<a <14时,φ′(a )>0,所以φ(a )在⎝⎛⎭⎫0,14上单调递增,所以φ(a )<φ⎝⎛⎭⎫14=-2ln 2 +1. 又当a →0时,φ(a )→-∞,所以f (x )的极大值与极小值之和的取值范围是(-∞,-2ln 2+1).(文)(1)a =2时,f (x )=ln x -2x -x ,f ′(x )=1x +2x 2-1,f (2)=ln 2-3,f ′(2)=0,所以曲线在点(2,f (2))处的切线方程为y =ln 2-3. (2)f ′(x )=a -1x +a x 2-1=-(x +1)(x -a )x 2(1≤x ≤3),当a ≤1时,f ′(x )≤0,f (x )在[1,3]上单调递减, 所以f (1)=-2,a =1;当a ≥3时,f ′(x )≥0,f (x )在[1,3]上单调递增,所以f (3)=-2,a =ln 3+1ln 3-13<3,舍去;当1<a <3时,f (x )在(1,a )上单调递增,在(a,3)上单调递减, 所以f (a )=-2,a =e. 综上,a =1或a =e.考点二 利用导数解决与不等式有关的函数问题例2 (2020·课标Ⅱ,21,12分)已知函数f (x )=sin 2x sin 2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f (x )|≤338; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n 4n. 【标准答案】——规范答题 步步得分 (1)f ′(x )=cos x (sin x sin 2x )+sin x (sin x sin 2x )′ =2sin x cos x sin 2x +2sin 2x cos 2x=2sin x sin 3x .2分……………………………………………………………得分点① 当x ∈⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫2π3,π时,f ′(x )>0;当x ∈⎝⎛⎭⎫π3,2π3时,f ′(x )<0.所以f (x )在区间⎝⎛⎭⎫0,π3,⎝⎛⎭⎫2π3,π单调递增,在区间⎝⎛⎭⎫π3,2π3单调递减.4分………………………………得分点②(2)证明:因为f (0)=f (π)=0,由(1)知,f (x )在区间[0,π]的最大值为f ⎝⎛⎭⎫π3=338,5分 …………………………………………………………………………………得分点③ 最小值为f ⎝⎛⎭⎫2π3=-338.6分…………………………………………………得分点④ 而f (x )是周期为π的周期函数,故|f (x )|≤338.7分…………………………得分点⑤ (3)证明:由于(sin 2x sin 22x …sin 22n x )32 8分…………………………………得分点⑥=|sin 3x sin 32x …sin 32n x |=|sin x ||sin 2x sin 32x …sin 32n -1x sin2n x ||sin 22n x |9分……………………………得分点⑦ =|sin x ||f (x )f (2x )…f (2n -1x )||sin 22n x |10分……………………………………得分点⑧ ≤|f (x )f (2x )…f (2n -1x )|,11分…………………………………………………得分点⑨所以sin 2x sin 22x …sin 22n x ≤⎝⎛⎭⎫3382n3=3n4n .12分……………………………得分点⑩【评分细则】①正确求得导函数并化简正确得2分. ②讨论f (x )的单调性,正确得2分. ③求对f (x )的最大值得1分. ④求对f (x )的最小值得1分. ⑤证出|f (x )|≤338得1分. ⑥变形正确得1分. ⑦合理转化得1分.⑧转化出f (x )、f (2x )、…、f (2n -1x )得1分. ⑨放缩正确得1分. ⑩证出结论得1分. 【名师点评】 1.核心素养:利用导数判断函数的单调性及解决与不等式有关的函数问题是高考命题的热点问题.本题主要考查“逻辑推理”及“数学运算”的核心素养.2.解题技巧:(1)讨论函数的单调性首先要明确函数的定义域,一般用导数的方法,对导数解不等式. (2)求出f (x )的最值是证明第2问的关键.(3)将不等式左边变形与f (x )及第2问结合起来是完成第3问的关键. 〔变式训练2〕(理)(2020·河南省郑州市高三第二次质量预测)设函数f (x )=ax 2-(x +1)ln x (a ∈R ),曲线y =f (x )在点(1,f (1))处的斜率为0.(1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .(文)(2018·课标全国Ⅰ,21)已知函数f (x )=a e x -ln x -1,a ∈R . (1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间; (2)证明:当a ≥1e时,f (x )≥0.[分析] (文)(1)看到x =2是f (x )的极值点,想到f ′(2)=0且两边异号,看到求单调区间想到求函数定义域,并对函数求导.(2)看到证明当a ≥1e 时,f (x )≥0想到用1e 替换a 进行放缩,构造函数y =e xe -ln x -1,从而求此函数的最小值.[解析] (理)(1)f ′(x )=2ax -ln x -1-1x ,由题意可得f ′(1)=2a -2=0, ∴a =1.(2)要证f (x )>12x (0<x ≤2),只需证x -ln x x -ln x >12,即证x -ln x >ln x x +12,令g (x )=x -ln x ,h (x )=ln x x +12,由g ′(x )=1-1x=0,解得x =1,g (x )在(0,1)上单调递减,在(1,2]上单调递增, 故g (x )min =g (1)=1,由h ′(x )=1-ln xx 2可知h (x )在(0,2]上单调递增,故h (x )max =h (2)=1+ln 22<1=g (x )min ,故h (x )<g (x ),即f (x )>12x .(文)(1)f (x )的定义域为(0,+∞), f ′(x )=a e x -1x .由题设知,f ′(2)=0, 所以a =12e2.从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)当a ≥1e 时,f (x )≥e xe -ln x -1.设g (x )=e xe -ln x -1,则g ′(x )=e x e -1x .当0<x <1时,g ′(x )<0; 当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.考点三 利用导数解决与函数零点有关的问题例3 (2021·山东省青岛市高三模拟检测)已知函数f (x )=a e x -x -a ,e =2.718 28…是自然对数的底数.(1)讨论函数f (x )的单调性;(2)若f (x )恰有2个零点,求实数a 的取值范围. 【分析】 ①看到单调性想到求函数f (x )的导数.②看到f (x )恰有2个零点,想到f (x )=0有两解或y =f (x )图象与x 轴有两个交点. 【标准答案】——规范答题 步步得分(1)f ′(x )=a e x -1,1分……………………………………………………………得分点① 当a ≤0时,f ′(x )=a e x -1<0,所以x ∈(-∞,+∞),f ′(x )<0,故f (x )在(-∞,+∞)上单调递减,2分…得分点② 当a >0时,令f ′(x )=a e x -1=0,得x =-ln a ;所以x ∈(-∞,-ln a )时,f ′(x )<0,f (x )在(-∞,-ln a )上单调递减;x ∈(-ln a ,+∞)时,f ′(x )>0,f (x )在(-ln a ,+∞)上单调递增.4分………………………………得分点③(2)由(1)知,当a ≤0时,f (x )在(-∞,+∞)上单调递减;又知f (0)=0,所以f (x )仅有1个零点;5分……………………………………得分点④ 当0<a <1时,f (0)=0,所以f (-ln a )<0,取f (-2ln a )=1a +2ln a -a ,令函数g (a )=1a +2ln a -a ,得g ′(a )=-(a -1)2a 2<0,所以g (a )>g (1)=0,所以f (-2ln a )=1a +2ln a -a >0得f (x )在(-ln a ,-2ln a )上也有1个零点,8分……………………………………………………………………………………得分点⑤ 当a =1时,f (x )≥f (0)=0,所以f (x )仅有1个零点,9分……………………得分点⑥ 当a >1时,f (0)=0,所以f (-ln a )<0, 令函数h (a )=a -ln a ,a >1得h ′(a )=1-1a >0,所以h (a )>h (1)>0,所以a >ln a ,∴-a <-ln a ,取f (-a )=a e -a >0,得f (x )在(-a ,-ln a )上也有1个零点,综上可知:若f (x )恰有2个零点,则a ∈(0,1)∪(1,+∞).12分……………得分点⑦ 【评分细则】 ①求对导函数得1分. ②求对a ≤0单调区间得1分. ③求对a >0单调区间得2分.④求对a ≤0时f (x )只有一个零点得1分. ⑤求对0<a <1时f (x )有两个零点得3分. ⑥求对a =1时f (x )有一个零点得1分.⑦求对a >1时f (x )有两个零点,并进行综述得3分. 【名师点评】 1.核心素养:本题主要考查导数与函数单调性的关系、零点存在性定理,考查考生的数形结合能力、推理论证能力以及运算求解能力,考查的数学核心素养是直观想象、逻辑推理、数学运算.2.解题技巧:(1)通过求导,分类讨论,进而求单调区间.(2)通过(1)的分析知道函数f (x )的单调性、最值,讨论f (x )零点的个数,从而得出结论. 〔变式训练3〕(2020·全国Ⅲ,21)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线与y 轴垂直.(1)求b .(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1. [解析] 本题考查导数的几何意义及利用导数研究函数的单调性、极值、零点. (1)f ′(x )=3x 2+b .依题意得f ′⎝⎛⎭⎫12=0,即34+b =0,故b =-34. (2)证明:由(1)知f (x )=x 3-34x +c ,f ′(x )=3x 2-34.令f ′(x )=0,解得x =-12或x =12.f ′(x )与f (x )的情况为:因为f (1)=f ⎝⎛⎭⎫-12=c +14,所以当c <-14时,f (x )只有大于1的零点. 因为f (-1)=f ⎝⎛⎭⎫12=c -14,所以当c >14时,f (x )只有小于-1的零点. 由题设可知-14≤c ≤14.当c =-14时,f (x )只有两个零点-12和1.当c =14时,f (x )只有两个零点-1和12.当-14<c <14时,f (x )有三个零点x 1,x 2,x 3,且x 1∈⎝⎛⎭⎫-1,-12,x 2∈⎝⎛⎭⎫-12,12,x 3∈⎝⎛⎭⎫12,1. 综上,若f (x )有一个绝对值不大于1的零点,则f (x )所有零点的绝对值都不大于1.。
高考:数学答题规范要求
高考:数学答题规范要求
高考:数学答题规范要求
1、要正确对待考试:
(1)涂卡规范,写清姓名、考号、考场号、座号,保证不涂错号;
(2)答题区域规范:注意答题的区域范围,不要出边框、不要打错位置、不要用非黑色笔答题;
2、答卷时应注意的主要问题:①认真审题,拿到试卷后,对每一个题目要认真阅读,仔细审题,看清题目的要求,;②一时不会做的题目可以先放一放,等把会做的题目做完了,再解决遗留问题;③仔细检查,更正错误;④卷面要整洁,书写要工整,语言表述要简介准确,条理清晰。
答题时的细节问题:定义域、值域、解集必须写成集合或区间的形式,单调区间必须写成区间形式;分类讨论时一定要有总结即要有综上所述;分数要注意约分,即写成最简形式;要注意作图的准确性,线段的虚实要分明;数列中的,三角函数中的不要忘记;期望、导数中要注意列表;注意数学符号的规范;
3、要重视考后分析,拿到老师批阅的试卷后,不仅要看成绩,而且要对试题进行逐一分析,首先要把错题改正过来,然后在看看因审题、表述、原理、公式、思路、马虎等因素各扣了多少分;经过分析统计,找出自己学习上存在的问题,一定要把错题整理到改错本上,并在以后的复习中逐步改正自己的不足。
4、考试试卷要注意保存,作为以后复习的参考。
2020高考文科数学(人教A版)总复习练习:第八章 立体几何 课时规范练2 Word版含解析
课时规范练36空间几何体的表面积与体积基础巩固组1.(2018湖北华中师范大学第一附属中学高三押题)已知一个几何体的三视图如图所示,图中长方形的长为2r,宽为r,圆半径为r,则该几何体的体积和表面积分别为()A.πr3,(3+)πr2B.πr3,(3+)πr2C.πr3,(4+)πr2D.πr3,(4+)πr22.(2018山东临沂三模,7)如图,网格中小正方形的边长为1,某几何体的三视图如图所示,则该几何体的表面积为()A.+9+9B.+9C.36+9D.36+9+93.(2018海南五模,8)已知某几何体的三视图如图所示,俯视图是由边长为2的正方形和半径为1的半圆组成,则该几何体的体积为()A.8+B.8+C.4+D.8+4.(2018浙江嘉兴四模,9)某几何体的三视图如图(单位:m),则该几何体的体积是()A. m3B. m3C.2 m3D.4 m35.(2018山西太原一模,7)某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.6.(2018福建三明一中一模,10)我国古代数学名著《九章算术》记载:“刍甍者,下有袤有广,而上有袤无丈.刍,草也;甍,屋盖也.”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”如图,为刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则它的体积为()A. B.160 C. D.647.(2018江西南昌六模,11)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为()A.32πB.16πC.36πD.72π8.(2018贵州贵阳一中高三月考,11)已知正四棱锥S-ABCD的底面是边长为4的正方形,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是()A. B. C. D.9.(2018天津,理11)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.10.已知直四棱柱底面是边长为2的菱形,侧面对角线的长为2,则该直四棱柱的侧面积为.11.(2018云南师范大学附属中学三模,14)已知半径为5的球O被两平行的平面所截,两截面圆的半径分别为3和4,则分别以两截面为上、下底面的圆台的侧面积为.12.某几何体的三视图如图所示,坐标纸上的每个小方格的边长为1,则该几何体的外接球的表面积是.综合提升组13.(2018江西南昌测试八,7)某几何体的三视图如图(虚线刻画的小正方形边长为1)所示,则这个几何体的体积为()A. B. C.12 D.14.(2018河南信阳二模,11)已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a,b,且2a+b=(a>0,b>0),则此三棱锥外接球表面积的最小值为()A.πB.πC.4πD.5π15.(2018黑龙江哈尔滨押题二,7)某几何体的三视图如图所示,则该几何体的表面积为()A.30π+8B.+8C.+8D.+816.(2018广西防城港高三模拟,15)各面均为等边三角形的四面体ABCD的外接球的表面积为3π,过棱AB作球的截面,则截面面积的最小值为.创新应用组17.(2018辽宁葫芦岛二模,11)在长方体ABCD-A1B1C1D1中,底面ABCD是边长为x的正方形,侧棱AA1=3,P为矩形CDD1C1内部(含边界)一点,M为BC中点,∠APD=∠CPM,Q为空间任一点且|QA1|=1,三棱锥Q-PCD的体积的最大值记为V(x),则关于函数V(x),下列结论正确的是()A.V(x)为奇函数B.V(x)在区间(0,+∞)内不单调C.V(3)=4D.V(6)=21课时规范练36空间几何体的表面积与体积1.B根据题中三视图可得,该几何体为圆柱中挖去一个圆锥,圆柱底面半径和高均为r,圆锥的底面圆的半径为r,如图所示.故所求几何体的体积为V=πr2·r-πr2·r=πr3;该几何体的表面积为S=2πr·r+πr2+·2πr·r=(3+)πr2.故选B.2.B=S 由题意得几何体的原图如图所示.几何体的左边是一个三棱柱,右边是一个三棱锥.由题得S四边形ABED=3×3=9,S△ABC=S△DEO=S△FEO=×3×3=,由题得AC=DF=3,S矩形四边形BCFE=3×3=9,S△DFO=×(3)2=,所以几何体的表面积=9+9+9+3×+9. ACFD故选B.3.D由三视图可知几何体为半圆锥与正方体的组合体,V=23+×π×12×2=8+,故选D.4.A由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,底面的底边长为2 m,底面的高,即为三视图的宽1 m,故底面面积S=×2×1=1 m2,棱锥的高即为三视图的高,故h=2 m,故棱锥的体积V=×1×2= m3,故选A.5.B由给定的三视图可知,该几何体表示左侧是一个以边长为2的正方形为底面,高为2的四棱锥,其体积为V1=×2×2×2=;右侧为一个直三棱柱,其底面如俯视图所示,高为2,其体积为V2=×2×2×2=4,所以该几何体的体积为V=V1+V2=+4=,故选B.6.A由三视图可知该刍甍是一个组合体,它由一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,×4×4×4+2××2×4×4=32+,故选A.7.C还原几何体,如图所示三棱锥B1-BCD(如下图),将此三棱锥补形为直三棱柱B1C1D1-BCD(如下图),在直三棱柱B1C1D1-BCD中取BC、B1C1的中点O1、O2,取O1O2中点O,R==3,S表=4πR2=4×32=36π.故答案为C.8.B因为球O与正四棱锥S-ABCD所有面都相切,于是由等体积法知V S-ABCD=V O-ABCD+V O-SAB+V O-+V O-SDA+V O-SCD⇒×42×h=×42×1+4××1⇒h=.故选B.SBC9.由题意可知,四棱锥M-EFGH的底面EFGH为正方形且边长为,其高为,所以V四棱锥M-=.EFGH10.16侧棱长为-=2,因为侧面为矩形,所以侧面积为4×2×2=16.11.7π或35π由题意,得两截面圆到球心的距离分别为-=4,-=3,则分别以两截面为上、下底面的圆台的底面半径分别为4,3,圆台的高为4+3=7或4-3=1,则其母线长为-=5或-,则该圆台的侧面积为S=π×(3+4)×5=35π或S=π×(3+4)×=7π.12.π根据几何体的三视图,得该几何体是如图所示的三棱锥,三棱锥的高PD=6,且侧面PAC⊥底面ABC,AC⊥BC,PA=PC==2,AC=8,BC=6,AB==10,∴PA2+PB2=AB2,∴△ABC的外接圆的圆心为斜边AB的中点E,设该几何体的外接球的球心为O.OE⊥底面ABC,设OE=x,外接球的半径为R,则x2+2=32+(6-x)2,解得x=.∴R2=2+52=,∴外接球的表面积S=4π×R2=.13.D几何体为如图多面体PABCDE,连接BD,所以多面体体积为V D-PABE+V A-=×2××2×(1+2)+×2××2×1=.故选D.BCD14.B由已知条件及三视图得,此三棱锥的四个顶点位于长方体ABCD-A1B1C1D1的四个顶点处,即为三棱锥A-CB1D1,且长方体ABCD-A1B1C1D1的长、宽、高分别为2,a,b,∴此三棱锥的外接球即为长方体ABCD-A1B1C1D1的外接球,且球半径为R=,∴三棱锥外接球表面积为4π2=π(4+a2+b2)=5π(a-1)2+,当且仅当a=1,b=时,三棱锥外接球的表面积取得最小值为π.故选B.15.D根据三视图知,该几何体是左边为圆柱的一部分,右边是圆柱挖去一个半球体,结合图中数据,计算该几何体的表面积为S=π·22+·2π·2·2+2·2·2+2π·2·4+·4π·22=+8.故选D.16.将四面体放回一个正方体中,使正四面体的棱都是正方体的面对角线,那么正四面体和正方体的外接球是同一个球,当AB是截面圆的直径时,截面面积最小.因外接球的表面积为3π,则球的直径为,则正方体的体对角线为,棱长为1,面对角线为,截面圆面积最小值为π×2=.17.D∵在长方体ABCD-A1B1C1D1中,M为BC中点,∠APD=∠CPM,P为矩形CDD1C1内部(含边界)一点,∴Rt△ADP∽Rt△PMC,∴=2,即PD=2PC,∵|QA1|=1,则A1在以Q为球心的球面上,而A1到面PCD的距离为x,则(V Q-PCD)max=×3×x×(x+1)=x(x+1),由此可知A,B,C选项都不正确,而V(6)=×6×(6+1)=21.故选D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考文科数学一轮总复习
第 1 页 共 4 页
2020年高考文科数学一轮总复习:解析几何高考答题规范
类型一 定点、定值问题
(12分)设O为坐标原点,动点M在椭圆C:
x
2
2
+y2=1上,过点M作x轴的垂线,垂足为N,
点P满足NP→=2NM→.
(1)求点P的轨迹方程;❶
(2)设点Q在直线x=-3上,且OP→·PQ→=1,证明:
过点P且垂直于OQ的
直线l过C的左焦点F.
❷
[建桥寻突破]
❶看到求点P的轨迹方程,想到先设出
点的坐标,然后利用已知条件,采用代
入法求轨迹方程.
❷看到过点P且垂直于OQ的直线l过C
的左焦点F,想到证明OQ→⊥PF→.
[规范解答]
(1)设P(x,y),M(x0,y0),则N(x0,0),
NP→=(x-x0,y),NM→=(0,y0),1分得分点①
由NP→=2NM→,
得x0=x,y0=22y,3分得分点②
因为M(x0,y0)在椭圆C上,
所以x22+y22=1,5分得分点③
因此点P的轨迹方程为x2+y2=2.6分得分点④
(2)由题意知F(-1,0),
设Q(-3,t),P(m,n),
则OQ→=(-3,t),
PF→=(-1-m,-n),7分得分点⑤
OQ→·PF→=3+3m-tn,8分得分点⑥
OP→=(m,n),PQ→=(-3-m,t-n),9分得分点⑦
由OP→·PQ→=1得-3m-m2+tn-n2=1,10分
[评分标准]
①设出点的坐标,并求出NP→和NM→得1
分;
②由NP→=2NM→,正确求出x0=x,y0=
2
2
y得2分;
③代入法求出x22+y22=1得2分;
④化简成x2+y2=2得1分;
⑤求出OQ→和PF→得1分;
⑥正确求出OQ→·PF→的值得1分;
⑦正确求出OP→和PQ→的坐标得1分;
⑧由OP→·PQ→=1得出-3m-m2+tn-n
2
=1得1分;
⑨得出OQ→⊥PF→ 得1分;
⑩写出结论得1分.
2020年高考文科数学一轮总复习
第 2 页 共 4 页
得分点⑧
又由(1)知m2+n2=2,故3+3m-tn=0.
所以OQ→·PF=0,即OQ⊥PF,11分得分点⑨
又过点P存在唯一直线垂直于OQ,
所以过点P且垂直于OQ的直线
l过C的左焦点F.12分得分点⑩
[解题点津]
(1)得分步骤:对于解题过程中是得分点
的步骤,有则给分,无则没分,所以对
于得分点步骤一定要写全,如第(2)问中
求出-3m-m2+tn-n2=1就得分.
(2)得分关键:对于解题过程中的关键点,
有则给分,无则没分,所以在答题时一
定要写清得分关键点,如第(2)问一定要
写出OQ→·PF→=0,即OQ→⊥PF→,否则不
得分,因此步骤才是关键的,只有结果
不得分.
[核心素养]
圆锥曲线中的定点、定值问题是高考命
题的热点问题,常与向量巧妙交汇,综
合考查考生“数学运算”的核心素养.
类型二 最值、范围问题
(12分)设圆x2+y2+2x-15=0的圆心为A,直
线l过点B(1,0)且与x轴不重合,l交圆A于C,D两
点,过点B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值❶,并写出点E的轨迹方程;
(2)设点E的轨迹方程为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.❷ [建桥寻突破] ❶看到|EA|+|EB|为定值,想到点E的轨迹方程可能是椭圆. ❷看到四边形MPNQ面积的取值范围,想到四边形MPNQ对角线是否
垂直,如何将四边形分别分成三角形
求面积,可能利用弦长公式.
2020年高考文科数学一轮总复习
第 3 页 共 4 页
[规范解答]
(1)圆A整理为(x+1)2+y2=16,点A坐标为(-1,0),
如图,
因为BE∥AC,则∠ACB=∠EBD,
由|AC|=|AD|,则∠ADC=∠ACD,2分得分点①
所以∠EBD=∠EDB,则|EB|=|ED|,
所以|AE|+|EB|=|AE|+|ED|=|AD|=4.4分得分点②
所以E的轨迹为一个椭圆,方程为x24+y23=1(y≠0).6
分得分点③
[评分标准]
①得出∠ACB=∠EBD,∠ADC=
∠ACD得2分;
②得出|AE|+|EB|=4得2分;
③写出E的轨迹为一个椭圆,得1
分;写出椭圆方程x24+y23=1(y≠0)再
得1分;
④联立方程组得出(3m2+4)y2+6my
-9=0得1分;
⑤正确计算出弦长|MN|得1分,错误
不得分;
⑥正确计算出圆心A到PQ距离d得
1分;
⑦正确求出|PQ|得1分,错误不得分;
⑧正确计算出四边形MPNQ面积的
取值范围得2分.
2020年高考文科数学一轮总复习
第 4 页 共 4 页
(2)C1:x24+y23=1;设l:x=my+1,
因为PQ⊥l,设PQ:y=-m(x-1),联立l与椭圆C1,
x=my+1,
x24+y
2
3
=1,
得(3m2+4)y2+6my-9=0;7分
得分点④
则|MN|=1+m2|yM-yN|
=1+m236m2+36(3m2+4)3m2+4=12(m2+1)3m2+4;8分
得分点⑤
圆心A到PQ距离d=|-m(-1-1)|1+m2=|2m|1+m2,9
分得分点⑥
所以|PQ|=2|AQ|2-d2=216-4m21+m2=43m2+41+m2,
10分得分点⑦
所以S四边形MPNQ=12|MN|·|PQ|=
1
2
·12(m2+1)3m2+4·43m2+41+m2=24m2+13m2+4=
2413+1m2+1∈[12,83).12分得分点⑧
[解题点津]
(1)第(1)小题先将圆x2+y2+2x-15
=0化为标准方程,然后画出图形,
结合图形中的线线关系及椭圆的定
义确定轨迹方程.
(2)第(2)小题联立直线方程与椭圆方
程,将其化成关于x或y的一元二次
方程.
(3)要求四边形MPNQ面积的取值范
围,由S四边形MPNQ=12|MN|·|PQ|,可
先利用点到直线的距离公式及勾股
定理求出|PQ|,再利用弦长公式求出
|MN|.
[核心素养]
圆锥曲线中的面积问题是高考命题
的热点问题,一般涉及三角形及四边
形的面积值(取值范围)问题.主要考
查考生“直观想象”和“数学运
算”的核心素养.