整式的乘法和因式分解知识点汇总
整式的乘法因式分解复习课件

因式分解
1.运用前两节所学的知识填空
1).m(a+b+c)= ma+mb+你m能. c发现这 2).(a+b)(a-b)= a2-b2 两组.等式之 3).(a+b)2= a2+2ab.+b2间区的别联吗系? 和
2.试一试 填空:
1).ma+mb+mc= m•( a+b+c )
2).a2-b2=((a+b)(a-b))
A. 4X²+y² B. 4 x- (-y)²
C. -4 X²-y³ D. - X²+ y²
D. 4) -4a²+1分解因式的结果应是 (D )
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
B. -(2a +1)(2a+1) D. -(2a+1) (2a-1)
整式的乘法因式分解复习课件
被除式的系数 除式的系数
底数不变, 指数相减。 整式的乘法因式分解复习课件
保留在商里 作为因式。
解: (1).(2x²y)³·(–7xy²)÷(14x4y³)
=8x6y3 ·(–7xy²)÷(14x4y³)
=-56x7y5 ÷(14x4y³) = -4x3y2 解:(2).(2a+b)4÷(2a+b)²
整式的乘法因式分解复习课件
a a a 同底数幂的乘法
m · n = m+n
幂的乘方
a a ( m )n = mn
整 式
积的乘方
( ab )n= an b n
的 乘
单项式的乘法
4a2x5 ·(-3a3bx2)
整式的乘法与因式分解小结与复习

整式的乘法与因式分解小结与复习知识梳理1. 有关法则⑵单项式与单项式相乘的法则:把它们的 、 分别相乘,对于只在一个单项式中出现的字母,则连同 一起作为积的一个因式.⑶单项式与多项式相乘的法则:单项式与多项式相乘,就是根据 律用单项式去 多项式的每一项,再把所得的 相 .⑷多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项 另一个多项式的每一项,再把所得的积相 .⑸单项式除以单项式的法则:把 、 分别相除后,作为商的 ;对于只在被除式里含有的字母,则连同它的 一起作为商的一个 .⑹多项式除以单项式法则:先把这个多项式的 除以这个单项式,再把所得的商 .2. 有关公式:⑴平方差公式:两个数的和与这两个数差的积等于这两个数的 ,即用字母表示为:(a+b)(a-b)= .⑵完全平方公式:两个数和(或差)的平方,等于它们的 再加上(或减去)这两数的 ,即:(a ±b)2= .3. 有关概念⑴因式分解:把一个多项式化为 的形式,叫做多项式的因式分解.⑵提公因式法:把多项式各项的 提出来,这种分解因式的方法叫做提公因式法,即am bm cm ++= .提公因式法的实质是逆用 律.⑶公式法:把乘法公式()()a b a b +-= 、2()a b ±= 逆用,就得到分解因式的公式22a b -= ,222a ab b ±+= ,这种运用公式分解因式的方法叫做公式法.考点呈现考点1 幂的运算性质例1下列运算正确的是()A. (-a)6·(-a3)=a18B.(-b3)5=-3b8C. (a2b)4=a10b3D.(ab)12÷(ab)10=a2b2分析:根据幂的运算性质可知(-a)6·(-a3)= a6·(-a3)=-a6+3=-a9,(-b3)5=(-1)5(b3)5=-b3×5=-b15,(a2b)4=(a2)4b4=a8b4,(ab)12÷(ab)10=(ab)12-10=(ab)2= a2b2,所以选项D正确.解:选D.温馨提示:对于幂的各种运算性质,一定要分清指数的变化特征,避免混淆.另外,在计算选项D时,把ab看做一个整体,也就是看做底数,因此,它实际上是进行同底数幂的除法运算.考点2 整式的乘法例2先化简,再求值:(-2x2)2-(x2+1)(4x2-5)-x(x+11),其中x=-2.分析:根据整式的乘法法则对原式进行化简,再代入求值即可.解:原式=4x4-(4x4+4x2-5x2-5)-x2-11x=4x4-4x4-4x2+5x2+5-x2-11x=-11x+5.当x=-2时,原式=-11×(-2)+5=22+5=27.温馨提示:在解决单项式与多项式相乘以及多项式与多项式相乘的运算时,要防止出现漏乘,并且要细心处理每项的符号.考点3 乘法公式例5计算:(x+3y)2-2(x+3y)(x-3y)+(x-3y)2的结果为____.分析:本题可以利用两数和乘以这两数差的乘法公式和两数和(差)的平方公式展开后化简,也可逆用两数和(差)的平方公式化简.解:方法1:原式=x2+6xy+9y2-2(x2-9y2)+x2-6xy+9y2=x2+6xy+9y2-2x2+18y2+x2-6xy+9y2=36y2.方法2:原式=[(x+3y)-(x-3y)]2=(6y)2=36y2.温馨提示:解这类题时,一是要注意乘法公式的正确使用,确保化简的结果正确;二是注意公式的逆向运用,本题显然逆用公式计算比较简便.考点4 整式的除法例4先化简(4ab3+8a2b2)÷(-4ab)-(2a+b)(2a-b),然后再选取你喜欢的一对a,b的值代入求值.分析:化简本题时,主要分两部分:对于(4ab3+8a2b2)÷(-4ab)采用多项式除以单项式的方法计算;对于(2a+b)(2a-b)采用两数和乘以这两数差的乘法公式计算,最后合并同类项即可.在选取a,b的值时,要注意ab≠0,即a ,b 都不能为0.解:原式=-b 2-2ab-(4a 2-b 2)= -b 2-2ab-4a 2+b 2=-4a 2-2ab.当a=2,b=1时,原式=-4×22-2×2×1=-16-4=-20.温馨提示:在进行多项式除以单项式时,要特别注意多项式每项的符号与除式的符号.本题是开放性试题,答案并不唯一,在选取a ,b 的值时,一定要注意a ,b 的取值范围.考点5 定义新运算型例5 先规定一种新运算“§”,a§b=a 2+ab+(b-1)2,根据这个新运算,可得(2x-1)§(x+3)= ____.分析:根据规定的新运算a§b=a 2+ab+(b-1)2,把它转化成我们熟悉的四则运算(2x-1)2+(2x-1)(x+3)+(x+3-1)2,然后进行计算即可.解:(2x-1)§(x+3)=(2x-1)2+(2x-1)(x+3)+(x+3-1)2=4x 2-4x+1+2x 2+6x-x-3+x 2+4x+4=7x 2+5x+2. 温馨提示:解决这类问题其关键是根据规定的新运算法则把待求式转化为我们学过的运算.考点6 分解因式的方法例6分解因式:16a 2b 2 − 34a 2b +12ab 2. 分析:当多项式的系数是分数时,应把各项中分数系数的最小公分母作为公因式系数的分母,使余下的因式中各项系数都化成整数.解:原式=112ab (2ab − 9a +6b ). 例7分解因式:(1)3()4()a b a b +-+= ; (2)3244x x x ++= .分析:(1)观察可知多项式两项都有公因式a+b ,提公因式a+b 后,余下的多项式能利用两数和乘以两数差的乘法公式继续分解;(2)各项都有公因式x ,提公因式x 后,余下的多项式可以利用两数和的平方公式继续分解.解:(1)原式2()()4()(2)(2)a b a b a b a b a b ⎡⎤=++-=++++-⎣⎦. (2)原式22(44)(2)x x x x x =++=+.考点8分解因式的相关计算例8 已知实数a ,b 满足1ab =,2a b +=,求代数式22a b ab +的值.分析:观察算式特点可知,两项都有公因式ab ,为此可将其因式分解,再将1ab =,a+b=2代入求值. 解:当1ab =,2a b +=时,原式()122ab a b =+=⨯=. 误区点拨易错点1 混淆幂的运算性质例1 下列计算:①x 3·x 9=x 27;②(-2m 2n )3=-2m 6n ;③(a-b )9÷(a-b )3=(a-b )3.其中正确的个数为( )A.0个B.1个C.2个D.3个错解:选D.剖析:①是幂的乘法运算,应是底数不变,指数相加,即x3·x9=x12,而错解是把指数运算弄成指数相乘了;②是积的乘方运算,应该是(-2m2n)3=(-2)3m6n3=-8 m6n3,而错解是忘记把2和n分别乘方了;③幂的除法运算,应是底数不变,指数相减,即(a-b)9÷(a-b)3=(a-b)6,错解却弄成指数相除了,以上错误的原因是对幂的运算性质混淆不清造成的.正解:A.易错点2 进行整式的乘法运算时出现漏乘例2计算:⑴ab(b+b2)-b2(ab-a+1)= _____.⑵(a-b)(a+5b)的结果为_____.错解:⑴原式=ab2+ab3-ab3+ab2=2ab2;⑵原式=a2-5b2.剖析:⑴单项式与多项式相乘时,要注意单项式和多项式的每一项都要相乘,错解中,单项式-b2与多项式ab-a+1相乘时,只是-b2与ab、-a分别相乘,却漏掉了-b2与1相乘;⑵同样多项式与多项式相乘时,要求是先用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,而错解中只是两个多项式的首项与首项相乘,末项与末项相乘,即a与a相乘,-b与5b相乘,漏掉了a与5b相乘和-b与a相乘.以上两个小题出现错误的原因是由于漏乘造成错误.正解:⑴原式=ab2+ab3-ab3+ab2-b2=2ab2-b2.⑵原式=a2-ab+5ab-5b2= a2+4ab-5b2.易错点3 乘法公式的结构掌握不牢例3计算:⑴(2x+3y)(3y-2x)= _____.⑵(4x-5y)2=_____.错解:⑴原式=(2x)2-(3y)2=4x2-9y2.⑵错解1:(4x-5y)2=(4x)2-4x·5y+(5y)2=16x2-20xy+25y2.错解2:(4x-5y)2=(4x)2-(5y)2=16x2-25y2.剖析:⑴两数和乘以这两数差的乘法公式是(a+b)(a-b)=a2-b2,本题出现错误的原因是没能很好地把握两数和乘以这两数差的乘法公式的结构特征,顺序颠倒;⑵两数和(差)的平方公式是(a-b)2=a2-2ab+b2,错解1把中间项的2漏掉了,错解2干脆把中间项都漏掉了,错误的原因是未能把握两数和(差)的平方公式的特征.正解:⑴原式=(3y+2x)(3y-2x)= (3y)2-(2x)2=9y2-4x2.⑵(4x-5y )2=(4x )2-2·4x·5y+(5y )2=16x 2-40xy+25y 2.易错点4 在整式的乘除混合运算中,运算顺序混乱例4 计算:x 2y 2÷x·xy 的结果为_____.错解:原式=x 2y 2÷x 2y=y.剖析:在进行整式的乘除混合运算时,应按照从左到右的顺序进行,即先做除法(x 2y 2÷x=xy 2)再做乘法(xy 2·xy=x 2y 3),错解的原因是违背了这一混合运算的顺序,造成了运算顺序的混乱而出现错误.正解:原式=xy 2·xy=x 2y 3.易错点5 提公因式后漏项致错例5分解因式:22462a b ab ab -+.错解:原式2(23)ab a b =-.剖析:当各项的公因式恰与某一项相同(或互为相反数)时,提取公因式后,该项的位置应为1(或1-),而错解却忽视了这一点,漏掉了第三项“1”.正解:原式2(231)ab a b =-+.易错点6用公式不恰当致错例6分解因式323612ma ma ma -+-.错解:原式223(24)3(2)ma a a ma a =--+=--.剖析:错解错在对两数和(差)的平方公式的特点掌握不牢,误认为224a a -+是完全平方式. 正解:原式23(24)ma a a =--+.易错点7式分解不彻底致错例7分解因式222(4)16x x +-.错解:原式22222(4)(4)(44)(44)x x x x x x =+-=+-++.剖析:错解错在因式分解不彻底.因为结果中的两个因式都是完全平方式,还可以继续分解.正解:原式2222222(4)(4)(44)(44)(2)(2)x x x x x x x x =+-=+-++=+-.方法点击1.逆用幂的运算性质求值例1 已知a m =2,a n =4,求a 3m-n 的值.分析:a 3m-n 的指数是3m 与n 的差,它是同底数幂的除法的结果的形式,于是就有a 3m-n =a 3m ÷a n ,再逆用幂的乘方法则化成(a m )3÷a n ,代入求出结果.解:因为a m =2,a n =4,所以,a 3m-n =a 3m ÷a n =(a m )3÷a n =23÷4=2.点评:逆用幂的运算法则是解相关问题的技巧性方法.例2 计算:(-0.125)115×(2115)3+(20122013)532()135-⨯的结果为_____. 分析:按常规计算比较繁琐,经观察发现,若把(2115)3转化为(23)115,(125)135()135********•化成,可逆用积的乘方法则计算.解:原式=(-0.125)115×(23)115+(20122012)513(135)135-⨯• =(-0.125)115×8115+2012)135513(135⨯-⨯=(-0.125×8)115+2012)1(135-⨯ =(-1)115+135=-1+135=138-. 点评:对于这类特殊问题,逆用幂的运算性质,可简化运算过程.3.利用整式的乘法确定积中不含某项字母系数的值例3 若关于多项式(x-1)(-kx+1)的乘积中不含一次项,则k 的值为_____.分析:因题中要求不含x 的项,即该项系数的和为0.解:(x-1)(-kx+1)=-kx 2+kx+x-1=-kx 2+(k+1)x-1,因为积中不含x 的项,所以k+1=0,所以k=-1. 点评:解本题的关键是理解不含某项的意义,即相乘后合并同类项使其系数为0.4.巧用乘法公式求值例4 计算:20132-2012×2014-10012的结果为_____.分析:本题是有理数的混合运算,若按混合运算的顺序:先算乘方,再算乘法,最后算减法,会使运算过程很繁琐,注意到若把20132-2012×2014化为20132-(2013-1)(2013+1), 10012化为(1000+1)2,然后利用乘法公式,可使运算大大的简化.解: 20132-2012×2014-10012=20132-(2013-1)(2013+1)-(1000+1)2=20132-(20132-12)-(10002+2×1000×1+12)= =20132-20132+1-10002-2000-1=-1 002 000.点评:解决这类问题的关键是抓住式子的特点,把它转化为易于利用乘法公式求解的形式.5.巧用“被除式=除式×商式+余式”求解例5 已知多项式2x 3-4x 2-1除以多项式A ,得商式为2x ,余式为2x-1,则多项式A=_____.分析:由“被除式=除式×商式+余式”可得“除式=(被除式-余式)÷商式,将除式2x 3-4x 2-1、商式2x 、余式2x-1,代入即可求出除式A 的值.解:根据题意得,A=[2x 3-4x 2-1-(2x-1)]÷2x=(2x 3-4x 2-1-2x+1)÷2x=(2x 3-4x 2-2x )÷2x=x 2-2x-1. 点评:明确“除式=(被除式-余式)÷商式“是解决本题的关键.跟踪训练1. (-2x 3y 4)3的运算结果是( )A. -6x 6y 7B. -8x 27y 64C. -6x 9y 12D. -8x 9y 122. 用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过4×103秒到达另一座山峰,已知光在空气中的速度约为3×108米/秒,则这两座山峰之间的距离用科学记数法表示为( )A.1.2×1010米B. 12×1011米C. 1.2×1012米D. 1.2×1011米3. 若x 2-ax-1可以分解为(x-2)(x+b),则a+b 的值为( )A. -1B. 1C. - 2D. 24. 把多项式x 3-2x 2+x 分解因式结果正确的是( )A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)25. 计算(2x-3)2的结果为4x2+□x+9,则“□”中的数为()A. -6B. 6C. -12D. 126. 若a、b、c为一个三角形的三边,则代数式(a-c)2-b2的值()A. 一定为正数B. 一定为负数C. 可能为正数,也可能为负数D. 可能为零7. 下列各式:x2·x4,(x2)4,x4+x4,(-x4)2,x12÷(-x2)2,其中与x8相等的有_____个.8. (3x-2)(3-5x)的计算结果中,含x的项的系数是______.9. 4m(2x-y)2-4mn2因式分解的结果为_______.10. 一个正方形的边长增加了2cm,面积相应增加了32cm2,则这个正方形的边长为____cm.11. 已知x2+y2=25,x+y=7,且x>y,则x-y的值等于.12. 计算下列各式:(1) a•a5+(2a3)2+(-2a2)3;(2)(2x+5y)(3x-2y)-(x-2y)2.整式的乘法与因式分解小结与复习知识梳理:略.跟踪训练:1.D 2.C 3. D 4. D 5. C 6.B7. 3 8. 19 9. 4m(2x-y+n)(2x-y-n) 10. 7 11.112. (1)-3a6;(2)5x2+15xy-14y2。
整式的乘法与因式分解知识点及例题

整式乘除与因式分解一.知识点 (重点) 1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.例:(-2a )2(-3a 2)32.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.例: (-a 5)53.()nn nb a ab = (n 为正整数)积的乘方等于各因式乘方的积.例:(-a 2b )3练习:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅4.n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减.例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2(4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )25.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念:a -p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅- 8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加. 例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅-(3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(23229.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是2.(3×10 8)×(-4×10 4)=3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是5.-[-a 2(2a 3-a)]=6.(-4x 2+6x -8)·(-12x 2)= 7.2n(-1+3mn 2)= 8.若k(2k -5)+2k(1-k)=32,则k =9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)= 10.在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b =11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为,体积为。
整式的乘除与因式分解基础知识详解

整式的乘除与因式分解目录一、幂的运算二、整式的乘法三、整式的除法四、乘法公式五、提公因数法六、平方差公式七、完全平方式八、十字相乘法及分组分解法九、《整式的乘除与因式分解》全章复习与巩固一、幂的运算基础知识讲解【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】要点一、同底数幂的乘法性质(其中都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即(都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即(都是正整数).要点二、幂的乘方法则(其中都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广: (,均为正整数) (2)逆用公式: ,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则(其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广: (为正整数). (2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如: 要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯. +⋅=m n m n a a a ,m n m n p m n p a a a a ++⋅⋅=,,m n p m n m n a a a +=⋅,m n ()=m n mn a a ,m n (())=m n p mnp a a0≠a ,,m n p ()()n m mn m n a a a ==()=⋅n n n ab a b n ()=⋅⋅n n n nabc a b c n ()nn n a b ab =1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭二、整式的乘法基础知识讲解【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:.三、整式的除法基础知识讲解【学习目标】1. 会用同底数幂的除法性质进行计算.2. 会进行单项式除以单项式的计算.3. 会进行多项式除以单项式的计算.【要点梳理】要点一、同底数幂的除法法则()m a b c ma mb mc ++=++()()a b m n am an bm bn ++=+++()()()2x a x b x a b x ab ++=+++同底数幂相除,底数不变,指数相减,即(≠0,都是正整数,并且)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.要点二、零指数幂任何不等于0的数的0次幂都等于1.即(≠0)要点诠释:底数不能为0,无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点四、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化.此文本是购买典型题书赠送的资料之一,原文为word 版,按照课本章节分类,有初中全套群内会陆续分享全套,敬请关注!m n m n a a a -÷=a m n 、m n >01a =a a 00()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++四、乘法公式基础知识讲解【学习目标】1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算.【要点梳理】要点一、平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如利用加法交换律可以转化为公式的标准型(2)系数变化:如(3)指数变化:如(4)符号变化:如(5)增项变化:如(6)增因式变化:如要点二、完全平方公式完全平方公式:两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:要点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,22()()a b a b a b +-=-b a ,()()a b b a +-+(35)(35)x y x y +-3232()()m n m n +-()()a b a b ---()()m n p m n p ++-+2244()()()()a b a b a b a b -+++()2222a b a ab b +=++2222)(b ab a b a +-=-()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+括到括号里的各项都改变符号.要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确.要点四、补充公式;; ;.五、提公因式法基础知识讲解【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.六、平方差公式基础知识讲解2()()()x p x q x p q x pq ++=+++2233()()a b a ab b a b ±+=±33223()33a b a a b ab b ±=±+±2222()222a b c a b c ab ac bc ++=+++++m m【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.七、完全平方式基础知识讲解【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). ()()22a b a b a b -=+-a b a b ()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.八、十字相乘法及分组分解法基础知识讲解【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即. 要点诠释:(1)分解思路为“看两端,凑中间”pq x q p x +++)(22x bx c ++pq c p q b =⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.九、《整式的乘除与因式分解》全章复习与巩固【学习目标】1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次方等于1. 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即. m n ,m n ,n a m n ,m n >()010.a a =≠mc mb ma c b a m ++=++)(c b a m ,,,()()a b m n am an bm bn ++=+++要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:. 4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:要点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.()()()2x a x b x a b x ab ++=+++()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++22()()a b a b a b +-=-a b ,()2222a b a ab b +=++2222)(b ab a b a +-=-。
整式的乘除及因式分解知识点归纳

整式的乘除及因式分解知识点归纳整式是指由字母和常数经过加、减、乘、除运算得到的代数式。
乘除整式的运算及因式分解是代数学中非常基础和重要的知识点,下面将对乘除整式及因式分解的相关知识进行归纳。
一、乘法运算乘法运算是整式运算中最基本的运算。
在乘法运算中,有以下几个重要的法则:1.乘法交换律:a*b=b*a2.乘法结合律:(a*b)*c=a*(b*c)3.分配律:a*(b+c)=a*b+a*c4.单项式相乘法则:单项式相乘时,将各个单项式的系数相乘,同类项的指数相加。
例子:(2x^2)(3x^3)=2*3*x^2*x^3=6x^(2+3)=6x^5二、除法运算除法运算是整式运算中的一种重要运算。
除法运算可分为两种情况:1.恒等除法:当被除式为0时,整式除以0是没有意义的。
即0除以0没有定义。
2.非恒等除法:非零整式除以非零整式时,被除式乘以除数的倒数。
例子:(4x^4)/(2x^2)=4/2*x^4/x^2=2x^(4-2)=2x^2三、因式分解因式分解是指将一个整式表示为几个其它整式相乘的结果,称这些整式为原式的因式。
1.提取公因式:将一个整式的公因式提取出来,得到一个公因式和一个把原式除以公因式的商。
例子:8x^3+12x^2=4x^2(2x+3)2.根据乘法结合律和分配律,将每一个单项式的因式分别提出来。
例子:3xy + 9x + 6y + 18 = 3(x + 3) + 6(y + 3) = 3(x + 3 +2(y + 3)) = 3(x + 2y + 9)3.因式分解中,根据不同的整式形式,可以采用不同的方法进行因式分解。
常见的因式分解方法有:(1)一元二次整式的因式分解:对形如ax^2 + bx + c的一元二次整式,可以使用因式分解公式 (ax + m)(cx + n)进行分解,其中m、n分别是满足m*n=ac的两个数。
例子:x^2-5x+6=(x-2)(x-3)(2)立方差公式:对形如a^3 - b^3的整式,可以使用立方差公式 (a - b)(a^2 + ab + b^2)进行分解。
整式的乘法与因式分解知识点-参考模板

整式的乘法与因式分解知识点复习1、幂的运算性质:(1)a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.(2)()nm a = a mn (m 、n 为正整数) 幂的乘方,底数不变,指数相乘.(3)()n n n b a ab = (n 为正整数) 积的乘方等于各因式乘方的积.(4)n m a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减.2.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .3.负指数幂的概念: a - p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数) 4.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.3 a 2 b 2×2abc=(3×2)×(a 2 b 2 ×abc )=6 a 3 b 3c5.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.6.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.7.乘法公式:①完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.②平方差公式:(a+b)(a-b)=a2-b2语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.8.因式分解(难点)因式分解的定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.一、掌握因式分解的定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2 ---精心整理,希望对您有所帮助。
整式的乘法与因式分解知识点总结 (1)精选全文完整版
可编辑修改精选全文完整版整式的乘法与因式分解知识点总结一、同底数幂的乘法1. 同底数幂相乘,底数不变,指数相加。
即:m n m n a a a +⨯=(m 、n 为正整数)注:(1)底数可以是任意实数,也可以是单项式、多项式。
(2)当幂的指数为1时,计算不要遗漏,也可以省略不写,即a a =1。
2. 在幂的运算中,经常用到以下变形:二、幂的乘方1. 幂的乘方:底数不变,指数相乘。
即:()n m mn aa =(m 、n 为正整数) 注:(1)公式的推广: (,均为正整数) (2)逆用公式:三、积的乘方1. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即:()nn n ab a b = (n 为正整数) 注:(1)公式的推广: (为正整数). (2)逆用公式: 四、单项式与单项式相乘1. 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
五、单项式与多项式相乘1. 单项式与多项式相乘:用单项式去乘多项式的每一项,再把所得的积相加.公式:mc mb ma c b a m ++=++)(,其中m 为单项式,c b a ++为多项式。
()()(),n n n a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数()()()()()n n n b a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数(())=m n p mnp a a0≠a ,,m n p ()()n m mn m n a a a ==()=⋅⋅n n n nabc a b c n ()nn n a b ab =六、多项式与多项式相乘1. 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
公式:()()nb na mb ma b a n m +++=++七、同底数幂的除法1. 同底数幂相除,底数不变,指数相减。
整式的乘法与因式分解
整式的乘法与因式分解整式是指由常数、变量和常数与变量的乘积通过加法或减法运算得到的代数式。
整式的乘法与因式分解是代数学中非常基础也非常重要的概念。
本文将从整式的定义、乘法规则和因式分解方法等方面进行讲解。
一、整式的定义整式由若干项经过加法或减法运算组成,每一项由数与变量的乘积得到。
典型的整式表达式包括:1. 常数项:仅由一个常数构成,例如2、-3等;2. 变量项:指仅由一个变量构成,例如x、y等;3. 常数与变量的乘积项:由一个常数与一个变量相乘而得的项,例如2x、-3y等;4. 多项式:由多个项通过加法或减法运算得到的整式,例如2x+3y、-4xy+5等。
二、整式的乘法规则整式的乘法运算遵循以下规则:1. 常数与整式相乘:将该常数与整式的每一项分别相乘;2. 变量与整式相乘:将该变量与整式的每一项的变量部分相乘;3. 整式与整式相乘:将两个整式的每一项进行相乘,并对结果进行合并整理。
以一个具体的例子来说明整式的乘法规则。
假设有两个整式:(2x+3)(3x-4)。
按照上述规则,可以将它们的每一项分别相乘,然后整理合并得到最终结果。
具体计算过程如下:(2x+3)(3x-4) = 2x * 3x + 2x * (-4) + 3 * 3x + 3 * (-4)= 6x² - 8x + 9x - 12= 6x² + x - 12三、整式的因式分解方法因式分解是将一个整式表示为多个乘积的形式,其中每个乘积称为因式。
因式分解有多种方法,这里介绍两种常见的因式分解方法:提公因式法和配方法。
1. 提公因式法:适用于整式中存在公共因子的情况。
具体步骤如下:(1)将整式中的各项进行化简,找出它们的公共因子;(2)将整式中各项的公共因子提取出来;(3)将提取出的公共因子与剩余部分相乘得到最终结果。
例如,对于如下整式:6x² - 8x。
可以将6x²与-8x的公共因子2x提取出来,得到2x(3x - 4)。
第14章 《整式的乘法与因式分解》知识点及考点典例
- 1 - 第十四章 《整式的乘法与因式分解》知识点及考点典例 重点知识回顾: 一、整式的乘法: ),(都是正整数nmaaanmnm• ),(都是正整数)(nmaamnnm )()(都是正整数nbaabnnn 22))((bababa
2222)(bababa 2222)(bababa
注意:(1)单项式乘单项式的结果仍然是单项式。 (2)单项式与多项式相乘,结果是一个_______,其项数与因式中多项式的项数______。 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。 (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。 二、整式的除法:
nmnmaaa 0a 10a
0a
单项式单项式 多项式单项式 三、因式分解 1、把一个多项式化成几个_________的形式,叫做把这个多项式因式分解。 2、因式分解的常用方法 (1)提公因式法:)(cbaacab (2)运用公式法:))((22bababa
222)(2bababa 222)(2bababa
(3)分组分解法:))(()()(dcbadcbdcabdbcadac (4)十字相乘法:))(()(2qapapqaqpa 3、因式分解的一般步骤: (1)如果多项式的各项有公因式,那么先提取公因式。 (2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用________公式分解因式;三项式可以尝试运用______________、__________分解因式;四项式及四项式以上的可以尝试______________分解因式 (3)分解因式必须分解到每一个因式都不能再分解为止。 四、几个重要公式变形 - 2 -
人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)
(2) (- 4x) (2x2+3x-1)
解:原式=(- 4x) •2x2+(- 4x)•3x+(- 4x)•(-1) = - 8x3- 12x2+4x
(3) ab ( ab2 - 2ab)
解:原式= a2b3–2 a2b2 单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式; ②单项式的乘法运算。
(7)-5a3b2c·3a2b=-15a5b3c (8)a3b·(-4a3b)=-4a6b2 (9)(-4x2y)·(-xy)=4x3y2 (10)2a3b4(-3ab3c2)=-6a4b7c2 (11)-2a3·3a2=-6a5 (12)4x3y2·18x4y6=72x7y8
2.计算:(-a)2 ·a3 ·(-2b)3 -(-2ab)2 ·(-3a)3b
谢 谢 观 看!
4.若n为正整数,x3n=2,2x2n ·x4n+x4n ·x5n的值。
解:2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23 =8+8 =16
∴原式的值等于16。
5 已知1 (x2 y3 )m • (2xyn1)2 x4 • y9 , 4
情境引入 x
mx
1 8
x
x
3x 4
1 8
x
mx
第一幅的面积是 x(mx)
这是两个单项式相乘, 结果可以表达得更简
第二幅的面积是 (mx)( 3 x ) 单些吗?
4
光的速度约为3×105千米/秒,太阳光照射到
地球上需要的时间大约是5×102秒,你知道地
球与太阳的距离约是多少千米吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORD格式整理版 学习指导参考 整式乘除与因式分解 一.知识点 (重点) 1.幂的运算性质:
am·an=am+n (m、n为正整数) 同底数幂相乘,底数不变,指数相加. 例:(-2a)2(-3a2)3
2.nma= amn (m、n为正整数) 幂的乘方,底数不变,指数相乘. 例: (-a5)5
3.nnnbaab (n为正整数) 积的乘方等于各因式乘方的积. 例:(-a2b)3 练习: (1)yxx2325 (2))4(32bab (3)aab23 (4)222zyyz (5))4()2(232xyyx (6)22253)(631accbaba
4.nmaa= am-n (a≠0,m、n都是正整数,且m>n) 同底数幂相除,底数不变,指数相减. 例:(1)x8÷x2 (2)a4÷a (3)(ab)5÷(ab)2
(4)(-a)7÷(-a)5 (5) (-b) 5÷(-b)2
5.零指数幂的概念: a0=1 (a≠0) 任何一个不等于零的数的零指数幂都等于l.
例:若1)32(0ba成立,则ba,满足什么条件? WORD格式整理版 学习指导参考 6.负指数幂的概念:
a-p=pa1 (a≠0,p是正整数) 任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:ppnmmn(m≠0,n≠0,p为正整数) 7.单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 例:(1)223123abcabcba (2)4233)2()21(nmnm
8.单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
例:(1))35(222baabab (2)ababab21)232(2
(3))32()5(-22nmnnm (4)xyzzxyzyx)(2322
9.多项式与多项式的乘法法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例:(1))6.0(1xx)( (2)))(2(yxyx (3)2)2nm(
练习: 1.计算2x 3·(-2xy)(-12xy) 3的结果是 2.(3×10 8)×(-4×10 4)= WORD格式整理版 学习指导参考 3.若n为正整数,且x 2n=3,则(3x 3n) 2的值为 4.如果(a nb·ab m) 3=a 9b 15,那么mn的值是 5.-[-a 2(2a 3-a)]= 6.(-4x 2+6x-8)·(-12x 2)= 7.2n(-1+3mn 2)= 8.若k(2k-5)+2k(1-k)=32,则k= 9.(-3x 2)+(2x-3y)(2x-5y)-3y(4x-5y)=
10.在(ax 2+bx-3)(x 2-12x+8)的结果中不含x 3和x项,则a= ,b=
11.一个长方体的长为(a+4)cm,宽为(a-3)cm,高为(a+5)cm,则它的表面积为 ,体积为 。 12.一个长方形的长是10cm,宽比长少6cm,则它的面积是 ,若将长方形的长和都扩大了2cm,则面积增大了 。
10.单项式的除法法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式. 例:(1)28x4y2÷7x3y(2)-5a5b3c÷15a4b(3)(2x2y)3·(-7xy2)÷14x4y3
11.多项式除以单项式的法则: 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 例:
练习: 1.计算:
(1)223247173yxzyx; (2)2232232yxyx;
(3)26416baba. (4)322324nnxyyx
xyxyyx6)63()1(2)5()15105()2(3223ababbabaWORD格式整理版
学习指导参考 (5)39102104
2.计算: (1)33233212116xyyxyx;
(2)32232512152xyyxyx (3)22221524125nnnnbababa
3.计算: (1)234564yxxyyxyx;
(2)235616babababa. 4.若 (ax3my12)÷(3x3y2n)=4x6y8 , 则 a = , m = ,= ; 易错点:在幂的运算中,由于法则掌握不准出现错误; 有关多项式的乘法计算出现错误; 误用同底数幂的除法法则; 用单项式除以单项式法则或多项式除以单项式法则出错; 乘除混合运算顺序出错。
12.乘法公式: WORD格式整理版 学习指导参考 ①平方差公式:(a+b)(a-b)=a2-b2 文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差. ②完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍. 例1: (1)(7+6x)(7−6x); (2)(3y + x)(x−3y); (3)(−m+2n)(−m−2n).
例2:
(1) (x+6)2 (2) (y-5)2 (3) (-2x+5)2
练习: 1、4352aa=_______。3222323()2()()xxyxyxy=______________。 2、2323433428126babababa(_____________________) 3、222____9(_____)xyx;2235(7)xxx(______________)
4、已知15xx,那么331xx=_______;21xx=_______。 5、若22916xmxyy是一个完全平方式,那么m的值是__________。 6、多项式2,12,2223xxxxxx的公因式是_____________________。
7、因式分解:2783x__________________________。 8、因式分解:224124nmnm____________________________。 9、计算:8002.08004.08131.0_____________________。 10、Ayxyxyx)(22,则A=_____________________
易错点:错误的运用平方差公式和完全平方公式。 WORD格式整理版 学习指导参考 13.因式分解(难点) 因式分解的定义. 把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解. 掌握其定义应注意以下几点: (1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可; (2)因式分解必须是恒等变形; (3)因式分解必须分解到每个因式都不能分解为止. 弄清因式分解与整式乘法的内在的关系. 因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式. 二、熟练掌握因式分解的常用方法. 1、提公因式法 (1)掌握提公因式法的概念; (2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数; (3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项. (4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的. 例:(1)323812ababc (2)35247535xyxy
2、公式法 运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式: WORD格式整理版 学习指导参考 ①平方差公式: a2-b2= (a+b)(a-b) ②完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 例:(1)2220.25abc (2)29()6()1abba
(3)42222244axaxyxy (4)22()12()36xyxyzz 练习: 1、若16)3(22xmx是完全平方式,则m的值等于_____。
2、22)(nxmxx则m=____n=____ 3、232yx与yx612的公因式是_ 4、若nmyx=))()((4222yxyxyx,则m=_______,n=_________。
5、在多项式4224222294,4,,tsyxbanm中,可以用平方差公式分解因式的 有________________________ ,其结果是 _____________________。
6、若16)3(22xmx是完全平方式,则m=_______。
7、_____))(2(2(_____)2xxxx 8、已知,01200520042xxxx则.________2006x