2023年中考数学一轮复习满分突破专题04 整式的乘除-【题型方法解密】
2024年中考数学一轮复习提高讲义:整式的乘除

整式的乘除知识梳理1.同底数幂的运算(1) 乘法: aᵐ⋅aⁿ=aᵐ⁺ⁿ,(aᵐ)ⁿ=aᵐⁿ,(ab)ⁿ=aⁿbⁿ(其中m,n 都是正整数). 注意事项:①am⋅a′′=am+n区别加法aᵐ+aⁿ≠aᵐ⁺ⁿ(如2³+2²=12≠32=2⁵);②区分−aᵐ⋅aⁿ与((--a)" · a" ,-一个是积的符号,另一个是底数的符号;③推广(aᵐ)ⁿ=aᵐⁿ:[(aᵐ)ⁿ]ᵖ=aᵐⁿᵖ.(2)除法(将除法转化为乘法计算):circle1a m÷a n=a m⋅1a n =a m−n=a m⋅a−n,由此我们还可以得到1a n=a−n;②a⁰=1,因为aᵐ÷a′′=1=a′m−m=a⁰.2.单项式相乘单项式与单项式相乘的法则:把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.3.多项式相乘(1)多项式与单项式相乘:利用分配律,用单项式去乘以多项式的每一项,再把所得的积相加.m(a+b+c)=ma+mb+mc(2)多项式与多项式相乘:先用一个多项式中的每一项乘以另一个多项式中的每一项,再把所得的积相加.(a+b+c)(d+e)=ad+ae+bd+be+cd+ce多项式乘法结束后,一般按照各项的次数高低进行排列.4.重要公式(1)平方差公式:a²−b²=(a+b)(a−b)(2)完全平方公式:(a+b)²=(a+b)(a+b)=a²+2ab+b²(a−b)²=(a−b)(a−b)=a²−2ab+b²典型例题例 1计算:(1)(−2x²)⋅(−3x²y³z)(2)−6x2y⋅(a−b)3⋅13xy2⋅(b−a)2(3)(−4ab3)⋅(−18ab)−(12ab2)2分析本题主要考查单项式的乘法运算和混合运算,乘法运算可以根据单项式与单项式的乘法法则进行.特别是第(3)题注意运算顺序,先算乘方,再算乘法,最后算减法.解 (1)原式: =(−2)⋅(−3)⋅x²⋅x²y³z=6x⁴y³z(2) 原式=−6x2y⋅13xy2⋅(a−b)3⋅(b−a)2=−6x2y⋅13xy2⋅(a−b)3⋅(a−b)2=−6⋅13⋅x2y⋅xy2⋅[(a−b)3⋅(a−b)2]=−2⋅x3y3⋅(a−b)5(3) 原式=(−4ab3)⋅(−18ab)−14a2b4=12a2b4−14a2b4=14a2b4例 2计算:(1)(x+1)(x²−1)(2)(x−y)(x²+x+y)分析本题考查的是多项式的乘法运算,可以根据多项式与多项式的乘法法则进行. 解 (1)原式=x³−x+x²−1=x³+x²−x−1(2) 原式=x³+x²+xy−x²y−xy−y²=x³−x²y+x²−y=:例 3计算:(1)(−13x+34y3)(−34y3−13x)(2)(2a²+b)(−2a²+b)分析本题主要考查平方差公式的运用.解(1) 原式=−(34y3−13x)(34y3+13x)=−(34y3)2+(13x)2=−916y6+19x3(2) 原式: =(b+2a²)(b−2a²)=b²−4a⁴双基训练1.下面是某同学在一次作业中的计算摘录:⑬a+2b=5ab;②4m³n−5mn³=−m³n;③4x³⋅(−2x²)=−6x³;④4a³b÷(−2a²b)=−2a;⑤(a³)²=a⁵;⑥(−a)³÷(−a)== -a²其中正确的个数有( ).A. 1个B.2个C.3 个D. 4个2.计算(x²−3x+n)(x²+mx+8)的结果中不含x²和 x³的项,则 m,n 的值分别为( ).A. m=3,n=1B. m=0,n=0C. m=-3,n=-9D. m=-3,n=83.下列分解因式不正确的是( ).A.x³−x=x(x²−1)B.m²+m−6=(m+3)(m−2)C.(a+4)(a−4)=a²−16D.x²+y²=(x+y)(x−y)4.我们约定a⊗b=10“×10”,如: 2⊗3=10²×10³=10⁵,,那么 4⊗8 为 ( ).A.32B. 10³²C.10¹²D. 12¹⁰5.下列各式是完全平方式的是( ).A.x2−x+14B.1+4x²C.a²+ab+b²D.x²+2x−16.如图18-1所示,矩形花园ABCD 中,AB=a,AD=b,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RST K.若 LM=RS=c,则花园中可绿化部分的面积为( ).A.bc−ab+ac+b²B.a²+ab+bc−acC.ab−bc−ac+c²D.b²−bc+a²−ab7.如图18-2(a)所示,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分裁剪后拼成一个矩形(如图18-2(b)所示),上述操作所能验证的等式是( ).A.a²−b²=(a +b )(a −b )B.(a −b )²=a²−2ab +b²C.(a +b )²=a²+2ab +b²D.a²+ab =a (a +b )8.下列多项式中能用平方差公式分解因式的是( )A.a²+(−b )²B.5m²−20mnC.−x²−y²D.−x²+99.若 9x²+mxy +16y²是一个完全平方式,那么 m 的值是 .10.(23)2007×(1.5)2008÷(−1)2009=¯.11.分解因式: a²−1+b²−2ab =.12.如果((2a+2b+1)(2a+2b-1)=63,那么a+b 的值为 .13.把20厘米长的一根铁丝分成两段,将每一段围成一个正方形,如果这两个正方形的面积之差是5平方厘米,则这两段铁丝分别长 .14. 多项式 9x²+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可能是 .15. 若 3x =12,3y =23,则 3ˣ⁻²ʸ等于 .16. 比较3⁵⁵⁵,4⁴⁴⁴,5³³³的大小: > > .17.计算.(1)(23a 2b)3÷(13ab 2)2×34a 3b 2(2)(x 4+3y)2−(x 4−3y)2(3)(2a-3b+1)²(4)(x²−2x −1)(x²+2x −1)18.化简求值: [(x +12y)2+(x −12y)2](2x 2−12y 2),其中 x =−3,y =4.19.已知实数x 满足x+1x =3,求x2+1x2的值.20.已知.A=2x+y,B=2x-y,计算A²−B².能力提升21.若x+y=2m+1, xy=1,且21x²−48xy+21y²=2010,则m= .22. 设(1+x)²(1−x)=a+bx+cx²+dx³,则。
2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)

2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)知识回顾1. 单项式乘单项式:系数相乘得新的系数,再把同底数幂相乘。
对应只在其中一个因式存在的字母,连同它的指数一起作为积的一个因式。
2. 单项式乘多项式:利用单项式去乘多项式的每一项,得到单项式乘单项式,再按照单项式乘单项式进行计算,把得到的结果相加。
()ac ab c b a +=+注意:多项式的每一项都包含前面的符号。
3. 多项式乘多项式:利用前一个多项式的每一项乘后一个多项式的每一项,得到单项式乘单项式,再按照单项式还曾单项式进行计算,把得到的结果相加。
()()bd bc ad ac d c b a +++=++ 4. 单项式除以单项式:系数相除得到新的系数,再把同底数幂相除。
对于只在被除式里面存在的字母,连同它的指数一起作为商的一个因式。
5. 多项式除以单项式:利用多项式的每一项除以单项式,得到单项式除以单项式,再按照单项式除以单项式进行计算,再把多得到的结果相加。
6. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
1、(2022•黔西南州)计算(﹣3x )2•2x 正确的是( ) A .6x 3B .12x 3C .18x 3D .﹣12x 3【分析】先算积的乘方,再算单项式乘单项式即可. 【解答】解:(﹣3x )2•2x =9x 2•2x =18x 3.故选:C.2、(2022•常德)计算x4•4x3的结果是()A.x B.4x C.4x7D.x11【分析】根据同底数幂的乘法运算法则进行计算便可.【解答】解:原式=4•x4+3=4x7,故选:C.3、(2022•陕西)计算:2x•(﹣3x2y3)=()A.﹣6x3y3B.6x3y3C.﹣6x2y3D.18x3y3【分析】直接利用单项式乘单项式计算,进而得出答案.【解答】解:2x•(﹣3x2y3)=﹣6x3y3.故选:A.4、(2022•温州)化简(﹣a)3•(﹣b)的结果是()A.﹣3ab B.3ab C.﹣a3b D.a3b【分析】先化简乘方,再根据单项式乘单项式的法则计算即可.【解答】解:原式=﹣a3•(﹣b)=a3b.故选:D.5、(2022•聊城)下列运算正确的是()A.(﹣3xy)2=3x2y2B.3x2+4x2=7x4C.t(3t2﹣t+1)=3t3﹣t2+1D.(﹣a3)4÷(﹣a4)3=﹣1【分析】A、根据积的乘方与幂的乘方运算判断即可;B、根据合并同类项法则计算判断即可;C、根据单项式乘多项式的运算法则计算判断即可;D、根据积的乘方与幂的乘方、同底数幂的除法法则计算即可.【解答】解:A、原式=9x2y2,不合题意;B、原式=7x2,不合题意;C、原式=3t3﹣t2+t,不合题意;D、原式=﹣1,符合题意;故选:D.6、(2022•台湾)计算多项式6x2+4x除以2x2后,得到的余式为何?()A.2B.4C.2x D.4x【分析】利用多项式除以单项式的法则进行计算,即可得出答案.【解答】解:(6x2+4x)÷2x2=3...4x,∴余式为4x,故选:D.7、(2022•上海)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.8、(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5【分析】先根据平方差公式进行计算,求出x2﹣2x=5,再变形,最后代入求出答案即可.【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.9、(2022•广元)下列运算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.3y•2x2y=6x2y2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据合并同类项判断A选项;根据幂的乘方与积的乘方判断B选项;根据单项式乘单项式判断C选项;根据平方差公式判断D选项.【解答】解:A选项,x2与x不是同类项,不能合并,故该选项不符合题意;B选项,原式=9x2,故该选项不符合题意;C选项,原式=6x2y2,故该选项符合题意;D选项,原式=x2﹣(2y)2=x2﹣4y2,故该选项不符合题意;故选:C.10、(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.【分析】观察已知和所求可知,4m2﹣n2=(2m+n)(2m﹣n),将代数式的值代入即可得出结论.【解答】解:∵2m+n=3,2m﹣n=1,∴4m2﹣n2=(2m+n)(2m﹣n)=3×1=3.故答案为:3.11、(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.【分析】根据平方差公式将a2﹣b2转化为(a+b)(a﹣b),再代入计算即可.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.12、(2022•资阳)下列计算正确的是()A.2a+3b=5ab B.(a+b)2=a2+b2C.a2×a=a3D.(a2)3=a5【分析】根据合并同类项法则,完全平方公式,同底数幂的乘法法则以及幂的乘方运算法则即可求出答案.【解答】解:A.2a与3b不是同类项,所以不能合并,故A不符合题意B.(a+b)2=a2+2ab+b2,故B不符合题意C.a2×a=a3,故C符合题意D.(a2)3=a6,故D不符合题意.故选:C.13、(2022•枣庄)下列运算正确的是()A.3a2﹣a2=3B.a3÷a2=aC.(﹣3ab2)2=﹣6a2b4D.(a+b)2=a2+ab+b2【分析】根据合并同类项法则,积的乘方、幂的乘方法则及单项式除法法则、完全平方公式逐项判断.【解答】解:A、3a2﹣a2=2a2,故A错误,不符合题意;B、a3÷a2=a,故B正确,符合题意;C、(﹣3a3b)2=9a6b2,故C错误,不符合题意;D、(a+b)2=a2+2ab+b2,故D不正确,不符合题意;故选:B.14、(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【分析】利用完全平方公式计算即可.【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.15、(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.【分析】根据完全平方公式得出m和n的值即可得出结论.【解答】解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.16、(2022•滨州)若m+n=10,m n=5,则m2+n2的值为.【分析】根据完全平方公式计算即可.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.17、(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.【分析】已知两式左边利用完全平方公式展开,相减即可求出xy的值.【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:418、(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【分析】左边大正方形的边长为(a+b),面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,根据面积相等即可得出答案.【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.19、(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【分析】去括号后合并同类项即可得出结论.【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.本课结束。
2024年中考数学一轮复习考点精讲及专题精练—整式及因式分解

2024年中考数学一轮复习考点精讲及专题精练—整式及因式分解→➊考点精析←一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等.二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.注:○1单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如2143a b -,这种表示就是错误的,应写成2133a b -;○2一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如325a b c -是6次单项式。
2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项.3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项.5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.6.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -.7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc .(3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb .8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-.(2)完全平方公式:222()2a b a ab b ±=±+.9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加.三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算.2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++.(2)公式法:运用平方差公式:²²()()a b a b a b -=+-.运用完全平方公式:22²2()a ab b a b ±+=±.3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式;(2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式;为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止.以上步骤可以概括为“一提二套三检查”.→➋真题精讲←考向一代数式及相关问题1.用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.2.用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.1.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .0【答案】A【分析】把2340a a +-=变形后整体代入求值即可.【详解】∵2340a a +-=,∴234+=a a ∴()222632332435a a a a +-=+-=⨯-=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.2.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是()A .6B .5-C .3-D .4【答案】D【分析】2230a a --=变形为223a a -=,将2(23)(23)(21)a a a +-+-变形为()2428a a --,然后整体代入求值即可.【详解】解:由2230a a --=得:223a a -=,∴2(23)(23)(21)a a a +-+-2249441a a a =-+-+2848a a =--()2428a a =--438=⨯-4=,故选:D .【点睛】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +-+-变形为()2428a a --.3.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.4.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:22x y xy +()xy x y =+,∵3x y +=,2y =,∴1x =,∴原式123=⨯⨯6=,故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键.5.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.6.(2023·山东·统考中考真题)已知实数m 满足210m m --=,则32239m m m --+=_________.【答案】8【分析】由题意易得21m m -=,然后整体代入求值即可.【详解】解:∵210m m --=,∴21m m -=,∴32239m m m --+()2229m m m m m --=-+229m m m -=-+29m m =-+()29m m =--+19=-+8=;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.7.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:22x y xy +()xy x y =+,∵3x y +=,2y =,∴1x =,∴原式123=⨯⨯6=,故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键.8.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.9.(2020·湖南长沙·中考真题)某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学,请你确定,最终B 同学手中剩余的扑克牌的张数为___________________.【答案】9【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.【解析】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +;第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -);∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=.故答案为:9.【点睛】本题考查了列代数式以及整式的加减,解决此题的关键根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.10.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.考向二整式及其相关概念单项式与多项式统称整式.观察判断法:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同.多项式的次数是指次数最高的项的次数.同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.考虑特殊性:单独一个数或字母也是单项式;单项式的次数是指单项式中所有字母指数的和,单独的一个常数的次数是0.11.(2020·江苏苏州·中考真题)若单项式122m x y -与单项式2113n x y +是同类项,则m n +=___________.【答案】4【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n 的值,再代入求解即可.【解析】解:∵单项式122m x y -与单项式2113n x y +是同类项,∴m-1=2,n+1=2,解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【点睛】本题考查了同类项的概念,正确理解同类项的定义是解题的关键.12.(2020·广东中考真题)若3m x y 与25n x y -是同类项,则m n +=___________.【答案】3【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可.【解析】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.13.(2022秋·上海·七年级专题练习)计算:2232a a -=________.【答案】2a 【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a -=-=故答案为:2a .【点睛】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.考向三规律探索题解决规律探索型问题的策略是:通过对所给的一组(或一串)式子及结论,进行全面细致地观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以应用.14.(2020·云南中考真题)按一定规律排列的单项式:a ,2a -,4a ,8a -,16a ,32a -,…,第n 个单项式是()A .()12n a --B .()2n a -C .12n a -D .2n a【答案】A【分析】先分析前面所给出的单项式,从三方面(符号、系数的绝对值、指数)总结规律,发现规律进行概括即可得到答案.【解析】解: a ,2a -,4a ,8a -,16a ,32a -,…,可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------∙∙∙∴第n 项为:()12.n a --故选A .【点睛】本题考查了单项式的知识,分别找出单项式的系数和次数的规律是解决此类问题的关键.15.(2020·云南昆明·中考真题)观察下列一组数:﹣23,69,﹣1227,2081,﹣30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是_____.【答案】(1)n -(1)3⨯+nn n 【分析】观察已知一组数,发现规律进而可得这一组数的第n 个数.【解析】解:观察下列一组数:﹣23=﹣1123⨯,69=2233⨯,﹣1227=﹣3343⨯2081=4453⨯,﹣30243=﹣5563⨯,…,它们是按一定规律排列的,那么这一组数的第n 个数是:(﹣1)n (1)3⨯+n n n ,故答案为:(1)n -(1)3⨯+nn n .【点睛】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律.16.(2020·山东济宁·中考真题)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101【答案】D【分析】根据图形规律可得第n个图形共有1+2+3+4+...+n=()12n n+个正方体,最下面有n个带“心”字正方体,从而得出第100个图形的情况,再利用概率公式计算即可.【解析】解:由图可知:第1个图形共有1个正方体,最下面有1个带“心”字正方体;第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体;第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体;第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;...第n个图形共有1+2+3+4+...+n=()12n n+个正方体,最下面有n个带“心”字正方体;则:第100个图形共有1+2+3+4+...+100=()11001002+=5050个正方体,最下面有100个带“心”字正方体;∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是10025050101=,故选:D .【点睛】本题考查了图形变化规律,概率的求法,解题的关键是总结规律,得到第100个图形中总正方体的个数以及带“心”字正方体个数.17.(山西中考真题)一组按规律排列的式子:4682,,,,357a a a a ⋅⋅⋅则第n 个式子是.【答案】2n2n 1a -(n 为正整数)【解析】寻找规律:已知式子可写成:21222324,,,,211221231241a a a a ⨯⨯⨯⨯⋅⋅⋅⨯-⨯-⨯-⨯-,分母为奇数,可写成2n-1,分子中字母a 的指数为偶数2n .∴第n 个式子是2n2n 1a -(n 为正整数).考向四幂的运算幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;在运算的过程中,一定要注意指数、系数和符号的处理.18.(2023·江西·统考中考真题)计算()322m 的结果为()A .68mB .66mC .62m D .52m 【答案】A【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选:A .【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.19.(2023·山东滨州·统考中考真题)下列计算,结果正确的是()A .235a a a ⋅=B .()325a a =C .33()ab ab =D .23a a a÷=【答案】A【分析】根据同底数幂的乘法可判断A ,根据幂的乘方可判断B ,根据积的乘方可判断C ,根据整数指数幂的运算可判断D ,从而可得答案.【详解】解:235a a a ⋅=,运算正确,故A 符合题意;()326a a =,原运算错误,故B 不符合题意;333()ab a b =,原运算错误,故C 不符合题意;231a a a÷=,原运算错误,故D 不符合题意;故选:A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键.20.(2023·湖南·统考中考真题)计算:()23a =()A .5aB .23aC .26a D .29a 【答案】D【分析】根据积的乘方法则计算即可.【详解】解:()2239a a =.故选:D.【点睛】此题考查了积的乘方,积的乘方等于各因数乘方的积,熟练掌握积的乘方法则是解题的关键.21.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是()A .23a a +B .23a a ⋅C .23()a D .102a a ÷【答案】B【分析】根据同底数幂的运算法则即可求解.【详解】解:A 选项,不是同类项,不能进行加减乘除,不符合题意;B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意;C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意;D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a -=,不符合题意;故选:B .【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键.22.(2023·浙江宁波·统考中考真题)下列计算正确的是()A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=【答案】D【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A 、23x x x +≠,错误,故不符合要求;B 、6332x x x x ÷=≠,错误,故不符合要求;C 、()43127x x x =≠,错误,故不符合要求;D 、347x x x ⋅=,正确,故符合要求;故选:D .【点睛】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算.23.(2023·云南·统考中考真题)下列计算正确的是()A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -=【答案】D【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误;2222(3)39a a a ==,故B 错误;63633a a a a -÷==,故C 错误;()22223312a a a a -=-=,故D 正确.故选:D .【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.24.(2023·山东烟台·统考中考真题)下列计算正确的是()A .2242a a a +=B .()32626a a =C .235a a a ⋅=D .824a a a ÷=【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.2222a a a +=,故该选项不正确,不符合题意;B.()32628a a =,故该选项不正确,不符合题意;C.235a a a ⋅=,故该选项正确,符合题意;D.826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.25.(2023·湖南岳阳·统考中考真题)下列运算结果正确的是()A .23a a a ⋅=B .623a a a ÷=C .33a a -=D .222()a b a b -=-【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、23a a a ⋅=,故该选项正确,符合题意;B 、624a a a ÷=,故该选项不正确,不符合题意;C 、32a a a -=,故该选项不正确,不符合题意;D 、222()2a b a ab b -=-+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.26.(2023·江苏扬州·统考中考真题)若23( )22a b a b ⋅=,则括号内应填的单项式是()A .a B .2aC .abD .2ab【答案】A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解答.【详解】解:∵23( )22a b a b ⋅=,∴()3222a b a b a =÷=.故选:A .【点睛】本题主要考查了整式除法的应用,弄清被除式、除式和商之间的关系是解题的关键.27.(2023·上海·统考中考真题)下列运算正确的是()A .523a a a ÷=B .336a a a +=C .()235a a =D a=【答案】A【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意;B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.28.(2023·湖南·统考中考真题)计算2312x ⎛⎫⎪⎝⎭的结果正确的是()A .6xB .614xC .514x D .9x 【答案】B【分析】运用积的乘方法则、幂的乘方法则即可得出结果.【详解】解:()236322112124x x x ⎛⎫==⎪⎝⎭⎛⎫ ⎪⎝⎭,故选:B .【点睛】本题考查了积的乘方法则、幂的乘方法则,熟练运用积的乘方法则、幂的乘方法则是解题的关键.29.(2023·山东临沂·统考中考真题)下列运算正确的是()A .321a a -=B .222()a b a b -=-C .()257a a =D .325326a a a ⋅=.【答案】D【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、32a a a -=,故选项错误,不符合题意;B 、222()2a b a ab b -=-+,故选项错误,不符合题意;C 、()2510a a =,故选项错误,不符合题意;D 、325326a a a ⋅=,故选项正确,符合题意;故选:D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.30.(2023·山东枣庄·统考中考真题)下列运算结果正确的是()A .4482x x x +=B .()32626x x -=-C .633x x x ÷=D .236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意;B 、()32628x x -=-,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ×=,选项计算错误,不符合题意;故选:C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.31.(2020春·云南玉溪·八年级统考期末)下列计算正确的是()A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 6【答案】B【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A 、3a 和4b 不是同类项,不能合并,所以此选项不正确;B 、x 12÷x 6=x 6,所以此选项正确;C 、(a +2)2=a 2+4a +4,所以此选项不正确;D 、(ab 3)3=a 3b 9,所以此选项不正确;故选:B .【点睛】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键.32.(2023·山西·统考中考真题)下列计算正确的是()A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a =【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .235a a a ⋅=,故该选项计算错误,不符合题意,B .()2362a b a b -=,故该选项计算错误,不符合题意,C .633a a a ÷=,故该选项计算错误,不符合题意,D .()326a a =,故该选项计算正确,符合题意,故选:D .【点睛】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.33.(2023·湖北宜昌·统考中考真题)下列运算正确的是().A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A.4322x x x ÷=,计算正确,故选项A 符合题意;B.()4312x x =,原选项计算错误,故选项B 不符合题意;C.4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意;D.347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握.34.(2023·湖南郴州·统考中考真题)下列运算正确的是()A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=-【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A 、437a a a ⋅=,选项计算正确,符合题意;B 、()326a a =,选项计算错误,不符合题意;C 、22232a a a -=选项计算错误,不符合题意;D 、()2222a b a ab b -=-+,选项计算错误,不符合题意;故选:A .【点睛】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键.35.(2023·广西·统考中考真题)下列计算正确的是()A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a =【答案】B【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A.347a a a +≠,故该选项不符合题意;B.347a a a ⋅=,故该选项符合题意;C.437a a a a ÷=≠,故该选项不符合题意;D.()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.36.(2023·四川·统考中考真题)下列计算正确的是()A .22ab a b -=B .236a a a ⋅=C .233ab a a ÷=D .222()()4a a a +-=-【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A.22ab a b -≠,故该选项不正确,不符合题意;B.235a a a ⋅=,故该选项不正确,不符合题意;C.233a b a ab ÷=,故该选项不正确,不符合题意;D.222()()4a a a +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键.考向五整式的运算整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项.37.(2023·四川乐山·统考中考真题)计算:2a a -=()A .aB .a-C .3aD .1【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a -=,故A 正确.故选:A .【点睛】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.38.(2023·四川眉山·统考中考真题)下列运算中,正确的是()A .3232a a a -=B .()222a b a b +=+C .322a b a a÷=D .()2242a b a b =【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:33a ,2a 不是同类项,不能合并,故A 不符合题意;()2222a b a ab b +=++,故B 不符合题意;3222a b a ab ÷=,故C 不符合题意;()2242a b a b =,故D 符合题意;故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键.39.(2023·湖南张家界·统考中考真题)下列运算正确的是()A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=【答案】C【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A 、22(2)44x x x +=++,选项计算错误,不符合题意;B 、246a a a ⋅=,选项计算错误,不符合题意;C 、()23624x x =,计算正确,符合题意;D 、222235x x x +=,选项计算错误,不符合题意;故选:C .【点睛】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键.40.(2023·黑龙江·统考中考真题)下列运算正确的是()A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a =【答案】C【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.()2224a a -=,原式计算错误;B.()2222a b a ab b -=-+,原式计算错误;C.()()2224m m m -+--=-,计算正确;D.()2510a a =,原式计算错误.故选:C .【点睛】本题考查了积的乘方,完全平方公式,平方差公式和幂的乘方,熟练掌握运算法则,牢记乘法公式是解题的关键.41.(2023·江苏苏州·统考中考真题)下列运算正确的是()A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a=【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a +⋅==,故B 选项正确;32a a a ÷=,故C 选项错误;()236a a =,故D 选项错误;故选:B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.42.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是()A .6aB .6abC .26a D .226a b 【答案】C【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab⋅÷3122a b ab=÷26a =,故选:C .【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键.43.(2023·甘肃武威·统考中考真题)计算:()22a a a +-=()A .2B .2aC .22a a+D .22a a-【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a a a a a +-=+-=,故选:B.【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键.44.(2019·湖南常德·中考真题)观察下列等式:01234571,77,749,7343,72401,716807,,====== 根据其中的规律可得01220197777++++ 的结果的个位数字是()A .0B .1C .7D .8【答案】A【分析】首先得出尾数变化规律,进而得出01220197777++++ 的结果的个位数字.【解析】∵01234571,77,749,7343,72401,716807,,====== ∴个位数4个数一循环,∴()201914505+÷=,∴179320+++=,∴01220197777++++ 的结果的个位数字是:0.故选A .【点睛】此题主要考查了尾数特征,正确得出尾数变化规律是解题关键.45.(2023·湖南·统考中考真题)先化简,再求值:()()233(3)a b a b a b -++-,其中13,3a b =-=.【答案】226a ab -,24【分析】先展开,合并同类项,后代入计算即可.。
中考数学复习指导:整式乘除考点精析.doc

整式乘除考点精析《整式的乘除与因式分解》一章的内容是中考命题的热点,现结合中考试题进行归类赏析,希望对同学们有所帮助.考点一、幕的运算性质例1在下列运算中,计算正确的是( )A . a3 = a6B . (a2)3 = a5C .D . (ab2)2 = a2b4解析:由同底数慕相乘,底数不变,指数相加得a3・a2= a3+2=a5 ,由幕的乘方公式(am ) n=amn(m、n都是正整数)可知,02)3=a6 ,由同底数幕相除,底数不变,指数相减得a^a2= a8-2= a6 ,用积的乘方公式(ab ) ( n为正整数)求解,得(t?^)2=oV ,所以答案为D.说明:皋的运算是整式乘除的基础,包括同底数皋的乘法、幕的乘方、积的乘方和同底数幕的除法等运算,熟练掌握运算法则是解决此类问题的关键.考点二、整式的乘除例 2 ( 1 )计算:(_2").(上疽一1)= ____________ .4(2 )计算2/十/的结果是( )A . xB . 2xC . 2x5D . 2x6解析:问题(1 )是单项式乘以多项式,注意用单项式去乘多项式的每一项,再把所得的积相加.原式=(-2a)x(l a3)+( - 2a)x( - 1 )=--a4 + 2a .问题(2 )是单项式相除,注4 2意把系数与同底数幕分别相除作为商的因式.原式=(2+1 ) X ( X3+X2 ) =2X3-2=2X.故答案为B .说明:单项式的乘除是整式乘除的关键,多项式乘(除以)单项式、多项式乘多项式都要转化为单项式的乘除来运算.考点三、乘法公式例 3 ( 1 )当x = 3> _y = 1时,代数式(x+ v)(x- v)+ v2的值是.(2 ) 已知:a+b=3 , ab=2 ,求a2+b2的值.解析:问题(1 )主要是对乘法的平方差公式的考查.原式=X2 - y2+y2=x2 = 32=9.问题(2)考查了完全平方公式的变形应用,・. (a +》)2 =。
2023年中考数学《整式》专题考点回顾及练习题(含答案解析)

2023年中考数学《整式》专题考点回顾及练习题(含答案解析) 考点一:整式之代数式1. 代数式的定义:由数与字母通过“+,-,×,÷”以及乘方、开方等运算符号连接的式子叫做代数式。
2. 列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式。
3. 代数式求值:①单个字母带入求代数式的值。
②整体代入法求代数式的值。
(找已知式子与所求式子的倍数关系)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100﹣x )元C .8(100﹣x )元D .(100﹣8x )元【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x 本,则购买乙种读本的费用为:8(100﹣x )元.故选:C .2.(2022•杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .y x 1910=320B .xy 1910=320 C .|10x ﹣19y |=320 D .|19x ﹣10y |=320【分析】直接利用10张A 票的总价与19张B 票的总价相差320元,得出等式求出答案.【解答】解:由题意可得:|10x ﹣19y |=320.故选:C .3.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)【分析】根据题意直接列出代数式即可.【解答】解:篮球队要买10个篮球,每个篮球m 元,一共需要10m 元,故答案为:10m .4.(2022•梧州)若x =1,则3x ﹣2= .【分析】把x =1代入3x ﹣2中,计算即可得出答案.【解答】解:把x =1代入3x ﹣2中,原式=3×1﹣2=1.故答案为:1.5.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a ﹣b =2,求代数式6a ﹣2b ﹣1的值.”可以这样解:6a ﹣2b ﹣1=2(3a ﹣b )﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x =2是关于x 的一元一次方程ax +b =3的解,则代数式4a 2+4ab +b 2+4a +2b ﹣1的值是 .【分析】根据x =2是关于x 的一元一次方程ax +b =3的解,可得:b =3﹣2a ,直接代入所求式即可解答.【解答】解:原式=(2a +b )2+2(2a +b )﹣1=32+2×3﹣1=14,故答案为:14.6.(2022•邵阳)已知x 2﹣3x +1=0,则3x 2﹣9x +5= .【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值.【解答】解:∵x 2﹣3x +1=0,∴x 2﹣3x =﹣1,则原式=3(x 2﹣3x )+5=﹣3+5 =2.故答案为:2.7.(2022•郴州)若32=−b b a ,则b a = . 【分析】对已知式子分析可知,原式可根据比例的基本性质可直接得出比例式的值.【解答】解:根据=得3a =5b ,则=.故答案为:. 考点二:整式之单项式1. 单项式的定义:由数与字母的乘积组成的式子叫做单项式。
2023年北京市中考数学一轮复习专题《整式》含答案解析

2023年北京中考数学一轮复习专题训练3:整式一、单选题1.下列运算正确的是( )A.a2+a3=a5B.a2⋅a3=a5C.(−a2)3=a6D.−2a3a÷aa=−2a2a2.下列计算正确的是()A.a2+2a2=3a4B.a6÷a3=a2C.(a2)3=a5D.(aa)2=a2a2 3.若a a=2,a a=3,则a a+a的值为()A.6B.5C.3D.2 4.(2021·海淀模拟)下列运算正确的是()A.2a+3a=5a B.a2+a3=a5C.2a +3a=52aD.√2+√3=√55.(2021·丰台模拟)下列计算正确的是()A.a2+a3=a5B.a2⋅a3=a6C.(2a)3=6a3D.(a2)3=a6 6.(2021·东城模拟)下列式子中,运算正确的是()A.(1+a)2=1+a2B.a2⋅a4=a8C.−(a−a)=−a−a D.a2+2a2=3a27.(2021·顺义模拟)将一个长为2a,宽为2a的矩形纸片(a>a),用剪刀沿图1中的虚线剪开,分成四块形状和大小都一样的小矩形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为()A.a2+a2B.a2−a2C.(a+a)2D.(a−a)2 8.(2021·北京模拟)下列运算正确的是()A.(a+b)(a﹣b)=a2﹣b2B.2(2a﹣b)=4a﹣bC.2a+3b=5ab D.(a+b)2=a2+b29.(2021·海丰模拟)下列运算正确的是()A.(−a3)2=(a3)2B.(2a)3=6a3C.a6÷a3=a2D.a⋅a4=a410.(2020·大兴模拟)如果x2﹣4=0,那么代数式x(x+1)2﹣x(x2+x)﹣x﹣7的值为()A.﹣3B.3C.﹣11D.11二、填空题11.a>0,a>0,若a2+4a2=13,aa=3,请借助下图直观分析,通过计算求得a+2a的值为.12.(2022·东城模拟)已知a2−a=3,则代数式(a+1)(a−1)+a(a−2)=.13.(2021·海丰模拟)已知:a+a=12,aa=24,则a2+a2=.14.(2020·北京模拟)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是.15.(2020·海淀模拟)单项式3a2a的系数是.16.(2020·房山模拟)如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据图形,写出一个含有a,a的正确的等式.17.(2020·北京模拟)若a+2a=8,3a+4a=18,则a+a的值为.18.(2022七下·顺义期末)如图,每个小长方形的长为a,宽为b,则四边形ABCD的面积为.19.(2022七下·平谷期末)计算−12a3a2a÷3a2a的结果是.20.(2022七下·平谷期末)利用图1中边长分别为a,b的正方形,以及长为a,宽为b的长方形卡片若干张拼成图2(卡片间不重叠、无缝隙),那么图2这个几何图形表示的可以等式是.三、计算题21.(2022七上·海淀期中)化简下列各式:(1)3aa−6aa+2aa;(2)2a+(4a2−1)−(2a−3).22.(2022七下·延庆期末)先化简,再求值:(a+a)2−a(2a−a),其中a=−3,a=1.23.(2022七下·延庆期末)计算(1)15a5(a4a)2÷(−3a4a5a2).(2)(a+1)(a−1)+a(2−a).24.(2022七下·顺义期末)已知a=1,求(2a2−12+3a)−4(a−a2+12)的值.225.(2022七下·石景山期末)已知a=1,求(3a−1)2−(3a+2)(3a−2)的值.6答案解析部分1.【答案】B【解析】【解答】解:A、a2与a3不是同类项不能合并,故A不符合题意;B、a2⋅a3=a5,底数不变指数相加,故B符合题意;C、(-a2)3=a6,底数不变指数相乘,故C不符合题意;D、−2a3a÷aa=−2a2,原选项计算不符合题意.故答案为:B.【分析】单项式进行加减运算时,只有同类项才能合并;同底数幂的乘除运算法则,底数不变,指数相加减;积的乘方,要对每个因式先乘方,再把所得的幂相乘;单项式的除法法则,系数的商作商的因数,同底数幂作除法运算,结果作为商的因式,只在被除式里出现的字母连同它的指数一起写在商里。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-整式的乘除与因式分解(原卷版)

专题04整式的乘除与因式分解【专题目录】技巧1:活用乘法公式进行计算的五种技巧技巧2:运用幂的运算法则巧计算的常见类型技巧3:因式分解的六种常见方法【题型】一、幂的运算法则【题型】二、运用幂的运算法则比较大小【题型】三、单项式乘单项式【题型】四、单项式乘多项式【题型】五、多项式乘多项式【题型】六、利用平方差公式求解【题型】七、利用完全平方公式求解【题型】八、整式的运算【题型】九、因式分解【考纲要求】1、同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.2、了解整式的概念和有关法则,会进行简单的整式加、减、乘、除运算.3、会推导平方差公式和完全平方公式,会进行简单的计算;会用提公因式法、公式法进行因式分解.【考点总结】一、整式的乘除运算整式运算幂的运算同底数幂乘法a m·a n=a m+n(a≠0)a m+n=a m·a n同底数幂除法a ma n=am-n(m,n是正整数)a m-n=a ma n幂的乘方(a m)n=a mn(a≠0)a mn=(a m)n积的乘方(ab)n=a n b n a n b n=(ab)n乘法公式平方差公式(a+b)(a-b)=a2-b2a2-b2=(a+b)(a-b)完全平方公式(a±b)2=a2±2ab+b2a2±2ab+b2=(a±b)2整式加减①整式的加减其实就是合并同类项;②整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要变号.整式①单项式与单项式相乘:把系数、同底数幂分别相乘,作为积的因式,只在一个单项【考点总结】二、因式分解【注意】1、因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。
2020年中考数学一轮复习基础考点及题型专题 整式的乘除与因式分解(解析版)

专题整式的乘除和因式分解考点总结【思维导图】【知识要点】知识点一整式乘法幂的运算性质(基础):a m·a n=a m+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
3)乘数a可以看做有理数、单项式或多项式(整体思想)。
4)如果底数互为相反数时可先变成同底后再运算。
1.(2018·河北中考真题)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 4【答案】A【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,故选A.2.(2012·江苏中考真题)若3×9m×27m=,则的值是()A.3 B.4 C.5 D.6【答案】B【详解】∵3×9m×27m=3×32m×33m=31+2m+3m∴1+2m+3m=21∴m=4故选B3.(2019·山东中考模拟)化简(﹣a2)•a5所得的结果是( )A.a7B.﹣a7C.a10D.﹣a10【答案】B【详解】(-a2)·a5=-a7.故选B.(a m)n=a mn (m、n为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
1.(2019·浙江省温岭市第四中学中考模拟)下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a10【答案】B 【详解】A 、a 2•a 3=a 5,错误;B 、(a 2)3=a 6,正确;C 、不是同类项,不能合并,错误;D 、a 5+a 5=2a 5,错误; 故选B .2.(2019·辽宁中考模拟)下列运算正确的是( ) A .a 2•a 2=2a 2 B .a 2+a 2=a 4 C .(a 3)2=a 6 D .a 8÷a 2=a 4【答案】C【详解】A 、a 2•a 2=a 4,错误;B 、a 2+a 2=2a 2,错误;C 、(a 3)2=a 6,正确;D 、a 8÷a 2=a 6,错误, 故选C .3.(2018·浙江中考模拟)计算(﹣a 3)2的结果是( ) A .a 5 B .﹣a 5 C .a 6 D .﹣a 6【答案】C根据幂的乘方和积的乘方的运算法则可得:(﹣a 3)2=a 6.故选C . (ab)n=a n b n(n 为正整数) 积的乘方等于各因式乘方的积. 1.(2018·湖南中考真题)下列运算正确的是( ) A .339·x x x = B .842x x x ÷=C .()236ab ab =D .()3328x x =【答案】D 【详解】A 、错误.应该是x 3•x 3=x 6;B 、错误.应该是x 8÷x 4=x 4;C 、错误.(ab 3)2=a 2b 6.D 、正确. 故选D .2.(2018·贵州中考真题)下列运算正确的是( )A .(﹣a 2)3=﹣a 5B .a 3•a 5=a 15C .(﹣a 2b 3)2=a 4b 6D .3a 2﹣2a 2=1 【答案】C 【详解】解:A. (﹣a 2)3=﹣a 6,故此选项错误; B. a 3•a 5=a 8 ,故此选项错误; C.(﹣a 2b 3)2=a 4b 6 ,正确; D. 3a 2﹣2a 2=a 2,故此选项错误; 故选:C . ● a m÷a n=am -n(a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数减.【同底数幂相除注意事项】1.因为0不能做除数,所以底数a ≠0.2.运用同底数幂法则关键看底数是否相同,而指数相减是指被除式的指数减去除式的指数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题04 整式的乘除【热考题型】【知识要点】 知识点一 幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
n m n m a a a +=·(其中m 、n 为正整数) 【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
例:a ·a 2=a1+2=a 33)乘数a 可能是有理数、单项式或多项式。
4)如果底数互为相反数时可先变成同底后再运算。
5)逆用公式:n m n m a a a ·=+(m,n 都是正整数) 【扩展】三个或三个以上同底数幂相乘时,也具有这一性质, 即p n m p n m a a a a ++=··(m ,n ,p 都是正整数) 考查题型一 同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ( ) A .aB .3aC .2a 2D .a 3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( ) A .810B .1210C .1610D .2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为( )A .8B .6C .5D .2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( ) A .0.11 B .1.1 C .11 D .11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnn m a a =)((其中m ,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
2)逆用公式:mn nm mna a a )()(== 【扩展】mnp p n m aa =))(( (m ,n ,p 均为正整数)考查题型二 幂的乘方典例2.(2022·山东泰安·中考真题)计算(a 3)2•a 3的结果是( ) A .a 8B .a 9C .a 10D .a 11变式2-1.(2022·四川成都·中考真题)计算:()23a -=______.变式2-2.(2021·四川泸州·中考真题)已知1020a =,10050b =,则1322a b ++的值是( )A .2B .52C .3D .92变式2-3.(2020·河北·中考真题)若k 为正整数,则(k +k +⋅⋅⋅+k ⏟ k 个k)k =( ) A .2k k B .21k k +C .2k kD .2k k +易错点总结:积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
nn n b a ab ·)(=(其中n 是正整数)。
【注意事项】逆用公式:nn n ab b a )(·= 【扩展】 nn nnc b a abc ·)(= (n 为正整数) 考查题型三 积的乘方典例3.(2022·湖北武汉·中考真题)计算()342a 的结果是( )A .122aB .128aC .76aD .78a变式3-1.(2022·福建·中考真题)化简()223a 的结果是( ) A .29aB .26aC .49aD .43a变式3-2.(2022·贵州黔西·中考真题)计算()232x x -⋅正确的是( ) A .36x B .312xC .318xD .312x -易错点总结:同底数幂的除法法则:同底数幂相除,底数不变,指数减。
n m n m a a a -=÷(a ≠0,m 、n 都是正整数,且m >n )【注意事项】1)0不能做除数的底数。
2)运用同底数幂除法法则关键:看底数是否相同,而指数相减是指被除式的指数减去除式的指数。
3)注意指数为1的情况,如x 8÷x=x 7,计算时候容易遗漏将除数x 的指数忽略。
4)逆用公式:n m n m a a a ÷=-(a ≠0,m 、n 都是正整数,并且m >n )【扩展】当三个或三个以上同底数幂相除时,也具有这一性质.即:p n m p n m a a a a --=÷÷(a ≠0,m 、n 、p 都是正整数,并且m >n >p ),但计算时要按照顺序计算。
零指数幂:任何不等于零的数的0指数幂都等于l 。
a 0=1(a ≠0)负整数指数幂:任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数, 即nn a a 1-=(a ≠0,n 是正整数). 【注意】:1)a 可以是不等于0的数,也可以是不等于0的代数式。
例如:)0(21)2(1≠=-xy xyxy 。
2)引进零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,所学的幂的运算性质仍然成立。
①n m n ma a a +=·(其中m ,n 为整数,a ≠0); ②mnn m aa =)((其中m ,n 为整数,a ≠0);③nnnb a ab ·)(=(其中n 为整数,a ≠0,b ≠0)。
考查题型四 同底数幂的除法典例4.(2022·河北·中考真题)计算3a a ÷得?a ,则“?”是( ) A .0B .1C .2D .3变式4-1.(2022·湖南益阳·中考真题)下列各式中,运算结果等于a 2的是( ) A .a 3﹣aB .a +aC .a •aD .a 6÷a 3变式4-2.(2022·江苏扬州·中考真题)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.变式4-3.(2022·江苏常州·中考真题)计算:42÷=m m _______. 易错点总结:考查题型五 幂的混合运算典例5.(2022·安徽·中考真题)下列各式中,计算结果等于9a 的是( ) A .36+a aB .36a a ⋅C .10a a -D .182÷a a变式5-1.(2022·浙江宁波·中考真题)下列计算正确的是( ) A .34a a a +=B .623a a a ÷=C .()325a a =D .34a a a ⋅=变式5-2. ) A .339a a a ⋅= B .()3328a a -=-C .()31024a a a ÷-=D .()()2224a a a -+--=+变式5-3.(2022·湖南株洲·中考真题)下列运算正确的是( ) A .235a a a ⋅= B .()235a a =C .22()ab ab =D .632(0)a a a a=≠变式5-4.(2022·辽宁锦州·中考真题)下列运算正确的是( ) A .()222448ab a b -= B .633a a a -÷=-C .32622a a a ⋅=D .3362a a a +=变式5-5.(2022·湖北宜昌·中考真题)下列运算错误..的是( ) A .336x x x ⋅=B .826x x x ÷=C .()236x x =D .336x x x +=易错点总结:知识点二 整式乘除 ⏹ 单项式×单项式单项式的乘法法则:单项式与单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 单项式乘法易错点:【注意】1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用。
2)单项式乘以单项式的结果仍是单项式。
3)运算顺序:先算乘方,再算乘法。
考查题型六 单项式乘单项式典例6.3()()a b -⋅-的结果是( ) A .3ab -B .3abC .3a b -D .3a b变式6-1.(2022·陕西·中考真题)计算:()2323x x y ⋅-=( )A .336x yB .236x y -C .336x y -D .3318x y变式6-2.(2022·湖南常德·中考真题)计算434x x ⋅的结果是( ) A .x B .4xC .74xD .11x易错点总结:⏹ 单项式×多项式单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加 【注意事项】1)单项式乘多项式的结果是多项式,积的项数与原多项式的项数相同。
2)单项式分别与多项式的每一项相乘时,要注意积的各项符号。
(同号相乘得正,异号相乘得负)例:mc mb ma c b a m -+-=+--)(3)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果。
考查题型七 单项式乘多项式典例7.(2022·山东临沂·中考真题)计算()1a a a +-的结果是( ) A .1B .2aC .22a a +D .21a a -+变式7-1.(2022·浙江丽水·中考真题)先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =.变式7-2.(2022·吉林·中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.易错点总结:多项式×多项式多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 【注意事项】多项式与多项式相乘时,多项式的每一项都应该带上它前面的正负号。
多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定各项的符号。
考查题型八 多项式乘多项式典例8.(2022·四川南充·中考真题)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.变式8-1.(2020·广西贺州·中考真题)我国宋代数学家杨辉发现了()na b +(0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()8a b +展开式的系数和是( ) A .64 B .128C .256D .612易错点总结:⏹ 单项式÷单项式单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。