分析软开关的原理

合集下载

开关电源软开关技术原理简介

开关电源软开关技术原理简介

开关电源软开关技术原理简介开关电源是现代电子设备中常见的电源供应方式之一,具有高效率、小体积、轻便等优点。

而软开关技术作为一种先进的电源开关技术,被广泛应用于开关电源中,以提高其性能和可靠性。

本文将对软开关技术的原理进行简要介绍。

软开关技术是一种在开关电源中用于控制开关管导通和关断的技术。

传统的硬开关技术存在开关管开关速度慢、开关过程中会产生电压和电流的冲击等问题,而软开关技术则通过合理的控制开关管的导通和关断时机,以减小开关过程中的冲击,提高开关效率。

软开关技术主要包括零电压开关技术(ZVS)和零电流开关技术(ZCS)。

其中,ZVS技术是通过在开关管导通和关断时将电压降至零来实现的,而ZCS技术是通过在开关管导通和关断时将电流降至零来实现的。

在软开关技术中,ZVS技术是较为常见的一种。

其原理是利用谐振电路使得开关管在导通和关断时电压降至零,以减小开关过程中的电压冲击。

具体来说,当开关管导通时,谐振电路中的电容器充电,使得电压逐渐增加;而当开关管关断时,谐振电路中的电感器释放能量,使得电压逐渐降低,直至降至零。

通过合理设计谐振电路的参数和控制开关管的导通和关断时机,可以实现零电压开关,减小开关过程中的电压冲击。

与ZVS技术相比,ZCS技术在某些场合下更为适用。

ZCS技术的原理是利用谐振电路使得开关管在导通和关断时电流降至零,以减小开关过程中的电流冲击。

具体来说,当开关管导通时,谐振电路中的电感器储存能量,使得电流逐渐增加;而当开关管关断时,谐振电路中的电容器释放能量,使得电流逐渐降低,直至降至零。

通过合理设计谐振电路的参数和控制开关管的导通和关断时机,可以实现零电流开关,减小开关过程中的电流冲击。

总的来说,软开关技术通过合理控制开关管的导通和关断时机,以减小开关过程中的冲击,提高开关效率。

ZVS技术和ZCS技术是软开关技术中常用的两种实现方式。

在实际应用中,软开关技术可以提高开关电源的效率和可靠性,减小对其他电子元器件的损伤,同时也有利于降低电磁干扰和提高整体系统的抗干扰能力。

电力电子高频软开关技术特点及其应用分析

电力电子高频软开关技术特点及其应用分析

电力电子高频软开关技术特点及其应用分析摘要:透过实际调查发现,有关软开关技术项目已然在功率变换器应用领域之中得到全方位推广沿用,其核心意义在于大幅度提升设备整体性能、运作效率,改善其功率密度基础上,全力规避以往电能变换装置频繁引发的电磁和环境污染状况。

由此,笔者决定在客观论证电力电子高频软开关的基础性工作原理和技术特征基础上,联合丰富实践经验探讨其可靠性的实践应用前景,希望能够为相关工作人员作为参考之用。

关键词:电力电子;高频软开关;技术特征;应用前景前言:结合以往硬开关功率变化技术工作原理加以对比校验,尤其是在功率开关管导通或是断开过程中,因为不同类型部件之上的电压或是电流必然会高于零,所以其间经常会引发较大数量的功率消耗现象。

同步状况下,一旦说开关频率越高,对应的损耗效应就愈加深刻,此时变换器工作效率出现极速的降低状况;再就是经过频率与功率的持续提升过后,内部滋生出的EMI也会随之加大,对附近电器和电网等必要性资源造成的限制效应也就更为严峻。

透过此类现象观察,改善开关频率已然是目前开关变换技术的关键性改革发展指标,即在确保将变换器体积、重量缩小在合理空间范畴前提下,大幅度提升该类器具的功率密度和集成化运作效果。

一、软开关技术的基础性工作原理所谓软开关技术,实际上就是借助谐振原理,将开关变换器之中流通的电流或是电压,依照正弦或是准正弦的形式进行波动性变化,持续到这部分电流达到自然过零状态时,及时地断开当中的开关管;再就是在开关管电压维持在自然过零效果期间,导通当中的开关管,进一步保证其不管是在断开或是导通情况下产生的损耗都控制为零,进一步落实这部分开关电源的高频化改良研发目标,为日后电源效率合理程度地提升,以及EMI现象滋生几率适度地缩减等理想化前景绽放,做充分的过渡准备工作。

而在此期间,涉及硬开关和软开关之间工作原理的差异现象则具体如下所示:首先,硬开关方面。

其开关环节中,内部的电压与电流都不会为零,并且衍生出重叠现象。

单相全桥串联谐振软开关的工作原理

单相全桥串联谐振软开关的工作原理

1.概述软开关技术、谐振型开关变换技术使得大功率、高频化电源的实现成为可能,它应用谐振的原理,使开关器件中的电流(或电压)按正弦或准正弦规律变化采用软开关技术,其实质就是在主开关上增加电感和电容等储能元件构成谐振电路。

当变换器主开关进行换流时产生谐振,迫使主开关上的电压或电流变为零,从而为主开关提供一个零电压或零电流的开关环境。

最理想的软开通过程:电压先下降到零后,开通主管,电流上升到通态值,开通损耗近似为零。

另外,因器件开通前电压已下降到零,器件结电容上的电压亦为零,故解决了容性开通问题。

这意味着二极管已经截止,其反向恢复过程结束,因此二极管反向恢复问题亦不复存在。

最理想的软关断过程:电流先下降为零开通主管电压上升到断态值,所以关断损耗近似为零。

由于器件关断前电流已下降到零,即线路电感中电流为零,所以感性关断问题得以解决。

它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题,而且还能解决由硬开关引起的EMI等问题。

本课题研究的电源功率为32kW,工作频率为5kHz~20kHz,为了减小高频时开关器件的损耗,采用串联谐振软开关技术,使得开关器件能够实现零电流关断,其主电路原理图如图1所示:图1 全桥串联谐振式电路原理图2.原理分析为了减小开关损耗,在电路工作中,使得开关频率小于或等于谐振频率的一半,使电流工作在断续状态。

结合上面的分析,我们对图1电源主回路等效原理图的工作模态进行计算分析。

图2 等效电路模型图3 电流断续工作方式的主要波形设电感L1电流为i,电容C1电压为U1,电源一个谐振周期内各个模态图如图4所示,电源工作波形如图3所示。

电路工作特点是:开关频率fs必须低于谐振频率fr的一半,保持主回路串联谐振条件恒定不变,使整个电路工作于不连续导电模式。

对于主电路中的逆变电路,采用脉冲频率调制(PFM)改变开关频率,驱动脉冲满足:在正常的导通情况下,加在逆变开关上的驱动信号应该是互补的,即当第一组(VD1与VD4)开管导通时,第二组开关(VD2与VD3)截止;第二组开通时,第一组截止。

Boost ZVS软开关电路

Boost ZVS软开关电路

Boost ZVS软开关电路实验电路原理及实验线路准谐振零电压软开关电路的基本思想是:谐振电容Cr基本上是与开关管Q1并联的,在开关管导通时,谐振电容Cr上的电压为零;当开关管关断时,Cr限制开关管上电压的上升率,从而实现开关管的零电压关断;当开关管导通时;Lr和Cr谐振工作使Cr上的电压回到零,从而实现开关管的零电压开通。

其工作原理如图3-69所示:图3-69工作原理及波形图在一个开关周期T r中,该变换器有四种开关状态。

在分析之前,作出如下假设:①所有开关管、二极管均为理想器件;②所有电感、电容和变压器均为理想元件;、③L f>>L r;④L f足够大,在一个开关周期中,其电流基本保持不变,为I i,这样L f和输入电压V in可以看成一个电流为I i的恒流源;⑤C f足够大,在一个开关周期中,其电压基本保持不变,为Vo,这样C f和负载电阻可以看成一个电压为Vo的恒压源。

这里给出以下物理量的定义:①特征阻抗②谐振角频率③谐振频率④谐振周期1.电容充电阶段[t0,t1]在t0时刻之前,开关管Q1导通,输入电流I i经过Q1续流,谐振电容Cr,上的电压为O。

D1处于关断状态,谐振电感Lr的电流为零。

在t0时刻,关断Q1,输入电流I i从Q1中转移到Cr中,给Cr充电,电压从O开始线性上升,由于Cr的电压是慢慢开始上升的,那么Q l就是零电压关断。

在此开关模态中,Cr的电压为:在t1时刻,Vcr上升到输出电压Vo,开关模态1结束,它的持续时间为:2.谐振阶段[t1,t2]从t1时刻起,D1开始导通,Lr与C r谐振工作,谐振电感电流i Lr从O开始增加,i Lr和Vcr的表达式为:经过T r/2,到达t1a时刻,i Lr等于I i,此时Vcr到达最大值Vcrmax。

V crmax=Vo+I i Z r从t1a时刻开始,i Lr大于I i,此时Cr开始放电,其电压开始下降。

在t1b时刻,V Cr减小到O,并且开始变为负电压;在t2时刻,V Cr从负电压上升到O,此时开通Q l,则Q1为零电压开通。

无刷直流电机逆变器的软开关技术

无刷直流电机逆变器的软开关技术

无刷直流电机逆变器的软开关技术无刷直流电机逆变器是一种将直流电能转换成交流电能并驱动无刷直流电机的电子设备。

在无刷直流电机逆变器中,软开关技术在提高电机效率、减少电机噪音、降低电机振动等方面起着重要的作用。

本文将介绍无刷直流电机逆变器软开关技术的原理、分类、现有研究进展,并分析其优缺点。

无刷直流电机逆变器的原理是将直流电能通过逆变器转换成交流电能,然后通过交流电能驱动无刷直流电机运转。

在逆变器中,开关管承担着很重要的作用,其具体工作模式在很大程度上决定了逆变器的性能。

传统的硬开关技术在开关管关断时会产生较大的开关损耗和电磁干扰,不利于逆变器的安全和稳定运行。

而软开关技术可以在开关管关断时通过一系列控制策略提高开关管的效率和工作稳定性,减小开关损耗和电磁干扰。

根据开关管的工作原理和逆变器的拓扑结构,可以将软开关技术分为多种类型。

常见的软开关技术包括零电压切换(ZVS)技术、零电流切换(ZCS)技术、有限电压切换(FZVS)技术等。

其中,ZVS技术是指在开关管关断时通过调节电压或电流使其达到零值的技术,可以减小开关管关断时的开关损耗,提高逆变器的效率。

ZCS技术是指在开关管关断时通过调节电流使其达到零值的技术,可以减小开关管关断时的电流压力,降低电磁干扰。

FZVS技术是指在开关管关断时通过控制电压保持在一定范围内的技术,可以降低开关管关断时的电压应力,延长其使用寿命。

当前,软开关技术在无刷直流电机逆变器中得到了广泛的应用和研究。

根据控制策略的不同,可以将软开关技术进一步分类为PWM控制技术、谐振控制技术、混合控制技术等。

PWM控制技术是指通过调节开关管的通断时间比例来控制输出电压或电流的技术,可以实现电机的高效驱动和精确控制。

谐振控制技术是指通过共振电路和谐振元件来控制开关管的开关瞬间,减小开关损耗和电磁干扰。

混合控制技术是指将PWM控制技术和谐振控制技术相结合的技术,可以实现更高的性能和更低的成本。

-软开关技术(soft technique)

-软开关技术(soft technique)

(7-5) (7-6)
Poff f s
toff 0
t on t ri t fv
Ploss
toff trv t fi
1 VD I 0 f s (ton toff ) 2
线路电感 Lσ≠ 0 时开通、关断过程
VT
图7.11
安全工作区

Lσ=0时,开通轨迹ABC,关断轨迹 CBA Lσ≠ 0时,开通轨迹AQEC,关断轨 迹CBHPA Lσ改善了开通轨迹,恶化了关断轨 迹
开关状态2:t1<t<t2
T1断态,Vcr=VT1=VD。iL经D2、T2 续流,Io经D0续流。Toff=t2-t1可控, 用以调控输出电压。
8.3.1 零电压开通脉冲宽度调制(ZVS PW 变换器工作原理(续4)
开关状态3:t2<t<t3
t=t2时,关断T2, Lr 、 Cr谐振半 个周期到t3, t=t3时 Vcr=VT1=VD, iL达到负最大值。
t
VD
D
rT IO iD
T
iT
rT
iD
(a) 电路
t
t 0 t1 vT (v CE ) t2 t3 t4 t5 t6 t7 t8 t t10 9
iT
电压限制线
R E
I CM
N C
VD
vT
电流限制线 10us功率限制线
vT
t
td PT t ri
IO
B
t fv
t on PT vT iT
ts
t rv t fi
第8章
谐振开关型变换器 --软开关技术(soft-switch)
1
现代电力电子的发展------高频化

四种软开关BOOST电路的分析与仿真(图清晰)

四种常用BOOST带软开关电路的分析与仿真 (图清晰)软开关的实质是什么?所谓软开关,就是利用电感电流不能突变这个特性,用电感来限制开关管开通过程的电流上升速率,实现零电流开通。

利用电容电压不能突变的特性,用电容来限制开关管关断过程的电压上升速率,实现零电压关断。

并且利用LC谐振回路的电流与电压存在相位差的特性,用电感电流给MOS结电容放电,从而实现零电压开通。

或是在管子关断之前,电流就已经过零,从而实现零电流关断。

软开关的拓扑结构非常多,每种基本的拓扑结构上都可以演变出多种的软开关拓扑。

我们在这里,仅对比较常用的,适用于APFC电路的BOOST结构的软开关作一个简单介绍并作仿真。

我们先看看基本的BOOST电路存在的问题,下图是最典型的BOOST电路:假设电感电流处于连续模式,驱动信号占空比为D。

那么根据稳态时,磁芯的正向励磁伏秒积和反向励磁伏秒积相同这个关系,可以得到下式:VIN×D=(VOUT-VIN)(1-D),那么可以知道:VOUT=VIN/(1-D)那么对于BOOST电路来说,最大的特点就是输出电压比输入电压高,这也就是这个拓扑叫做BOOST电路的原因。

另外,BOOST电路也有另外一个名称:upconverter,此乃题外话,暂且按下不表。

对于传统的BOOST电路,这个电路存在的问题在哪里呢?我们知道,电力电子的功率器件,并不是理想的器件。

在基本的BOOST电路中:1、当MOS管开通时,由于MOS管存在结电容,那么开通的时候,结电容COSS储存的能量几乎完全以热的方式消耗在MOS的导通过程。

其损耗功率为COSSV2fS/2,fS是开关频率。

V为结电容上的电压,在此处V=VOUT。

(注意:结电容与静电容有些不一样,是和MOS 上承受的电压相关的。

)2、当MOS管开通时,升压二极管在由正向导通向反偏截止的过程中,存在一个反向恢复过程,在这个过程中,会有很大的电流尖峰流过二极管与MOS管,从而导致功率损耗。

软开关原理及发展趋势


的 提 高 , 关 损 耗 就 越来 越 显著 。 开 硬 开 关 电 路 图
将 软 开 关 电 路 分 成 零 电 压 电 路 和零 电 流 电路 两 大 类 。 据 软 开 关 技 术 根
发 展 的历 程 可 以将 软 开关 电 路 分 成 准 谐 振 电路 、 开 关 P 零 WM 电 路 和
零转换 P WM 电 路 中采 用 辅 助 开 关 控 制 谐 振 的 开 始 时 刻 , 不 同 所
的是 , 振 电路 是 与 主 开 关 并 联 的 , 此 输 入 电 压 和 负 载 电流 对 电 路 谐 因 的谐 振 过 程 的 影 响 很 小 . 路在 很 宽 的输 入 电压 范 围 内 和从 零 负 载 到 电 满载都能工作在软开关状态 , 而且 电路 中无 功 功 率 的 交 换 被 削 减 到 最

而 硬 开 关 电路 中不 需 要 这 个 二 极 管 。 降 压 型 零 电压 开 关 准 谐 振 电 路 中 ,在 开 关 过 程 前 后 引 入 谐 振 , 使
开 关 开 通 前 电压 先 降 到 零 。 断 前 电 流 先 降 到 零 , 除 了 开 关 过 程 中 关 消
21 0 1年
第1 9期
0机械 与电子0
科技信息
软开关原理及发展趋势
马 力 强
f 山 市陆凯 科技 有 限公 司 河 北 唐
【 摘
唐山
030 ) 6 0 0
要】 介绍开关电源种 类, 分析硬 开关和软开关的工作原理 , 讨论软 开关的发展趋势。软开关 电源可以降低 开关损耗 和开关噪 声, 所以

小. பைடு நூலகம்使得 电路效率有了进一步提高。 . 下面具体分析一下零电压转换 P WM 电路

LLC工作原理分析PPT课件


fs=fR1时工作波形
当fs=fR1时LLC工作在完全谐振状态
fs=fR1时工作过程
在t0时刻前:上管Q1关断, 下管Q2导通。谐振电流通过Q2 流通,变压器向副边传递能量, 副边二极管D2导通向负载提供 能量。变压器原边被副边电压 箝位,激磁电流线性上升。
在t1时刻正好完成半个周期的谐振,谐振电流与激磁电流刚好相等。变压器副边无电流,二极 管D2自然关断,实现ZCS。在死区时间t0-t1时段内,激磁电流给Q1,Q2的输出电容Coss1和 Coss2充电,当Coss1两端的电压为0V时,Q1的体二极管导通,电流通过体二极管流通,在t1时 刻让Q1导通,便可实现Q1的ZVS。
fs>fR1时工作波形
当fs=fR1及s>fR1时,励磁电感不参与谐振,其特性就是一个串联谐振的特性。
当fs>fR1时,LLC原边实现ZVS,副边实现ZCS,副边二极管工作在电流断续的状态。
fs>fR1时工作过程
在t0时刻前,Q1关断,Q2导通,谐振电流通过变压器耦合到副边,副边二极管D1关断,D2导通, 向负载传递能量。变压器两端的电压被输出箝位,励磁电流线性增大。
LLC工作原理分析
目录 一、原理简介
1.0 简介软开关 1.1 LLC三种工作状态: fs=fR1、 fs>fR1、 fR2<fs<fR1 1.2 fs=fR1工作过程 1.3 fs>fR1工作过程 1.4 fR2<fs<fR1工作过程 1.5 FHA等效模型 1.6 K值分析 1.7 Q值分析 1.8 LLC阻抗特性
可以通过对LLC谐振回路的等效阻抗推导出Qmax. 在设计中,为了留有一定的裕量,我们通常取Q值为Qmax的90%-95%。

第八篇软开关电路

辅助开关S1超前于主开关S开通, S开通后S1关断。
– t0~t1时段:,S1导通,VD尚处 于通态,电感Lr两端电压为Uo, 电流iLr线性增长, VD中的电流 以同样的速率下降。t1时刻, iLr=IL,VD中电流下降到零,关 断。
图8-19 升压型零电压转 换PWM电路的原理图
S
O
t
S1
O
uS
– t4~t5时段:S3开通后,Lr的电
S1
流继续减小。iLr下降到零后反
O S2
t
向增大,t5时刻iLr=IL/kT,变压
O S4
t
器二次侧VD1的电流下降到零
O S3
t
而关断,电流IL全部转移到
O u AB
t
VD2中。
O
t
– t0~t5是开关周期的一半,另一
u Lr O
t
半工作过程完全对称。
iLr
– 准谐振电路-准谐振电路中电压或电流的波形为正弦 半波,因此称之为准谐振。是最早出现的软开关电路。
特点:
谐振电压峰值很高,要求器件耐压必须提高; 谐振电流有效值很大,电路中存在大量无功功率的 交换,电路导通损耗加大; 谐振周期随输入电压、负载变化而改变,因此电路 只能采用脉冲频率调制(Pulse Frequency Modulation—PFM)方式来控制。
uCr
Uin
O
t
iLr
IL
O
t
t0 t1 t2 t3 t4 t0
图 8-14 谐振直流环电路的理想化波形
8.3.3 移相全桥型零电压开关PWM电路
移相全桥电路是目前应用最广泛的软开关电路之一,它 的特点是电路简单。同硬开关全桥电路相比,仅增加 了一个谐振电感,就使四个开关均为零电压开通。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析软开关的原理
软开关是一种基于计算机技术的开关设备,它通过软件控制开关状态的转换。

其工作原理主要包括以下几个方面:
1. 控制命令:软开关通过接收控制命令来改变自身的状态。

控制命令可以通过计算机网络、串口、并口等方式发送给软开关设备。

2. 软件逻辑:软开关设备内部嵌入了一种软件逻辑,用于根据控制命令判断开关状态是否需要改变。

软件逻辑可以包含条件判断、定时器、状态机等模块,用于实现各种复杂的开关控制策略。

3. 开关状态转换:根据软件逻辑的判断结果,软开关设备会控制相应的硬件电路或继电器进行开关状态的转换。

具体实现方式有两种:
- 电路切换:软开关可以通过电路切换器件(如继电器、三极管等)控制电流或信号的通断,从而实现开关状态的转换。

这种方式适用于较小的电流和信号。

- 数字信号切换:软开关可以通过电子器件(如数码开关、多工器件等)控制数字信号的路由切换,从而实现开关状态的转换。

这种方式适用于数字信号的切换和控制。

4. 反馈监测:软开关设备一般会具备反馈监测功能,用于实时监测开关状态的
变化并反馈给控制端。

这样可以确保控制端对开关状态有准确的掌握,并及时采取相应的控制策略。

总的来说,软开关通过软件的逻辑判断和控制命令的传递,控制硬件电路或数电器件的操作,从而实现对开关状态的改变。

软开关不同于传统的机械开关,它更加灵活、可编程,并且可以远程控制,适用于各种场景下对开关状态进行精确控制的需求。

相关文档
最新文档