爱因斯坦论文(英语)

爱因斯坦论文(英语)
爱因斯坦论文(英语)

ON THE ELECTRODYNAMICS OF MOVING BODIES

By A. Einstein

June 30, 1905

It is known that Maxwell's electrodynamics--as usually understood at the present time--when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor. The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise--assuming equality of relative motion in the two cases discussed--to electric currents of the same path and intensity as those produced by the electric forces in the former case.

Examples of this sort, together with the unsuccessful attempts to discover any motion of the earth relatively to the ``light medium,'' suggest that the phenomena of electrodynamics as well as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest rather that, as has already been shown to the first order of small quantities, the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics hold good.1 We will raise this conjecture (the purport of which will hereafter be called the ``Principle of Relativity'') to the status of a postulate, and also introduce another postulate, which is only apparently irreconcilable with the former, namely, that light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body. These two postulates suffice for the attainment of a simple and consistent theory of the electrodynamics of moving bodies based on Maxwell's theory for stationary bodies. The introduction of a ``luminiferous ether'' will prove to be superfluous inasmuch as the view here to be developed will not require an ``absolutely stationary space'' provided with special properties, nor assign a velocity-vector to a point of the empty space in which electromagnetic processes take place.

The theory to be developed is based--like all electrodynamics--on the kinematics of the rigid body, since the assertions of any such theory have to do with the relationships between rigid bodies (systems of co-ordinates), clocks, and

electromagnetic processes. Insufficient consideration of this circumstance lies at the root of the difficulties which the electrodynamics of moving bodies at present encounters.

I. KINEMATICAL PART

§ 1. Definition of Simultaneity

Let us take a system of co-ordinates in which the equations of Newtonian mechanics hold good.2 In order to render our presentation more precise and to distinguish this system of co-ordinates verbally from others which will be introduced hereafter, we call it the ``stationary system.''

If a material point is at rest relatively to this system of co-ordinates, its position can be defined relatively thereto by the employment of rigid standards of measurement and the methods of Euclidean geometry, and can be expressed in Cartesian co-ordinates.

If we wish to describe the motion of a material point, we give the values of its co-ordinates as functions of the time. Now we must bear carefully in mind that a mathematical description of this kind has no physical meaning unless we are quite clear as to what we understand by ``time.'' We have to take into account that all our judgments in which time plays a part are always judgments of simultaneous events. If, for instance, I say, ``That train arrives here at 7 o'clock,'' I mean something like this: ``The pointing of the small hand of my watch to 7 and the arrival of the train are simultaneous events.''3

It might appear possible to overcome all the difficulties attending the definition of ``time'' by substituting ``the position of the small hand of my watch'' for ``time.'' And in fact such a definition is satisfactory when we are concerned with defining a time exclusively for the place where the watch is located; but it is no longer satisfactory when we have to connect in time series of events occurring at different places, or--what comes to the same thing--to evaluate the times of events occurring at places remote from the watch.

We might, of course, content ourselves with time values determined by an observer stationed together with the watch at the origin of the co-ordinates, and co-ordinating the corresponding positions of the hands with light signals, given out by every event to be timed, and reaching him through empty space. But this co-ordination has the disadvantage that it is not independent of the standpoint of the observer with the watch or clock, as we know from experience. We arrive at a much more practical determination along the following line of thought.

If at the point A of space there is a clock, an observer at A can determine the time values of events in the immediate proximity of A by finding the positions of the hands which are simultaneous with these events. If there is at the point B of space another clock in all respects resembling the one at A, it is possible for an observer at B to determine the time values of events in the immediate neighbourhood of B. But it is not possible without further assumption to compare, in respect of time, an event at A with an event at B. We have so far defined only an ``A time'' and a ``B time.'' We have not defined a common ``time'' for A and B, for the latter cannot be defined at all unless we establish by definition that the ``time'' required by light to travel from A to B equals the ``time'' it requires to travel from B to A. Let a ray of light start at the ``A

time'' from A towards B, let it at the ``B time'' be reflected at B in the direction

of A, and arrive again at A at the ``A time'' .

In accordance with definition the two clocks synchronize if

We assume that this definition of synchronism is free from contradictions, and possible for any number of points; and that the following relations are universally valid:--

1.If the clock at B synchronizes with the clock at A, the clock at A synchronizes with the clock at B.

2.If the clock at A synchronizes with the clock at B and also with the clock at C, the clocks at B and C also synchronize with each other.

Thus with the help of certain imaginary physical experiments we have settled what is to be understood by synchronous stationary clocks located at different places, and have evidently obtained a definition of ``simultaneous,'' or ``synchronous,'' and of ``time.'' The ``time'' of an event is that which is given simultaneously with the event by a stationary clock located at the place of the event, this clock being synchronous, and indeed synchronous for all time determinations, with a specified stationary clock. In agreement with experience we further assume the quantity

to be a universal constant--the velocity of light in empty space.

It is essential to have time defined by means of stationary clocks in the stationary system, and the time now defined being appropriate to the stationary system we call it ``the time of the stationary system.''

§ 2. On the Relativity of Lengths and Times

The following reflexions are based on the principle of relativity and on the principle of the constancy of the velocity of light. These two principles we define as follows:--

1.The laws by which the states of physical systems undergo change are not affected, whether these changes of state be referred to the one or the other of two systems of co-ordinates in uniform translatory motion.

2.Any ray of light moves in the ``stationary'' system of co-ordinates with the determined velocity c, whether the ray be emitted by a stationary or by a moving body. Hence

where time interval is to be taken in the sense of the definition in § 1.

Let there be given a stationary rigid rod; and let its length be l as measured by a measuring-rod which is also stationary. We now imagine the axis of the rod lying along the axis of x of the stationary system of co-ordinates, and that a uniform motion of parallel translation with velocity v along the axis of x in the direction of increasing x is then imparted to the rod. We now inquire as to the length of the moving rod, and imagine its length to be ascertained by the following two operations:--

(a)

The observer moves together with the given measuring-rod and the rod to be measured, and measures the length of the rod directly by superposing the measuring-rod, in just the same way as if all three were at rest.

(b)

By means of stationary clocks set up in the stationary system and synchronizing in accordance with § 1, the observer ascertains at what points of the stationary system the two ends of the rod to be measured are located at a definite time. The distance between these two points, measured by the measuring-rod already employed, which in this case is at rest, is also a length which may be designated ``the length of the rod.''

In accordance with the principle of relativity the length to be discovered by the operation (a)--we will call it ``the length of the rod in the moving system''--must be equal to the length l of the stationary rod.

The length to be discovered by the operation (b) we will call ``the length of the (moving) rod in the stationary system.'' This we shall determine on the basis of our two principles, and we shall find that it differs from l.

Current kinematics tacitly assumes that the lengths determined by these two operations are precisely equal, or in other words, that a moving rigid body at the epoch t may in geometrical respects be perfectly represented by the same body at rest in a definite position.

We imagine further that at the two ends A and B of the rod, clocks are placed which synchronize with the clocks of the stationary system, that is to say that their indications correspond at any instant to the ``time of the stationary system'' at the places where they happen to be. These clocks are therefore ``synchronous in the stationary system.''

We imagine further that with each clock there is a moving observer, and that these observers apply to both clocks the criterion established in § 1 for the synchronization

of two clocks. Let a ray of light depart from A at the time4, let it be reflected at B

at the time , and reach A again at the time . Taking into consideration the principle of the constancy of the velocity of light we find that

where denotes the length of the moving rod--measured in the stationary system. Observers moving with the moving rod would thus find that the two clocks were not synchronous, while observers in the stationary system would declare the clocks to be synchronous.

So we see that we cannot attach any absolute signification to the concept of simultaneity, but that two events which, viewed from a system of co-ordinates, are simultaneous, can no longer be looked upon as simultaneous events when envisaged from a system which is in motion relatively to that system.

§ 3. Theory of the Transformation of Co-ordinates and Times from a Stationary System to another System in Uniform Motion of Translation Relatively

to the Former

Let us in ``stationary'' space take two systems of co-ordinates, i.e. two systems, each of three rigid material lines, perpendicular to one another, and issuing from a point. Let the axes of X of the two systems coincide, and their axes of Y and Z respectively be parallel. Let each system be provided with a rigid measuring-rod and a number of clocks, and let the two measuring-rods, and likewise all the clocks of the two systems, be in all respects alike.

Now to the origin of one of the two systems (k) let a constant velocity v be imparted in the direction of the increasing x of the other stationary system (K), and let this velocity be communicated to the axes of the co-ordinates, the relevant measuring-rod, and the clocks. To any time of the stationary system K there then will correspond a definite position of the axes of the moving system, and from reasons of symmetry we are entitled to assume that the motion of k may be such that the axes of the moving system are at the time t(this ``t'' always denotes a time of the stationary system) parallel to the axes of the stationary system.

We now imagine space to be measured from the stationary system K by means of the stationary measuring-rod, and also from the moving system k by means of the

measuring-rod moving with it; and that we thus obtain the co-ordinates x, y, z, and ,

, respectively. Further, let the time t of the stationary system be determined for all points thereof at which there are clocks by means of light signals in the manner indicated in § 1; similarly let the time of the moving system be determined for all points of the moving system at which there are clocks at rest relatively to that system by applying the method, given in § 1, of light signals between the points at which the latter clocks are located.

To any system of values x, y, z, t, which completely defines the place and time of an

event in the stationary system, there belongs a system of values , , , determining that event relatively to the system k, and our task is now to find the system of equations connecting these quantities.

In the first place it is clear that the equations must be linear on account of the properties of homogeneity which we attribute to space and time.

If we place x'=x-vt, it is clear that a point at rest in the system k must have a system of values x', y, z, independent of time. We first define as a function of x', y, z, and t. To do this we have to express in equations that is nothing else than the summary of the data of clocks at rest in system k, which have been synchronized according to the rule given in § 1.

From the origin of system k let a ray be emitted at the time along the X-axis to x', and at the time be reflected thence to the origin of the co-ordinates, arriving there

at the time ; we then must have , or, by inserting the arguments of the function and applying the principle of the constancy of the velocity of light in the stationary system:--

Hence, if x' be chosen infinitesimally small,

or

It is to be noted that instead of the origin of the co-ordinates we might have chosen any other point for the point of origin of the ray, and the equation just obtained is therefore valid for all values of x', y, z.

An analogous consideration--applied to the axes of Y and Z--it being borne in mind that light is always propagated along these axes, when viewed from the stationary

system, with the velocity gives us

Since is a linear function, it follows from these equations that

where a is a function at present unknown, and where for brevity it is assumed that at the origin of k, , when t=0.

With the help of this result we easily determine the quantities , , by expressing in equations that light (as required by the principle of the constancy of the velocity of light, in combination with the principle of relativity) is also propagated with velocity c when measured in the moving system. For a ray of light emitted at the time

in the direction of the increasing

But the ray moves relatively to the initial point of k, when measured in the stationary system, with the velocity c-v, so that

If we insert this value of t in the equation for , we obtain

In an analogous manner we find, by considering rays moving along the two other axes, that

when

Thus

Substituting for x' its value, we obtain

where

and is an as yet unknown function of v. If no assumption whatever be made as to the initial position of the moving system and as to the zero point of , an additive constant is to be placed on the right side of each of these equations.

We now have to prove that any ray of light, measured in the moving system, is propagated with the velocity c, if, as we have assumed, this is the case in the stationary system; for we have not as yet furnished the proof that the principle of the constancy of the velocity of light is compatible with the principle of relativity.

At the time , when the origin of the co-ordinates is common to the two

systems, let a spherical wave be emitted therefrom, and be propagated with the velocity c in system K. If (x, y, z) be a point just attained by this wave, then

x2+y2+z2=c2t2.

Transforming this equation with the aid of our equations of transformation we obtain after a simple calculation

The wave under consideration is therefore no less a spherical wave with velocity of propagation c when viewed in the moving system. This shows that our two fundamental principles are compatible.5

In the equations of transformation which have been developed there enters an

unknown function of v, which we will now determine.

For this purpose we introduce a third system of co-ordinates , which relatively to the system k is in a state of parallel translatory motion parallel to the axis of ,*1 such

that the origin of co-ordinates of system , moves with velocity -v on the axis of .

At the time t=0 let all three origins coincide, and when t=x=y=z=0 let the time t' of the

system be zero. We call the co-ordinates, measured in the system , x', y', z', and by a twofold application of our equations of transformation we obtain

Since the relations between x', y', z' and x, y, z do not contain the time t, the systems K and are at rest with respect to one another, and it is clear that the transformation from K to must be the identical transformation. Thus

We now inquire into the signification of . We give our attention to that part of

the axis of Y of system k which lies between and

. This part of the axis of Y is a rod moving perpendicularly to its axis with velocity v relatively to system K. Its ends possess in K the co-ordinates

and

The length of the rod measured in K is therefore ; and this gives us the

meaning of the function . From reasons of symmetry it is now evident that the length of a given rod moving perpendicularly to its axis, measured in the stationary system, must depend only on the velocity and not on the direction and the sense of the motion. The length of the moving rod measured in the stationary system does not change, therefore, if v and -v are interchanged. Hence follows that

, or

It follows from this relation and the one previously found that , so that the transformation equations which have been found become

where

§ 4. Physical Meaning of the Equations Obtained in Respect to Moving Rigid Bodies and Moving Clocks

We envisage a rigid sphere6 of radius R, at rest relatively to the moving system k, and with its centre at the origin of co-ordinates of k. The equation of the surface of this sphere moving relatively to the system K with velocity v is

The equation of this surface expressed in x, y, z at the time t=0 is

A rigid body which, measured in a state of rest, has the form of a sphere, therefore has in a state of motion--viewed from the stationary system--the form of an ellipsoid of revolution with the axes

Thus, whereas the Y and Z dimensions of the sphere (and therefore of every rigid body of no matter what form) do not appear modified by the motion, the X dimension

appears shortened in the ratio , i.e. the greater the value of v, the greater the shortening. For v=c all moving objects--viewed from the ``stationary'' system--shrivel up into plane figures.*2For velocities greater than that of light our deliberations become meaningless; we shall, however, find in what follows, that the velocity of light in our theory plays the part, physically, of an infinitely great velocity.

It is clear that the same results hold good of bodies at rest in the ``stationary'' system, viewed from a system in uniform motion.

Further, we imagine one of the clocks which are qualified to mark the time t when at rest relatively to the stationary system, and the time when at rest relatively to the moving system, to be located at the origin of the co-ordinates of k, and so adjusted that it marks the time . What is the rate of this clock, when viewed from the stationary system?

Between the quantities x, t, and , which refer to the position of the clock, we have, evidently, x=vt and

Therefore,

whence it follows that the time marked by the clock (viewed in the stationary system)

is slow by seconds per second, or--neglecting magnitudes of fourth

and higher order--by .

From this there ensues the following peculiar consequence. If at the points A and B of K there are stationary clocks which, viewed in the stationary system, are synchronous; and if the clock at A is moved with the velocity v along the line AB to B, then on its arrival at B the two clocks no longer synchronize, but the clock moved from A to B

lags behind the other which has remained at B by (up to magnitudes of fourth and higher order), t being the time occupied in the journey from A to B.

It is at once apparent that this result still holds good if the clock moves from A to B in any polygonal line, and also when the points A and B coincide.

If we assume that the result proved for a polygonal line is also valid for a continuously curved line, we arrive at this result: If one of two synchronous clocks at A is moved in a closed curve with constant velocity until it returns to A, the journey lasting t seconds, then by the clock which has remained at rest the travelled clock on

its arrival at A will be second slow. Thence we conclude that a balance-clock7 at the equator must go more slowly, by a very small amount, than a precisely similar clock situated at one of the poles under otherwise identical conditions.

§ 5. The Composition of Velocities

In the system k moving along the axis of X of the system K with velocity v, let a point move in accordance with the equations

where and denote constants.

Required: the motion of the point relatively to the system K. If with the help of the equations of transformation developed in § 3 we introduce the quantities x, y, z, t into the equations of motion of the point, we obtain

Thus the law of the parallelogram of velocities is valid according to our theory only to a first approximation. We set

*3

a is then to be looked upon as the angle between the velocities v and w. After a simple calculation we obtain*4

It is worthy of remark that v and w enter into the expression for the resultant velocity in a symmetrical manner. If w also has the direction of the axis of X, we get

It follows from this equation that from a composition of two velocities which are less

than c, there always results a velocity less than c. For if we set ,

and being positive and less than c, then

It follows, further, that the velocity of light c cannot be altered by composition with a velocity less than that of light. For this case we obtain

We might also have obtained the formula for V, for the case when v and w have the same direction, by compounding two transformations in accordance with §3. If in addition to the systems K and k figuring in § 3 we introduce still another system of co-ordinates k' moving parallel to k, its initial point moving on the axis of *5 with

the velocity w, we obtain equations between the quantities x, y, z, t and the corresponding quantities of k', which differ from the equations found in § 3 only in that the place of ``v'' is taken by the quantity

from which we see that such parallel transformations--necessarily--form a group.

We have now deduced the requisite laws of the theory of kinematics corresponding to our two principles, and we proceed to show their application to electrodynamics. II. ELECTRODYNAMICAL PART

§ 6. Transformation of the Maxwell-Hertz Equations for Empty Space. On the Nature of the Electromotive Forces Occurring in a Magnetic Field During Motion

Let the Maxwell-Hertz equations for empty space hold good for the stationary system K, so that we have

where (X, Y, Z) denotes the vector of the electric force, and (L, M, N) that of the magnetic force.

If we apply to these equations the transformation developed in § 3, by referring the electromagnetic processes to the system of co-ordinates there introduced, moving with the velocity v, we obtain the equations

where

Now the principle of relativity requires that if the Maxwell-Hertz equations for empty space hold good in system K, they also hold good in system k; that is to say that the

vectors of the electric and the magnetic force--(, , ) and (, , )--of the moving system k, which are defined by their ponderomotive effects on electric or magnetic masses respectively, satisfy the following equations:--

Evidently the two systems of equations found for system k must express exactly the same thing, since both systems of equations are equivalent to the Maxwell-Hertz equations for system K. Since, further, the equations of the two systems agree, with the exception of the symbols for the vectors, it follows that the functions occurring in the systems of equations at corresponding places must agree, with the exception of a

factor , which is common for all functions of the one system of equations, and

is independent of and but depends upon v. Thus we have the relations

If we now form the reciprocal of this system of equations, firstly by solving the equations just obtained, and secondly by applying the equations to the inverse transformation (from k to K), which is characterized by the velocity -v, it follows, when we consider that the two systems of equations thus obtained must be identical,

that . Further, from reasons of symmetry8 and therefore

and our equations assume the form

As to the interpretation of these equations we make the following remarks: Let a point charge of electricity have the magnitude ``one'' when measured in the stationary system K, i.e. let it when at rest in the stationary system exert a force of one dyne upon an equal quantity of electricity at a distance of one cm. By the principle of relativity this electric charge is also of the magnitude ``one'' when measured in the moving system. If this quantity of electricity is at rest relatively to the stationary system, then by definition the vector (X, Y, Z) is equal to the force acting upon it. If

the quantity of electricity is at rest relatively to the moving system (at least at the relevant instant), then the force acting upon it, measured in the moving system, is

equal to the vector (, , ). Consequently the first three equations above allow themselves to be clothed in words in the two following ways:--

1.If a unit electric point charge is in motion in an electromagnetic field, there acts upon it, in addition to the electric force, an ``electromotive force'' which, if we neglect the terms multiplied by the second and higher powers of v/c, is equal to the vector-product of the velocity of the charge and the magnetic force, divided by the velocity of light. (Old manner of expression.)

2.If a unit electric point charge is in motion in an electromagnetic field, the force acting upon it is equal to the electric force which is present at the locality of the charge, and which we ascertain by transformation of the field to a system of co-ordinates at rest relatively to the electrical charge. (New manner of expression.)

The analogy holds with ``magnetomotive forces.'' We see that electromotive force plays in the developed theory merely the part of an auxiliary concept, which owes its introduction to the circumstance that electric and magnetic forces do not exist independently of the state of motion of the system of co-ordinates.

Furthermore it is clear that the asymmetry mentioned in the introduction as arising when we consider the currents produced by the relative motion of a magnet and a conductor, now disappears. Moreover, questions as to the ``seat'' of electrodynamic electromotive forces (unipolar machines) now have no point.

§ 7. Theory of Doppler's Principle and of Aberration

In the system K, very far from the origin of co-ordinates, let there be a source of electrodynamic waves, which in a part of space containing the origin of co-ordinates may be represented to a sufficient degree of approximation by the equations

where

Here (, , ) and (, , ) are the vectors defining the amplitude of the wave-train, and l, m, n the direction-cosines of the wave-normals. We wish to

know the constitution of these waves, when they are examined by an observer at rest in the moving system k.

Applying the equations of transformation found in §6for electric and magnetic forces, and those found in § 3 for the co-ordinates and the time, we obtain directly

where

From the equation for it follows that if an observer is moving with velocity v relatively to an infinitely distant source of light of frequency , in such a way that

the connecting line ``source-observer'' makes the angle with the velocity of the observer referred to a system of co-ordinates which is at rest relatively to the source

of light, the frequency of the light perceived by the observer is given by the equation

This is Doppler's principle for any velocities whatever. When the equation assumes the perspicuous form

We see that, in contrast with the customary view, when .

If we call the angle between the wave-normal (direction of the ray) in the moving

system and the connecting line ``source-observer'' , the equation for *6 assumes the form

This equation expresses the law of aberration in its most general form. If , the equation becomes simply

We still have to find the amplitude of the waves, as it appears in the moving system.

If we call the amplitude of the electric or magnetic force A or respectively, accordingly as it is measured in the stationary system or in the moving system, we obtain

which equation, if , simplifies into

It follows from these results that to an observer approaching a source of light with the velocity c, this source of light must appear of infinite intensity.

§ 8. Transformation of the Energy of Light Rays.

Theory of the Pressure of Radiation Exerted on

Perfect Reflectors

Since equals the energy of light per unit of volume, we have to regard , by the

principle of relativity, as the energy of light in the moving system. Thus would be the ratio of the ``measured in motion'' to the ``measured at rest'' energy of a given light complex, if the volume of a light complex were the same, whether measured in K or in k. But this is not the case. If l, m, n are the direction-cosines of the wave-normals of the light in the stationary system, no energy passes through the surface elements of a spherical surface moving with the velocity of light:--

We may therefore say that this surface permanently encloses the same light complex. We inquire as to the quantity of energy enclosed by this surface, viewed in system k, that is, as to the energy of the light complex relatively to the system k.

The spherical surface--viewed in the moving system--is an ellipsoidal surface, the equation for which, at the time , is

If S is the volume of the sphere, and that of this ellipsoid, then by a simple calculation

Thus, if we call the light energy enclosed by this surface E when it is measured in the

stationary system, and when measured in the moving system, we obtain

and this formula, when , simplifies into

It is remarkable that the energy and the frequency of a light complex vary with the state of motion of the observer in accordance with the same law.

2018尔雅从爱因斯坦到霍金的宇宙全部答案

物理学的起源 1 【单选题】 Physics这个词最先是谁想出的?(B) A、柏拉图 B、亚里士多德 C、欧几里得 D、阿基米德 2【判断题】颐和园宝云阁的“物含妙理总堪寻”是由康熙题词。(X) “物理”一词在中国 1 【单选题】谁认为“格物致知”中的“格”意思是“变革”?(D) A、朱熹 B、王阳明 C、王艮 D、毛泽东 2【判断题】王阳明强调人心,良知,冉伟革去外物,良知自存。(对) 物理学的诞生 1 【单选题】 谁首先指出物理学是一门“实验的科学”、“测量的科学”?(B) A、阿基米德 B、伽利略 C、牛顿

D、亚里士多德 2【多选题】阿基米德的重要发现是(BC)。 A、自由落体定律 B、浮力定律 C、杠杆原理 D、相对性原理 3【多选题】下列哪些定律是伽利略首先确认的?(ACD) A、相对性原理 B、杠杆原理 C、自由落体定律 D、惯性定律 “1642年”在物理学上的意义 1【多选题】 牛顿的主要成就是(AB)。 A、力学三定律 B、万有引力定律 C、光的波动说 D、能量守恒定律 2【判断题】库伦从介质的弹性振动导出了电磁学的基本方程组。(对) 3【判断题】麦克斯韦从介质的弹性振动导出了电磁学的基本方程组。(对) 热学的发展 1 【单选题】热力学的哪一条定律说"不能从单一热源吸热做功,而对外界不产生影响"?(B)

A、第一定律 B、第二定律 C、第三定律 D、第零定律 2【判断题】开尔文提出不能从单一热源吸热做工而不产生其他影响。对 明朗天空的两朵乌云 1 【单选题】 爱因斯坦提出下列理论中的哪一个,用以解释光电效应?(D) A、量子论 B、光子说 C、波动说 D、光量子论 2【判断题】瑞利—金斯曲线在短波波段与实验曲线完全符合,在长波波段变得无穷大。X 并非神童的爱因斯坦 1 【单选题】爱因斯坦在苏黎世工业大学上学期间,其物理教授是(A)。 A、韦伯 B、卢瑟福 C、玻尔 D、狄拉克 求职不顺的爱因斯坦

爱因斯坦成功故事.doc

爱因斯坦成功故事 阿尔伯特·爱因斯坦,史上杰出物理学家之一,现代物理学的幵创者、集大成者和奠基人,同时也是一位著名的思想家和哲学家。爱因斯坦在科学和人文两方面都取得了举世瞩目的骄人成就。以下是我为大家整理的关于爱因斯坦成功故事,欢迎大家前来阅读! 爱因斯坦成功故事篇1: 人却往往觉得已经到手的不是最好的,凡是有机遇路过,都想一把抓住,创造一个奇迹。人一辈子都在追寻,一辈子都在选择,等到发现已经快走到人生尽头,才像掰玉米的猴子,随便对付一个了事。所以把一件事情做透,是人生成功的关键,不要以为机会遍地都是,人一辈子大量的活动其实都只是铺垫,真正起决定作用的就只有几次。当你抓住一个机遇时,再难也不要松手,也许完成这一件事,就奠定了一生的价值。 学会放弃,才会让人生体会云淡心清,做好自己擅长的事、快乐的事。学会放弃,才能让自己面对实际。学会放弃,才能保证所需的精力,学会放弃,才能让自己真正的梦想不被湮没,才会在第一时间抓住真正的机遇。 他是一个十岁的少年,很喜欢拉小提琴,而他的梦想就是成为像帕格尼尼那样的小提琴演奏家。因此一有空闲他就会练琴,他相信只要努力,总有一天他会实现自己的梦想。

可是虽然他很认真地练习,进步却很小,所有的人都觉得他拉的小提琴像锯木头一样难听,就连他的父母也觉得这可怜的孩子拉得太蹩脚了。教他小提琴的音乐老师也觉得他在拉小提琴方面没有一丝的音乐天赋可言,可是又怕说出真话会伤害少年的自尊心。 终于有一天这个少年也觉得自己的小提琴拉得太差了,于是他去请教一位着名的小提琴家,小提琴家看到他抱着小提琴就说道:"孩子,你先给我拉一只曲子听听。" 他拉了他最喜欢的小提琴家帕格尼尼24首练习曲中的几支曲子,拉得破绽百出。等他拉完,小提琴家问道:"你为什幺喜欢拉小提琴?"他说道:"我想成功,我想成为像帕格尼尼那样伟大的小提琴演奏家。" 小提琴家又问道:"那幺你拉小提琴的时候快乐吗?"他自豪地说道:"我非常快乐!"小提琴家又问道:"孩子你非常快乐,这说明你已经成功了,又何必非要成为像帕格尼尼那样伟大的小提琴家不可?在我看来,快乐就是最大的成功!" 少年听了小提琴家的话,低头沉思,拉小提琴的最终目的就是快乐,自己现在就已经很快乐了,又为什幺一定要成为像帕格尼尼那样的小提琴名家呢? 于是他拜谢了小提琴家,回到家后他依然很热爱小提琴,可是没有过去痴迷了,他把更多的精力放在了学习上。 多年以后他成为了举世闻名的物理学家,可是他仍然很喜

爱因斯坦介绍(英语)

Albert Einstein ( /??lb?rt ?a?nsta?n/; German: [?alb?t ?a?n?ta?n] ( listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics and one of the most prolific(多产的)intellects in human history.[2][3] While best known for his mass–energy equivalence formula E = mc2, he received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect".[4] The latter was pivotal (关键的)in establishing quantum theory (量子论)within physics. Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He realized, however, that the principle of relativity could also be extended to gravitational(重力场)fields, and with his subsequent(后来的)theory of gravitation in 1916, he published a paper on the general theory of relativity. He continued to deal with problems of statistical mechanics and quantum theory, which led to his explanations of particle theory(微粒说)and the motion of molecules. He also investigated the thermal properties(热力性质)of light which laid the foundation of the photon theory of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a whole.[5] He was visiting the United States when Adolf Hitler came to power in 1933, and did not go back to Germany, where he had been a professor at the Berlin Academy of Sciences. He settled in the U.S., becoming a citizen in 1940.[6] On the eve of World War II, he helped alert President Franklin D. Roosevelt that Germany might be developing an atomic weapon, and recommended that the U.S. begin similar research; this eventually led to what would become the Manhattan Project. Einstein was in support of defending the Allied forces, but largely denounced using the new discovery of nuclear fission as a weapon. Later, together with Bertrand Russell, Einstein signed the Russell–Einstein Manifesto(罗素爱因斯坦宣言), which highlighted the danger of nuclear weapons. Einstein was affiliated with(交往)the Institute for Advanced Study in Princeton, New Jersey, until his death in 1955. Einstein published more than 300 scientific papers along with over 150 non-scientific(反科学的)works.[5][7] His great intelligence and originality(创造力)have made the word "Einstein" synonymous(同义词)with genius.[8]

从爱因斯坦到霍金宇宙超星尔雅课后答案

吾爱吾师,吾更爱真理”这句话是谁说的?() ?A、苏格拉底 ?B、柏拉图 ?C、亚里士多德 ?D、色诺芬 我的答案:C 2 下列人物中最早使用“物理学”这个词的是谁?() ?A、牛顿 ?B、伽利略 ?C、爱因斯坦 ?D、亚里斯多德 我的答案:D 3 “给我一个支点,我就可以耗动地球”这句话是谁说的?()?A、欧几里得 ?B、阿基米德 ?C、亚里士多德 ?D、伽利略

我的答案:B 4 “格物穷理”是由谁提出来的?() ?A、张载 ?B、朱熹 ?C、陆九渊 ?D、王阳明 我的答案:B 5 相对论是关于()的基本理论,分为狭义相对论和广义相对论。?A、时空和引力 ?B、时空和重力 ?C、时间和空间 ?D、引力和重力 我的答案:A 6 欧洲奴隶社会比中国时间长,中国封建社会比西方时间长。我的答案:√ 7

阿基米德是欧几里得的学生的学生。 我的答案:对 8 西方在中世纪有很多创造。 我的答案:错 以下不属于伽利略的成就的是() ?A、重述惯性定律 ?B、发现万有引力 ?C、阐述相对性原理 ?D、自由落体定律 我的答案:B 2 “地恒动而人不知,譬如闭舟而行,不觉舟之运也”体现了什么物理学原理?()?A、相对性原理 ?B、惯性原理 ?C、浮力定理 ?D、杠杆原理 我的答案:A 3

哪位古希腊哲学家认为万物都是由原子构成的 ?A、亚里士多德 ?B、毕达哥拉斯 ?C、色诺芬 ?D、德谟克利特 我的答案:D 4 惯性定律认为物体在不受任何外力的作用下,会保持下列哪种运动状态?()?A、匀速曲线 ?B、加速直线 ?C、匀速直线 ?D、加速曲线 我的答案:C 5 《关于托勒密和哥白尼两大世界体系的对话》与《天体运行论》都是伽利略的著作我的答案:错 6 伽利略是奥地利物理学家,近代实验科学的先驱者。() 我的答案:×

爱因斯坦的科学贡献

爱因斯坦对科学的贡献 量子论 1905年3月写的论文《关于光的产生和转化的一个推测性的观点》,把普朗克1900年提出的量子概念扩充到光在空间中的传播,提出光量子假说,认为:对于时间平均值(即统计的平均现象),光表现为波动;而对于瞬时值(即涨落现象),光则表现为粒子。这是历史上第一次揭示了微观客体的波动性和粒子性的统一,即波粒二象性。以后的物理学发展表明:波粒二象性是整个微观世界的最基本的特征。这篇论文还把L. 玻耳兹曼提出的“一个体系的熵是它的状态的几率的函数”命名为“玻耳兹曼原理”。在论文的结尾,他用光量子概念轻而易举地解释了光电现象,推导出光电子的最大能量同入射光的频率之间的关系。这一关系10年后才由R.A.密立根予以实验证实。“由于他的光电效应定律的发现”,爱因斯坦获得了1921年的诺贝尔物理学奖。 分子运动论 1905年4月、5月和12月他写了3篇关于液体中悬浮粒子运动的理论。这种运动系英国植物学家R.布朗于1827年首先发现,称为布朗运动。爱因斯坦当时的目的是要通过观测由分子运动的涨落现象所产生的悬浮粒子的无规运动,来测定分子的实际大小,以解决半个多世纪来科学界和哲学界争论不休的原子是否存在的问题。3年后,法国物理学家J.B.佩兰以精密的实验证实了爱因斯坦的理论预测。这使当时最坚决反对原子论的德国化学家、“唯能论”的创始者F.W.奥斯特瓦尔德于1908年主动宣布:“原子假说已成为一种基础巩固的科学理论。 创新纪元的狭义相对论 1905年6月爱因斯坦写了一篇开创物理学新纪元的长论文《论动体的电动力学》,完整地提出狭义相对性理论。这是他10年酝酿和探索的结果,它在很大程度上解决了19世纪末出现的古典物理学的危机,推动了整个物理学理论的革命。为了克服新实验事实同旧理论体系之间的矛盾,以洛伦兹为代表的老一辈物理学家采取修补漏洞的办法,提出名目众多的假设,结果使旧理论体系更是捉襟见肘。爱因斯坦则认为出路在于对整个理论基础进行根本性的变革。他从自然界的统一性的信念出发,考察了这样的问题:牛顿力学领域中普遍成立的相对性原理(力学定律对于任何惯性系是不变的),为什么在电动力学中却不成立?而根据M.法拉第的电磁感应实验,这种不统一性显然不是现象所固有的,问题一定在于古典物理理论基础。他吸取了经验论哲学家D.休谟对先验论的批判和E.马赫对I.牛顿的绝对空间与绝对时间概念的批判,从考察两个在空间上分隔开的事件的“同时性”问题入手,否定了没有经验根据的绝对同时性,进而否定了绝对时间、绝对空间,以及“以太”的存在,认为传统的空间和时间概念必须加以修改。他把伽利略发现的力学运动的相对性这一具有普遍意义的基本实验事实,提升为一切物理理论都必须遵循的基本原理;同时又把所有“以太漂移”实验所显示的光在真空中总是以一确定速度□传播这一基本事实为提升为原理。要使相对性原理和光速不变原理同时成立,不同惯性系的坐标之间的变换就不可能再是伽利略变换,而应该是另一种类似于洛伦兹于1904年发现的那种变换。事实上,爱因斯坦当时并不知道洛伦兹1904年的工作,而且两人最初所提出的变换形式只有在□/□的一次幂上才是一致的;现在所说的洛伦兹变换,实质上是指爱因斯坦的形式。对于洛伦兹变换,空间和时间长度不再是不变的,但包括麦克斯韦方程组在内的一切物理定律却是不变(即协变)的。原来对伽利略变换是协变的牛顿力学定律,必须加以改造才能满足洛伦兹变换下的协变性。这种改造实际上是一种推广,是把古典力学作为相

爱因斯坦英语名言

爱因斯坦英语名言 一个从不犯错误的人,一定从来没有尝试过任何新鲜事物。 2. Intellectuals solve problems; geniuses prevent them. 智者解决问题,天才预防问题。 3. Science is a wonderful thing if one does not have to earn one’s living at it. 科学是个美妙的东西——如果无须靠它维生的话。 4. The hardest thing in the world to understand is the income tax. 世界上最让人难以理解的东西就是个人所得税。 5. I am convinced that He (God) does not play dice. 我确信上帝不玩赌博游戏。 6. Reality is merely an illusion, albeit a very persistent one. 现实不过是幻象,尽管这幻象挥之不去。 7. I never think of the future. It comes soon enough. 我从不去想未来。因为它来得已经够快的了。 8. The only thing that interferes with my learning is my education. 妨碍我学习的唯一障碍就是我的教育。

9. Two things are infinite: the universe and human stupidity; and I’m not sure abo ut the universe. 宇宙中唯有两件事物是无限的:宇宙的大小与人的愚蠢。我不能确定的是宇宙的大小。 10. I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones. 我不知道第三次世界大战会用哪些武器,但第四次世界大战中人们肯定用的是木棍和石块。 爱因斯坦英语名言 [篇2] 1、有时候一个人为不花钱得到的东西付出的代价最高。 sometimes one pays most for the things one gets for nothing. 2、人类一切和平合作的基础首先是相互信任,其次才是法庭和警-察一类的机构。 every kind of peaceful cooperation among men is primarily based on mutual trust and only secondly on institutions such as courts of justice and police. 3. 掰开人身上的偏见比掰开一个原子难的多。 it is harder to crack a prejudice than an atom. 4. 精神错乱:一遍又一遍地重复同一件事而期待不同的结果。

爱因斯坦的一生

爱因斯坦与物理学 年级:08电光系 班级:光电信息工程 姓名:朱彬 学号:080402169 【摘要】:爱因斯坦曾说:“我没有什么别的才能,只不过喜欢刨根问底地追究问题罢“时间、空间是什么,别人在很小的时候就搞清楚了,我智力发展迟缓,长大了还没有搞清楚,于是一直揣摩这个问题,结果也就比别人钻研得更深一些。”正是本着这种执着钻研与不懈追求真理的精神,才有了爱因斯坦个人的成就,才有了今天物理学的辉煌。 【关键词】:爱因斯坦狭义相对论广义相对论光电效应诺贝尔奖 一、伟大传奇的一生 爱因斯坦于1879年3月14日诞生在德国乌尔姆的一个殷实的家庭,很晚才学会说话,行动也很木讷不如同龄小孩子灵活,但是在母亲的教导下他会拉一段优美的小提琴。爱因斯坦初中时,全家迁往意大利,留他一个人在慕尼黑学习,他的学习状况并不是很好,也并不喜欢德国的学校教育制度,所以他于1895-1896年到瑞士阿劳中学学习。爱因斯坦一直对学校教育持批评态度,一生中除了在阿劳中学那一年的补习班外,对学校教育没有好印象。1896-1900年爱因斯坦在苏黎士工业大学教育系师资班学习物理学,在这个学习阶段,他仍旧不是很喜欢学校教育的呆板方式,成绩并不是很好,但是他热衷于每天下午做实验检验自己的学习成果。大学毕业后,爱因斯坦在就业中遇到了很多波折,同时他与第一任妻子米列娃的婚姻也走到了尽头,最后在他的同学格罗斯曼帮助下,他于1902年进入到伯尔尼发明专利局工作。在伯尔尼发明专利局工作期间,是爱因斯坦学术研究的黄金时期,他发表了多篇论文,“狭义相对论”也是这个时期的成果。爱因斯坦的后半生也一直为他所热爱的物理事业不断奋斗努力着,1909年应格罗斯曼的邀请,他进入苏黎士大学工作,主要是教授相对论。1914年他到柏林大学教学,成为柏林大学教授,德国物理研究所所长、院士。1915年,他提出广义相对论。1933年,爱因斯坦在美国普林斯顿大学高级研究所做研究员直到1955年4月18日逝世。 二、狭义相对论和广义相对论 关于光波的载体问题,物理学家们选择了亚里士多德的以太作为光波的载体。但是以太是静止的还是运动的?如果接受了以太是运动的,那么以太运动的速度是多少?许多物理学家试图解释以太相对于绝对空间静止这个问题,但都没有给出准确的解释。1905年,爱因斯坦独自得出了洛仑兹变换,他认为,洛伦兹变换是任意两个惯性系之间的变换,不存在绝对空间,一切运动都是相对的,V是相对速度。爱因斯坦的创新之处就在于他坚持相对性原理,认识到光速是绝对的。另一位物理学家彭卡莱于1904 年正确表述了“相对性原理”,并提到用光信号对钟,但认为得到的是地方时间,不是真实时间,他推测真空中光速c是常数,且可能是极限速度。但是都没有达到爱因斯坦的理论的程度,只有爱因斯坦认识到:(1)

从爱因斯坦到霍金的宇宙选修课课后习题答案

一、 1.提出惯性定律、相对性原理、自由落体定律地科学家是:伽利略. 2.“格物致知”出自儒家经典著作:《礼记》. 3.阿基米德在什么时候在亚历山大学院发展了几何学?公元前多年前. 4.属于伽利略地成就地是:重述惯性定律、用科学地语言阐述了相对性原理、自由落体定 律 5.希腊三哲是:苏格拉底、柏拉图、亚里士多德. 6.探究式地学习由西方传播而来.否 7.苏格拉底地《言论集》不是他本人亲自写地.是 8.爱因斯坦重要地科学发现和创新都是老年时期做地.否 9.亚里士多德是柏拉图最优秀地学生,他认为看到地东西不是真实地,真正真实地是看不 到地.否 10.相对论是关于时空和引力地基本理论.是 二、 1.力学三定律地提出者是:牛顿 2.公元前时期,西方都是()社会.奴隶 3.静力学和流体静力学地奠基人是:阿基米德 4.“格物致知”出自儒家经典著作:《礼记》 5.阿基米德在什么时候在亚历山大学院发展了几何学?公元前多年前. 6.相对论是关于时空和引力地基本理论.是 7.苏格拉底地《言论集》不是他本人亲自写地.是 8.自由落体实验是牛顿在比萨斜塔做地.否 9.探究式地学习方式由西方传播而来地.否 10.斜面实验球地加速度与球地材质有关.否 三、 1.热力学第一定律地发现者是:迈尔、焦耳、赫姆霍兹 2.“光量子说”是()提出地.爱因斯坦 3.第一个发现并表述了能量守恒定律地人是:迈尔 4.“格物致知”出自儒家经典著作:《礼记》 5.原子论地提出者是:微谟克利特 6.铁球和木球放在斜面上向下运动地加速度是不同地.否 7.苏格拉底地《言论集》不是他本人亲自写地.是 8.托马斯.扬提出了颜色地三色原理.是 9.热力学第二定律地发现者是卡诺和克劳修斯.是 10.相对论是关于时空和引力地基本理论.是 四、

爱因斯坦成功的秘诀读后感

爱因斯坦成功的秘诀读后感 爱因斯坦成功的秘诀读后感 读完某一作品后,大家心中一定是萌生了不少心得,这时最关键的读后感不能忘了哦。可是读后感怎么写才合适呢?以下是小编整理的爱因斯坦成功的秘诀读后感,欢迎大家分享。 爱因斯坦成功的秘诀读后感1 “成功之花,人们只惊异它开时的明艳,却不知当初它的芽,渗透了奋斗的汗泉,洒遍了牺牲的血雨。”读了《爱因斯坦成功的秘诀》这篇文章,我深受启发。这句话像火花一样,闪耀在我心间。 成功,这是一个多么令人向往的字眼;可是成功的秘诀到底在哪里呢?爱因斯坦对成功的秘诀作了科学的概括:w=X+Y+Z,即:成功等于艰苦劳动、正确的方法及少说空话。这也是爱因斯坦的成功之道。我认为,这三个条件中艰苦的劳动,即“勤”是首要的条件。因为勤能补“拙”。爱因斯坦小时候也不是超人的“天才”,甚至有人说他是个“笨蛋”。

可是促使“笨蛋”成为“天才”的,不正是这个“勤”字吗?爱因斯坦深信天才出于勤奋,他用勤奋去弥补自己的“笨拙”。为了彻底弄清一个问题,他比别人多花几倍时间,终于用汗水浇开了成功之花,对科学技术的发展做出了巨大的贡献。 对于“勤能补拙”我也有深深的体会。我有个同学琦琦,我俩一般大,经常在一起。人们说我比她聪明,平时背一篇课文,我总比她先会背。背完后把书·一扔,就算完事。琦琦却直到彻底背熟为止。结果,老师每次检查背诵,她都比我得分高。刚开始写作文,我也每次都比她写得好。后来,她对我说,她一定要把作文水平提高。因为她平时不怎么爱说话,所以我不相信她的作文会有进步。但她不管这些,坚持每天写日记,三天一篇作文。经过努力,她的作文水平果然提高了。上次学校作文竞赛,她超过了我,获得年级组的第一名。 我认识到:“勤能补拙”是一条颠扑不破的真理。我们每一个人都应该用勤奋去弥补自己的笨拙,用汗水浇开那绚丽的成功的花朵。 爱因斯坦成功的秘诀读后感2 “成功之花,人们只惊诧它现时的明艳,却不知道当初它的芽,浸透了奋斗的汗水,洒遍了牺牲的血雨。”读了《爱因斯坦成功的秘诀》这篇文章,使我深受启发,这句话像火花一样,绽放在我的心田。成功,这是一个多么令人向往的字

从爱因斯坦到霍金的宇宙课后习题答案

从爱因斯坦到霍金的宇宙2019尔雅满分答案物理学的起源 1 Physics这个词最先是谁想出的?(B) A、柏拉图 B、亚里士多德 C、欧几里得 D、阿基米德 2颐和园宝云阁的“物含妙理总堪寻”是由康熙题词。(X) “物理”一词在中国 1 谁认为“格物致知”中的“格”意思是“变革”?(D) A、朱熹 B、王阳明 C、王艮 D、毛泽东 2王阳明强调人心,良知,冉伟革去外物,良知自存。(对) 物理学的诞生 1 谁首先指出物理学是一门“实验的科学”、“测量的科学”?(B) A、阿基米德 B、伽利略 C、牛顿

2阿基米德的重要发现是(BC)。 A、自由落体定律 B、浮力定律 C、杠杆原理 D、相对性原理 3下列哪些定律是伽利略首先确认的?(ACD) A、相对性原理 B、杠杆原理 C、自由落体定律 D、惯性定律 “1642年”在物理学上的意义 1 牛顿的主要成就是(AB)。 A、力学三定律 B、万有引力定律 C、光的波动说 D、能量守恒定律 2库伦从介质的弹性振动导出了电磁学的基本方程组。(对) 3麦克斯韦从介质的弹性振动导出了电磁学的基本方程组。(对) 热学的发展 1 热力学的哪一条定律说"不能从单一热源吸热做功,而对外界不产生影响"?(B) A、第一定律

C、第三定律 D、第零定律 2开尔文提出不能从单一热源吸热做工而不产生其他影响。对 明朗天空的两朵乌云 1 爱因斯坦提出下列理论中的哪一个,用以解释光电效应?(D) A、量子论 B、光子说 C、波动说 D、光量子论 2瑞利—金斯曲线在短波波段与实验曲线完全符合,在长波波段变得无穷大。X 并非神童的爱因斯坦 1 爱因斯坦在苏黎世工业大学上学期间,其物理教授是(A)。 A、韦伯 B、卢瑟福 C、玻尔 D、狄拉克 求职不顺的爱因斯坦 1爱因斯坦从苏黎世工业大学毕业后曾向著名的物理学家奥斯特瓦尔德求职。对爱因斯坦的丰收年 127岁那年,是爱因斯坦的丰收年,他做出了如下的创新工作(ABD)。 A、光量子说

爱因斯坦的自我提醒

爱因斯坦的自我提醒 看到这个题目,你一定会想到,爱因斯坦每天都要自我提醒的一件事,应该是 他的物理学研究命题或者相关进展吧,其实并不是。 一个大科学家,用理性的视觉思考人生和自然界,他会想到什么,并要在一天 之中不止一次地提醒自己呢? 我每天上百次地提醒自己:我的精神生活和物质生活都依靠着别人(包括生者和死者)的劳动,我必须尽力以同样的分量来报偿我所领受了的和至今还在领受着的东西。——爱因斯坦 这不由得使我想起中国人的古老智慧,天人合一。天人合一自然包括自然界和 人类是一体的,人类本身更是一体的,你中有我,我中有你,你依靠我,我依 靠你,甚至可以跨越时间的限制。我们依然享用着古人留下来的智慧,世世代 代的人的生活经验和自然经验,积累自己,传播下来,直到当今我们的这一代,我们只是享用,这就是一种统一的整体。 如果抛开时间和空间的因素,那么所有的人就是生活在一个时空之内,共同生产,发展,互相帮助,借鉴,欣赏。每一个人都是创造财富的人,也都是享用 财富的人,包括精神财富和物质财富。 付出与回报之间,在爱因斯坦看来,应该是一种对等的关系,在中国古老的智 慧里,可以将其看做一种因果关系,你取了多少,就意味着曾经奉献了多少。 要么是人为地让其平衡,要么它本身会保持一种平衡,不管你是不是人为地在意。 能量守恒意味着能量的总体既不会多,也不会少,能量本身既不会凭空产生, 也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移 到其它物体,那么,价值本身,好像也具有着相似的特征,你既不能白白地索取,也不会白白地付出,总有一种对等的行为,与你遥相呼应。 如果我们不说的这么复杂,只是从社会学意义看这件事,那么爱因斯坦的这段话,至少说明他是一个懂得感恩的人。由此又联想到他的另一段话: 一个人的真正价值,首先取决于他在什么程度上和在什么意义上自我解放出来。——爱因斯坦 从自我中解放出来,并不是完全没有自我,而是不再以自我为中心,觉得自己 非常重要,而是客观地认知和接受自己只是万千分之一,享受着别人的劳动成果,也奉献着自己的微薄力量,不管你的成就如何大或者小,本质上都是一样的。

英语演讲————爱因斯坦

Albert Einstein's life Albert Einstein was born in Ulm, Germany in 1879. Einstein's father is a businessman, he has a production of electrical equipment factory. When children, Einstein is very quiet, he often alone to kill time. His language is slow and difficult to read. However, the things he was especially interested in the theory, and it often puts forward many problems. When Einstein was 5 years old, his father gave him a compass. He was surprised to find that the compass needle always points to the north, he is very curious, so he asked his father and his uncle is what causes the pointer to move. However, their answers to the magnetic and gravity are too difficult for the child, but Einstein still spends a lot of time thinking about the problem. Einstein won the Nobel prize for physics in 1921. His winning is not due to the relative theory, but because he found the law of the photoelectric effect. This discovery has driven the development of modern electronics, including radio and television. Einstein became a celebrity, but he felt very lonely, he almost no close friends. He wrote: the strange is that so many people know, but so lonely. I see in the nature of things and the profound, we understand only one or two of it. Einstein put his life in the last 25 years in the "unified field theory".

从爱因斯坦到霍金宇宙全部答案

赵峥教授的公开课《从爱因斯坦到霍金的宇宙》,主要内容是物理学史,重点是相对论,天文部分很多,以及乱入了文明的发展。作业是自己做的以及全部皆为手打。不得不说第一部分的最后几章,以及霍金与黑洞那里错过可惜了,其余看选择吧,这是个人这一学期唯一感兴趣的内容了。本文分章节。将全部放上。我同时放了一份在我的豆瓣 爱因斯坦头脑最清晰的时候是在什么时候? 青年 提出了浮力定理、杠杆原理、重心概念的人是谁? 阿基M德 最早用到物理学这个词的人物是? 亚里士多德 提出惯性定律、相对性原理、自由落体定律的科学家是谁? 伽利略 下列选项中属于伽利略的成就的是? 以上都是<重述惯性定律、用科学的语言阐述了相对性原理、自由落体定律) 物理这个词最早是公元300多年前,哪位科学家首次使用? 亚里士多德 提出杠杆原理的学者是? 阿基M德 格物穷理是我国哪位物理学家提出? 朱熹 首先进入封建社会的国家是 中国 微粒说的提出者是 牛顿 双缝的干涉实验完成者是 托马斯杨 希腊三哲不包括 阿基M德<包括苏格拉底、柏拉图和亚里士多德) 托马斯杨发现了散光的原因,转而研究光学,完成了双缝干涉实验,认识到光是波动,并提出了什么? 三原色原理 第一个完成双缝干涉实验的人是 托马斯杨 最早提出地心说的人是 亚里士多德 最早用到物理学这个词的人物是 亚里士多德 牛顿的贡献有 以上都是<力学三定律万有引力定律光的微粒说) 下列不是电磁学说时期的科学家的是 托马斯杨 原子论的提出这是 德谟克利特 热力学第三定律的发现者是

能斯特 下列不是热力学第一定律发现者的是 卡诺<发现者赫姆霍兹焦耳迈尔) 量子物理学的开创者是 普朗克 克劳修斯、开尔文发现了什么,从而认为热永远都只能从热处转到冷处? 热力学第二定律 热力学第一定律的发现者是 以上都是<赫姆霍兹焦耳麦尔) 第一个看出爱因斯坦聪明的人是 格罗斯蔓 第一个发现并表述了能量守恒定律的人是 迈尔 爱因斯坦在哪一年发表了5篇具有划时代的论文 1905年 量子论的提出者是 普朗克 吾爱吾师,吾更爱真理是谁说的 亚里士多德 爱因斯坦对哪一所中学评价很高 阿劳州立中学 迈克尔逊做迈克尔逊实验想要测量以太相对于地球的什么? 漂移速度 爱因斯坦的国籍是 美国和瑞士的双重国籍 爱因斯坦的丰收年是 1905年 托马斯杨发现了散光的原因,转而研究光学,完成了双缝干涉实验,认识到光是波动的,并提出什么? 三原色原理 爱因斯坦发表相对论时的国籍是 瑞士 1993年爱因斯坦离开德国去往哪个国家 美国 哪位女子以前曾帮爱因斯坦他抄笔记? M列娃 爱因斯坦的第几个儿子获得了精神病 2 阐述绝对零度内容的定理是 热力学第三定律 力学三定律的提出这是 牛顿 狭义相对论是哪部著作创立的 《论动体的电动力学》

爱因斯坦的物理学成就及影响

爱因斯坦的物理学成就及影响 爱因斯坦的物理学成就及影响 1905年3月,爱因斯坦发表了《关于光的产生和转化的一个试探性观点》,解释了光的本质,他认为光是由分离的能量粒子(光量子)所组成,并像单个粒子那样运动,把1900年普朗克(Max Planck,1858-1947)创立的量子论推进了一步,并为构成量子力学基石的微观粒子——光子的波粒二重性获得广泛接受铺平了道路。他用光量子概念轻而易举地解释了经典物理学无法解释的光电效应,推导出光电子的最大能量同入射光的频率之间的关系。这一关系10年后由美国实验物理学家罗伯特·爱德胡兹·密立根(Robert Andrews Millikan,1868-1953)的实验证实。爱因斯坦因为“光电效应定律的发现”这一贡献而获得了1921年度诺贝尔物理学奖。密立根也因为基本电荷和光电效应方面的实验研究而获得1923年度诺贝尔物理学奖。光电效应后来也成为光电子、光传感、LED、激光、光伏电池等诸多重要技术的基础。 1905年4月,爱因斯坦完成了《分子大小的新测定法》(翌年他正是以这篇论文,取得了苏黎世大学的博士学位)。1905年5月11日,他发表了另一篇用布朗运动解释微小颗

粒随机游走现象的论文《热的分子运动论所要求的静液体中悬浮粒子的运动》。这两篇论文的目的是通过观测由分子运动的涨落现象所产生的悬浮粒子的无规则运动,来测定分子的实际大小,以解决半个多世纪来科学界和哲学界争论不休的原子是否存在的问题。3年后,法国物理学家让·佩兰(Jean Baptiste Perrin,1870-1942)以精密的实验证实了爱因斯坦的理论预测,从而无可非议地证明了原子和分子的客观存在。爱因斯坦关于布朗运动中大量无序因子的规律性的研究成果,已成为当今金融数学的重要基础。 1905年6月30日,爱因斯坦向《物理年鉴》提交了《论动体的电动力学》一文,首次提出了狭义相对论基本原理,并提出了两个基本公理:“光速不变”以及“相对性原理”。1905年9月27日,他又向《物理年鉴》提交了一篇短文《物体的惯性同它所含的能量有关吗?》,作为狭义相对论最重要的一个推论:“物体的质量可以度量其能量”,质量守恒原理和能量守恒定律应当相互融合,质能可以相互转化,并导出了E=mc2的公式。质能相当性是原子核物理学和粒子物理学的重要理论基础,也为20世纪40年代实现核能的释放和利用开辟了道路。 1914年,爱因斯坦返回德国,进入普鲁士科学研究所从事科学研究,并兼任柏林大学教授。他坚信物理学的定律必须对于无论哪种方式运动着的参照系都成立。即在处于均

爱因斯坦简介和英语学习

爱因斯坦(Albert Einstein,1879-1955),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。 爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后被迫移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特别是理论天体物理学都有很大的影响。理论天体物理学的第一个成熟的方面——恒星大气理论,就是在量子理论和辐射理论的基础上建立起来的。爱因斯坦的狭义相对论成功地揭示了能量与质量之间的关系,解决了长期存在的恒星能源来源的难题。近年来发现越来越多的高能物理现象,狭义相对论已成为解释这种现象的一种最基本的理论工具。其广义相对论也解决了一个天文学上多年的不解之谜,并推断出后来被验证了的光线弯曲现象,还成为后来许多天文概念的理论基础。 爱因斯坦对天文学最大的贡献莫过于他的宇宙学理论。他创立了相对论宇宙学,建立了静态有限无边的自洽的动力学宇宙模型,并引进了宇宙学原理、弯曲空间等新概念,大大推动了现代天文学的发展。 生平简述 1879年出生于德国乌尔姆一个经营电器作坊的小业主家庭。一年后,随全家迁居慕尼黑。1894年,他的家迁到意大利米兰。1895年他转学到瑞士阿劳市的州立中学。1896年进苏黎世工业大学师范系学习物理学,1900年毕业。1901年取得瑞士国籍。1902年大学毕业后无法进入学术机构,只在瑞士伯尔尼专利局找到一份做审查员的临时工作,被伯尔尼瑞士专利局录用为技术员,从事发明专利申请的技术鉴定工作。但在那里,爱因斯坦被正规教育扼杀的科学激情终于重新迸发出来,轻松的工作让爱因斯坦得以继续致力于科学研究。他利用业余时间开展科学研究,在1905年,年近26岁的爱因斯坦连续发表了三篇论文(《光量子》、《布朗运动》和《狭义相对论》),在物理学三个不同领域中取得了历史性成就,特别是狭义相对论的建立和光量子论的提出,推动了物理学理论的革命。同年,以论文《分子大小的新测定法》,取得苏黎世大学的博士学位。爱因斯坦1908年兼任伯尔尼大学的编外讲师。1909年离开专利局任苏黎世大学理论物理学副教授。1911年任布拉格德语大学理论物理学教授,1912年任母校苏黎世联邦工业大学教授。1914年,应马克斯·普朗克和瓦尔特·能斯脱的邀请,回德国任威廉皇家物理研究所所长兼柏林大学教授,直到1933年。1920年应亨德里克·安东·洛伦兹和保耳·埃伦菲斯特的邀请,兼任荷兰莱顿大学特邀教授。第一次世界大战爆发后,他投入公开和地下的反战活动。1915年爱因斯坦发表了广义相对论。他所作的光线经过太阳引力场要弯曲的预言,于1919年由英国天文学家亚瑟·斯坦利·爱丁顿的日全食观测结果所证实。1916年他预言的引力波在1978年也得到了证实。爱因斯坦和相对论在西方成了家喻户晓的名词,同时也

爱因斯坦的成就及对物理界贡献

牛顿对物理学的贡献 摘要:牛顿是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学家、数学家和哲学家。他在1687年7月5日发表的不朽著作《自然哲学的数学原理》里用数学方法阐明了宇宙中最基本的法则——万有引力定律和三大运动定律。这四条定律构成了一个统一的体系,被认为是“人类智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物理界的科学观点,并成为现代工程学的基础。 关键词:个人简介经典力学天文学光学 一、个人简介:牛顿(1642年12月25日~1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。著有《自然哲学的数学原理》、《光学》、《二项定理》和《微积分》。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。 二.牛顿对力学的贡献 牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过大量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间是指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能

相关文档
最新文档