水泥搅拌桩计算法

水泥搅拌桩计算法
水泥搅拌桩计算法

搅拌桩之间有搭接,工程量如何计算呢

搅拌桩之间有搭接,工程量如何计算呢,是不是要分空桩和实桩,单位按米编制可以吗?空桩和实桩如何区分?重叠部分在编制清单是否要考虑?

答:编制工程量的原则应以计价规范中的计算规则执行。

按投影面积×实际深度(投影面积是要扣除两圆交叉重叠部分),一般按双头或三头为一组来计算。投影面积应该是一组的面积。一组与一组间的交叉重叠部分是不扣除的,这部分在定额里面考虑了。

有原位复打的,只计算一次体积。不能重复计算。要按水泥掺量的不同,分别计算。比较麻烦的就是如何区分是原位复打还是重叠交叉了,很多边角转弯的

地方,重叠相交的面积相当大!

根据浙江省建筑工程预算定额( 2003 版)桩基工程的工程量计算规则:深层水泥搅拌桩工程量按桩径截面积乘桩长计算。桩长按设计桩顶至桩底另加0.50m 计算;若设计桩顶标高至自然地坪小于 0.50m 或已达自然地坪时,另加长度应小于 0.50m 或不计。空搅部分的长度按设计桩顶至自然地坪的长度减去

另加长度计算。其工程量计算公式为:

水泥搅拌桩工程量=桩径截面积×(设计桩顶标高-设计桩底标高+另加

长度)×根数

空搅部分工程量=桩径截面积×(自然地坪标高-设计桩顶标高-另加长

度)×根数

1、对于单头水泥搅拌桩来说,桩径截面就是一个圆,所以桩径截面积=πr

2 。

注:式中 r 为圆的半径,π为圆周率。

2、对于双头水泥搅拌桩来说,其桩径截面是由两个圆相交而组成的图形(如图所示),所以桩径截面积应按两个圆面积之和减去重叠部分(由两个弓形组成)面积来计算,然而这个重叠部分面积,计算起来是比较麻烦的。

如果圆的半径 r 、两圆连心距d均为已知数据,假设圆心角为θ(未知),

图形中的三角函数关系为:

cos( θ /2) = ( d / 2 )/r

θ /2 = arccos[d/ ( 2r ) ]

∴θ= 2arccos[d/ ( 2r ) ]

根据平面几何和三角函数知识,且θ以弧度来计量,则可以推导出一个

较简便的弓形面积计算公式:

扇形 O 1 AB 面积=( 1/2 )r 2 ·θ

三角形 O 1 AB 面积=( 1/2 )r 2 · sin θ

∴ 弓形面积=扇形 O 1 AB 面积-三角形 O 1 AB 面积

=( 1/2 ) r 2 (θ- sin θ)

所以 , 对于双头水泥搅拌桩来说 :

其桩径截面积= 2 π r 2 - r 2 (θ- sin θ)= r 2 ( 2 π-θ

+ sin θ)

注:式中的θ必须用弧度来计量;计算时,可把计算器设置在弧度( RAD )状态;如θ为角度,只须乘以(π /180 )就可化为弧度。

双头水泥搅拌桩,桩径截面积计算举例:已知圆半径 r = 0.25m ,两圆连心距d= 0.40m ,则圆心角θ= 2arccos[d/ ( 2r ) ] = 2arccos[0.40/ (2 × 0.25 ) ] = 1.2870 (注:计量单位为弧度,一般可以不写),其桩径截面积= r 2 ( 2 π-θ+ sin θ)=0.25 2 ×( 2 π- 1.2870 +

sin1.2870 )= 0.3723m 2 。

3、三头水泥搅拌桩:待续。。。。。。。

相关资料:

1、一次成墙多头深层搅拌桩机及其施工方法。是由动力箱通过驱动机构连接若干根中空钻杆,每根钻杆按一字形排列,每根钻杆上分别滑动配合一滑套,每个滑套共固接在一固定约束装置上,且每根相邻钻杆的钻头在纵向上相互错位。施工中一次可形成一个单元墙,并按单元墙之间的尾首桩套接或搭接依次施工

2、三轴水泥土搅拌桩基坑内部被动区土体加固和临时围护侧的止水帷幕均采用三轴水泥土搅拌桩。三轴水泥土搅拌桩采用P32.5级新鲜普通硅酸盐水泥,基底以下部分水泥掺量为20%,水灰比1.5~2.0,桩体28天无侧限抗压强度

≥1.0MPa。三轴水泥土搅拌桩采用Φ850三轴搅拌桩设备进行施工,采用两喷两搅的施工工艺,止水帷幕采用套接一孔法施工,土体加固相互搭接250mm,在桩体范围内必须做到水泥搅拌均匀。桩体垂直度偏差不大于1/150,桩位偏差不

大于20mm。

有原位复打的,只计算一次体积。不能重复计算。要按水泥掺量的不同,分别计算。比较麻烦的就是如何区分是原位复打还是重叠交叉了,很多边角转弯的

地方,重叠相交的面积相当大。

4水泥搅拌桩软基处理

第四节:水泥搅拌桩软基处理 一、工程概况 根据设计桥梁两端范围内有需要使用水泥搅拌桩进行软基处理,设计桩长一般处理深度5.0~15.0m,局部最大出力深度不大于20m。水泥搅拌桩在平面上按等边三角形布置,桩距采用10.3~2.0m,在设计涵洞基底范围适当加密,桩径55cm,单桩每延米喷浆水泥用量约为65kg。因为其数量多,施工范围大,是本工程重要的组成部分,对工程进展,道路质量的影响较大,也是本工程监理需要加大现场旁站的部分,为后续工程路堤填筑的质量作好保证。 二、施工准备阶段监理工作细则和质量控制要点 1、现场平整 湿喷桩施工现场,首先应予清理、整平,整平后地面坡度不得大于2%,整平高程应符合设计要求;路基两侧必须开挖排水沟,保证湿喷桩施工期间施工现场不得被雨水、农田用水浸泡;在开挖地表后必须彻底清除地面上的石块、树根耕植土等一切障碍物,并用轻型压路机进行稳定碾压,测量地面高程报监理验收。场地低洼时,应先回填粘土,但不得回填杂质土,压实度宜≥85%且宜≤90%为好,如在河塘处需先进行排水、清淤、回填粘性土至场地平整面高程。 2、测量放样、复测、审核 湿喷桩施工承包人,应根据设计单位提交的施工图文件编制具体桩位位置平面图,并与设计图反复对照,确定无误后,将该桩位平面图作为开工报告的一部分向监理申报,经监理现场核对并审批后方可使用。施工前,现场监理应及时对施工承包人绘制的每个施工段落的桩位平面布置图进行审核,每个段落放好全部桩位后必须经过监理逐个复测,并用小木桩或竹片定位,且应做好醒目标记,便于在施工中寻找,严禁采用边施工边放样的施工方法,确保施工放样的准确性。 3、机械设备的检查 ⑴、深层搅拌桩施工设备严禁使用非定型产品或自行改装的设备,进场设备必须配备性能良好的能显示钻进电流变化的电流表,必须装备水泥浆量检测记录仪,包括桩深度测量、流量测量、水泥浆密度测量仪装置。机械进场后要认真检查每台湿喷桩机组的主要技术性能(包括湿喷钻机的加固深度、成桩直径、钻机钻速、提升速度、湿喷桩水泥浆的压力泵的压力和泵送能力),确保所用湿喷桩

三轴水泥搅拌桩的计算方法

工程量的计算(加固时整幅打桩,止水时套接一孔): 定额的工程量计算规则是按桩径截面积乘以桩长,采用多轴施工搅拌桩的工程量计算关键在于桩截面积的确定,仍采用“桩径截面积”则不可行,应该扣除桩径截面一次形成的重叠部位面积,如下图为三轴搅拌桩,一次成活三个桩径断面,应扣除两个部位的重叠面积。 设桩径为850mm,桩轴(圆心)矩为600mm,则每次成活桩截面积S为三个圆面积扣减4个重叠的弓形面积,计算方式为: 原面积: S1=(0.85/2)2×3.1416×3=1.7024m2 圆心角: θ=2×acos(0.3/0.425)=90.1983° 一个扇形面积:S2=(0.85/2)2×3.1416×90.1983/360=0.1423 m2三角形面积: S3=(0.4252-0.32)1/2×2×0.3/2=0.0903 m2 一个弓形面积: S4=S2-S3=0.1423-0.0903=0.052 m2 每次成活桩截面积: S=S1-4×S4=1.7024-0.052*4=1.495m2 套接一孔: 每幅桩平均断面积 为(1.4944+1.7024/3)/2=1.031m2

设桩径为650mm,桩轴(圆心)矩为450mm,则每次成活桩截面积S为三个圆面积扣减4个重叠的弓形面积,计算方式为: 原面积: S1=(0.65/2)2×3.1416×3=0.9955m2 圆心角: θ=2×acos(0.225/0.325)=92.3738° 一个扇形面积:S2=(0.65/2)2×3.1416×92.3738/360=0.085 m2三角形面积: S3=(0.3252-0.2252)1/2×2×0.3/2=0.0528 m2 一个弓形面积: S4=S2-S3=0.085-0.0528=0.0322 m2 每次成活桩截面积: S=S1-4×S4=0.9955-0.0322*4=0.8667m2 套接一孔: 每幅桩平均断面积 为: (0.9955+0.3318-0.0322*4)/2=0.599m2

搅拌桩水泥掺量计算

搅拌桩水泥掺量计算有关水泥土搅拌桩的计算 (一)搭接的水泥土搅拌桩每幅桩截面积的计算: 见每幅搅拌桩的截面积计算表(SMW工法)。 (二)水泥土搅拌桩水泥用量的计算: 根据上海地区的岩土工程勘察报告得知:土的重度(r0)在16~20KN/m3之间,大多为18KN/m3左右。当设计未表明被加固土体的重度时,土的重度按18KN/m3来计算水泥土搅拌桩的水泥用量。有的围护工程设计提出土的重度按19KN/m3计算。换算公式:1tf/m3=m3≈10KN/m3 18KN/m3÷10KN/m3=m3 加固土体的水泥用量=被加固土体的重度×水泥掺量 如:常用的水泥掺量为13%或15% 1、当水泥掺量为13%,土的重量按m3 水泥用量=m3×13%=m3=234kg/m3 即:加固1m3土体的水泥用量为234kg 2、当水泥掺量为15%,土的重量按m3 水泥掺量=m3×15%=m3=270kg/m3 即:加固1m3土体的水泥用量为270kg (三)每幅水泥土搅拌桩每m段的水泥用量计算: 1、当水泥掺量为13%,截面积按㎡ 每m段的水泥用量=234kg/m3×㎡×1m=

2、当水泥掺量为13%,常规截面积按㎡ 每m段的水泥用量=234kg/m3×㎡×1m= (四)水泥土搅拌桩的灰浆密度计算: 水泥密度3t/m3 水的密度1t/m3 1、当水灰比为 即:1t水泥:水两体拌和后的重量为 两体拌和后的体积=1/3m3+1m3= 灰浆密度=重量÷体积=÷=m3 2、当水灰比为 即:1t水泥:水两体拌和后的重量为 两体拌和后的体积=1/3m3+1m3= 灰浆密度=重量÷体积=÷=m3 (五)每幅水泥土搅拌桩每m段的浆量计算: 根据上述(三)和(四)可得知 1、当水灰比,水泥掺量13%,每幅桩截面积按㎡时,每m段的水泥用量为。1t水泥可拌制灰浆 即:1kg水泥可拌制灰浆 则:每m段浆量=×= 2、当水灰比,水泥掺量13%,每幅桩截面积按㎡时,每m段的水泥用量为。则:每m段浆量=×= 3、当水灰比,水泥掺量13%,每幅桩截面积按㎡时,每m段的水泥用量为。1t水泥可拌制灰浆

水泥搅拌桩在工程地基处理中的应用实践

水泥搅拌桩在工程地基处理中的应用实践 张南峰 在厦门岛南半部山前洼地,特别是山前洼地的边缘地带进行工程建设时,往往会遇到一幢建筑物的基础下,同时存在承载力高、变形性小的坡残积土与承载力低、变形性较大的极松砂层的极不均匀地基情况,给建筑物的地基基础设计造成很大的麻烦。本文通过总结在厦门一中职工宿舍工程中采用深层水泥搅拌桩处理这一类地基的成功实践,以起到抛砖引玉的作用。 工程概况: 厦门一中已建的职工宿舍楼座落在学校的东南角,育青路的北侧。该宿舍楼工程共有C、D、E、F幢楼。C、D幢布置在场地的北边,E、F幢布置在场地的南边。面临育青路,四幢楼均为8层框架结构的建筑物。总建筑面积9237m2。 拟建场地岩土条件: 已建场地处在花岗岩剥蚀残丘坡脚与丘间洼地两个微地貌单元上。地形由北向南西方向倾斜。在洼地中有小溪沟、溪流由东北流向西南,后经回填整平,可作为本工程场地。该场地上部为第四系土层所覆盖,下为伏燕山期粗粒花岗岩体,在勘探深度范围内场地岩土层有以下五种类型:杂填土层、冲洪积泥质中粗砂层、坡洪积砂质粘土层、残积砂质粘性土层、粗粒花岗岩强风化层。 地基处理方案的选择: 由于本工程四幢宿舍楼均为8层框架结构建筑物,桩荷载较大,杂填土层(厚度0.4~1.7m)不宜作为基础天然地基持力层,而泥质中粗砂层(厚度0~4m)属中高压缩性土,其承载力标准值仅100KP a,也不是建筑物基础理想的天然地基持力层。除这两层外,其它各土层可作为基础(天然地基或桩基)持力层。 1、C、D幢宿舍楼 该两幢宿舍楼部位因没有泥质中粗砂层,杂填土层厚度又不大,可以全部挖除。因此该两幢建筑物可直接采用以砂质粘土层为基础持力层的天然地基,不必进行地基处理。 2、E幢宿舍楼 该楼部位土层比较复杂,杂填土层下为2~4m厚的泥质中粗砂层。对该幢地基基础处理基本上有三种方案可选择:一是采用片筏基础,基础落在泥质中粗砂层上,但泥质中粗砂层厚度不一,相差2m,该层又属中高压缩性土,会产生均匀沉降,建筑物将会出现倾斜现象,故不可取。二是采用独立墩基础,该方案是将泥质中粗砂层挖除掉,然后用C15抛石砼墩基作为基础。考虑到泥质中粗砂层透水性好,且地下水位高于砂层,基础施工时,可能产生涌水,流沙等不良现象,给施工带来一定困难,开挖时须采取一些可靠的措施,而采取措施工程费用又要增加,故该方案无论从技术上,还是经济上来看,是大不可取。三是采用桩基础。该方案施工上既安全又可保证质量,但采用何种桩型,还得选择,下面再述。

关于三轴搅拌桩的计算方法

关于多轴水泥搅拌桩的计价释疑 当搅拌桩施工工艺与计价定额不同时,有关的工程量计算和计价规则也应随着调整, 工程量的计算: 定额的工程量计算规则是按桩径截面积乘以桩长,采用多轴施工搅拌桩的工程量计算关键在于桩截面积的确定,仍采用“桩径截面积”则不可行,应该扣除桩径截面一次形成的重叠部位面积,如下图为三轴搅拌桩,一次成活三个桩径断面,应扣除两个部位的重叠面积。 设桩径为850mm,桩轴(圆心)矩为600mm,则每次成活桩截面积S为三个圆面积扣减4个重叠的弓形面积,计算方式为: 原面积: S1=(0.85/2)2×3.1416×3=1.7024m2 圆心角:θ=2×acos(0.3/0.425)=90.1983° 一个扇形面积:S2=(0.85/2)2×3.1416×90.1983/360=0.1423 m2 三角形面积: S3=(0.4252-0.32)1/2×2×0.3/2=0.0903 m2 一个弓形面积: S4=S2-S3=0.1423-0.0903=0.052 m2 每次成活桩截面积: S=S1-4×S4=1.7024-0.052*4=1.4944m2 水泥的掺量:水泥掺量的问题主要是因水泥搅拌桩的“套打”工艺产生,一般设计往往只给出一个掺量比例,而没有考虑套打部位时重叠部位截面范围掺量比例的确定,特别是当采用整个桩径断面套打时,如三轴搅拌桩按整个桩径套打时,其断面情况如下图:

因水泥搅拌桩所谓的“套打”和搅拌不是分别计算的子目,假设设计要求水泥搅拌桩全断面“套打”,搅拌涉及的水泥掺入比仅简单规定为15%,故原设计的水泥掺入比是指一次成活时或多次成活后的标准要求不明确,如是前者,则“套打”部位如不考虑扣除一次成活扣除的弓形部位,上图计算3次处将为45%、计算2次部位为20%了?如为后者,而计算一次处却为不超过5%了,所以设计仅简单明确一个水泥掺入比例是不够的,应明确水泥掺入比例是指何中情况下的。 而且所谓的掺入水泥比例定额是按搅拌时地基土的容重考虑的,在第一次成活时地基土容重必定小于第二次成活时的地基土容重,所以,设计还应该明确搅拌桩成活后的地基土应该达到的容重,这样在造价计算时建施双方就不会有争议了。 一、三轴搅拌桩 1、 多排坝体 图1.1.1 1次成活计算1次 2次成活计算3次 1次成活计算2次 2次成活计算2次

水泥搅拌桩沉桩原因分析及处理方法

水泥搅拌桩沉桩原因分析及处理方法 问题:“两喷四搅”与“四喷四搅”的区别? 施工时,两种施工方法50kg/m的水泥用量如何控制? 请教设计或施工大师们:以下工艺流程应该是“两喷四搅”? 搅拌桩施工方法: 1)桩机定位、对中 放好搅拌桩桩位后,移动搅拌桩机到达指定桩位,对中。 2)调整导向架垂直度 采用经纬仪或吊线锤双向控制导向架垂直度。按设计及规范要求,垂直度小于1.0%桩长。 3)预先搅拌下沉 启动深层搅拌桩机转盘,待搅拌头转速正常后,方可使钻杆沿导向架边下沉边搅拌,下沉速度可通过档位调控,工作电流不应大于额定值。 4)拌制浆液 深层搅拌机预搅下沉同时,后台拌制水泥浆液,待压浆前将浆液放入集料斗中。选用水泥标号425#普通硅酸水泥拌制浆液,水灰比控制在0.45~0.50范围,按照设计要求每米深层搅拌桩水泥用量不少于50Kg。 5)喷浆搅拌提升 下沉到达设计深度后,开启灰浆泵,通过管路送浆至搅拌头出浆口,出浆后启动搅拌桩机及拉紧链条装置,按设计确定的提升速度(0.50~0.8m/min)边喷浆搅拌边提升钻杆,使浆液和土体充分拌和。 6)重复搅拌下沉 搅拌钻头提升至桩顶以上500mm高后,关闭灰浆泵,重复搅拌下沉至设计深度,下沉速度按设计要求进行。 7)喷浆重复搅拌提升 下沉到达设计深度后,喷浆重复搅拌提升,一直提升至地面。 8)桩机移位 施工完一根桩后,移动桩机至下一根桩位,重复以上步骤进行下一根桩的施工。 另: 一般规范都要求试桩,试桩的目的是为了寻求最佳的搅拌次数、确定水泥浆的水灰比、泵送时间、泵送压力、搅拌机提升速度、下钻速度以及复搅深度等参数,以指导下一步水泥搅拌桩的大规模施工。水泥搅拌桩的龄期90天,这对工期影响很大,不负实际操作。? 二喷四搅:是指钻头下钻到设定深度后上提,重提四次,其中第一,三次上提时喷浆。至于四喷四搅应该可以照此类推。 设计人员在地基天然含水量大于60%的情况下,从降低地基含水量考虑,常常选用喷粉法。由于地质条件千变万化,其中若存在淤泥含水量过大,采用喷粉法则可能出现沉桩问题。以下通过对采用喷粉法出现沉桩工程问题分析及提出处理方法与同行探讨。

水泥土搅拌桩的计算

二、有关水泥土搅拌桩的计算 (一)搭接的水泥土搅拌桩每幅桩截面积的计算: 见每幅搅拌桩的截面积计算表(SMW工法)。 (二)水泥土搅拌桩水泥用量的计算: 根据上海地区的岩土工程勘察报告得知:土的重度(r0)在16~20KN/m3之间,大多为18KN/m3左右。当设计未表明被加固土体的重度时,土的重度按18KN/m3来计算水泥土搅拌桩的水泥用量。有的围护工程设计提出土的重度按19KN/m3计算。 换算公式:1tf/m3=9.80665KN/m3≈10KN/m3 18KN/m3÷10KN/m3=1.8tf/m3 加固土体的水泥用量=被加固土体的重度×水泥掺量 如:常用的水泥掺量为13%或15% 1、当水泥掺量为13%,土的重量按1.8t/m3 水泥用量=1.8t/m3×13%=0.234t/m3=234kg/m3 即:加固1m3土体的水泥用量为234kg 2、当水泥掺量为15%,土的重量按1.8t/m3 水泥掺量=1.8t/m3×15%=0.270t/m3=270kg/m3 即:加固1m3土体的水泥用量为270kg (三)每幅水泥土搅拌桩每m段的水泥用量计算: 根据每幅搅拌桩的截面积计算表(SMW工法),φ700mm的每幅桩截面积为0.70224549㎡,计算时按0.702㎡。 1、当水泥掺量为13%,截面积按0.702㎡ 每m段的水泥用量=234kg/m3×0.702㎡×1m=164.27kg 2、当水泥掺量为13%,常规截面积按0.71㎡ 每m段的水泥用量=234kg/m3×0.71㎡×1m=166.14kg (四)水泥土搅拌桩的灰浆密度计算: 水泥密度3t/m3水的密度1t/m3 1、当水灰比为0.5 即:1t水泥:0.5t水两体拌和后的重量为1.5t 两体拌和后的体积=1/3m3+0.5/1m3=0.83m3 灰浆密度=重量÷体积=1.5t÷0.83m3=1.8t/m3 2、当水灰比为0.55 即:1t水泥:0.55t水两体拌和后的重量为1.55t 两体拌和后的体积=1/3m3+0.55/1m3=0.883m3 灰浆密度=重量÷体积=1.55t÷0.883m3=1.755t/m3 (五)每幅水泥土搅拌桩每m段的浆量计算: 根据上述(三)和(四)可得知 1、当水灰比0.5,水泥掺量13%,每幅桩截面积按0.702㎡时,每m段的水泥用量为164.27kg。1t水泥可拌制灰浆0.83m3 即:1kg水泥可拌制灰浆0.83L 则:每m段浆量=0.83L×164.27=136.89L 2、当水灰比0.5,水泥掺量13%,每幅桩截面积按0.71㎡时,每m段的水泥用量为166.14kg。则:每m段浆量=0.83L×166.14=138.45L 3、当水灰比0.55,水泥掺量13%,每幅桩截面积按0.71㎡时,每m段的水泥用量为166.14kg。1t水泥可拌制灰浆0.883m3

搅拌桩水泥掺量计算

搅拌桩水泥掺量计算 有关水泥土搅拌桩的计算 (一)搭接的水泥土搅拌桩每幅桩截面积的计算: 见每幅搅拌桩的截面积计算表(SMW工法)。 (二)水泥土搅拌桩水泥用量的计算: 根据上海地区的岩土工程勘察报告得知:土的重度(r0)在16~20KN/m3之间,大多为18KN/m3左右。当设计未表明被加固土体的重度时,土的重度按 18KN/m3来计算水泥土搅拌桩的水泥用量。有的围护工程设计提出土的重度按19KN/m3计算。 换算公式:1tf/m3=9.80665KN/m3≈10KN/m3 18KN/m3÷10KN/m3=1.8tf/m3 加固土体的水泥用量=被加固土体的重度×水泥掺量 如:常用的水泥掺量为13%或15% 1、当水泥掺量为13%,土的重量按1.8t/m3 水泥用量=1.8t/m3×13%=0.234t/m3=234kg/m3 即:加固1m3土体的水泥用量为234kg 2、当水泥掺量为15%,土的重量按1.8t/m3 水泥掺量=1.8t/m3×15%=0.270t/m3=270kg/m3 即:加固1m3土体的水泥用量为270kg (三)每幅水泥土搅拌桩每m段的水泥用量计算: 根据每幅搅拌桩的截面积计算表(SMW工法),φ700mm的每幅桩截面积为 0.70224549㎡,计算时按0.702㎡。 1、当水泥掺量为13%,截面积按0.702㎡ 每m段的水泥用量=234kg/m3×0.702㎡×1m=164.27kg 2、当水泥掺量为13%,常规截面积按0.71㎡ 每m段的水泥用量=234kg/m3×0.71㎡×1m=166.14kg (四)水泥土搅拌桩的灰浆密度计算: 水泥密度3t/m3 水的密度1t/m3 1、当水灰比为0.5 即:1t水泥:0.5t水两体拌和后的重量为1.5t 两体拌和后的体积=1/3m3+0.5/1m3=0.83m3 灰浆密度=重量÷体积=1.5t÷0.83m3=1.8t/m3 2、当水灰比为0.55 即:1t水泥:0.55t水两体拌和后的重量为1.55t 两体拌和后的体积=1/3m3+0.55/1m3=0.883m3

软基处理—水泥搅拌桩施工工艺

六、施工工艺及方法 (一)、施工准备及测量放样 搅拌桩施工前,备齐施工机械机具和材料,接通电力,施工劳力进场,进行需施作喷浆作业地点的地面表皮清除,查明地下线路管道情况后进行场地平整,桩位放线,一切准备就绪后,进行搅拌桩作业。 1、场地清理:施工前,应按技术规范要求进行场地清理。清理后的场地应整平,填写报验单,经监理工程师验收合格签字确认后,方可进行下道工序施工。 2、布桩图:开工前,根据施工设计图按各分段里程画出布桩图。布桩图上应标明线路中心、里程、路基底宽线、每个桩应编号、量出设计桩长,布桩图报设计单位,监理工程师,确定验收确认后,方可施工。 3、测量放样:对设计单位移交的导线点,水准点,施工前会同甲方和监理工程师进行复核,确认无误后使用。测量人员按施工设计图,进行搅拌桩桩位、原地面标高、孔口标高等有关测量放样工作,测量放样记录及布桩图等,应报请甲方和监理工程师复核抽查,并填写测量放样报验单,经甲方和监理工程师审查签认。 4、材料:搅拌桩施工采用加固料为水泥,其质量、规格应符合设计要求,并具有出厂质保单及出厂试验报告,确保在有效期内使用,严禁使用过期、受潮、结块、变质的劣质水泥。运到工地的加固料(水泥),应对水泥质量进行抽样检验,抽样试验频率根据规范要求及监理工程师意见定,一般要求每批量100吨最少抽检1组。试验结果报监理工程师签认后方可投入使用。 5、水泥土强度试验:施工前应详细了解各施工现场的地质情况,选取有代表性的土层位置,钻孔取出一定数量的试样土进行必要的软土物理性质、含水量、有机质含量试验和水泥土配合比强度试验,以验证软土的性质和设计的水泥土(搅拌桩)强度能否达到要求。试验结果均应及时以书面报告形式提交甲方及监理工程师审查核实,如与原地质钻探资料和设计要求不符,应通知设计方。 6、施工工艺试桩 (1)、搅拌桩施工前必须分区段进行工艺试桩,以掌握适用该区段的成桩经验及各种操作技术参数。成桩工艺试验桩不宜小于5根。 (2)、工艺试桩前,书面通知监理部门派员参加。工艺试桩结束后,提交工艺试桩成果报告,并经监理工程师审查批准后,作为该区段搅拌桩施工的依据,无监

三轴搅拌桩的计算方法

三轴搅拌桩的计算方法文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

关于多轴水泥搅拌桩的计价释疑当搅拌桩施工工艺与计价定额不同时,有关的工程量计算和计价规则也应随着调整, 工程量的计算: 定额的工程量计算规则是按桩径截面积乘以桩长,采用多轴施工搅拌桩的工程量计算关键在于桩截面积的确定,仍采用“桩径截面积”则不可行,应该扣除桩径截面一次形成的重叠部位面积,如下图为三轴搅拌桩,一次成活三个桩径断面,应扣除两个部位的重叠面积。 设桩径为850mm,桩轴(圆心)矩为600mm,则每次成活桩截面积S 为三个圆面积扣减4个重叠的弓形面积,计算方式为: 原面积: S1=(2)2××3=1.7024m2 圆心角:θ=2×acos=° 一个扇形面积:S2=(2)2××360=0.1423 m2 三角形面积: S3=0.0903 m2一个弓形面积: S4=S2-S3=0.052 m2每次成活桩截面积: S=S1-4×S4=1.4944m2水泥的掺量:水泥掺量的问题主要是因水泥搅拌桩的“套打”工艺产生,一般设计往往只给出一个掺量比例,而没有考虑套打部位时重叠部位截面范围掺量比例的确定,特别是当采用整个桩径断面套打时,如三轴搅拌桩按整个桩径套打时,其断面情况如下图: 1次成2次成 2次成 1次成

因水泥搅拌桩所谓的“套打”和搅拌不是分别计算的子目,假设设计要求水泥搅拌桩全断面“套打”,搅拌涉及的水泥掺入比仅简单规定为15%,故原设计的水泥掺入比是指一次成活时或多次成活后的标准要求不明确,如是前者,则“套打”部位如不考虑扣除一次成活扣除的弓形部位,上图计算3次处将为45%、计算2次部位为20%了如为后者,而计算一次处却为不超过5%了,所以设计仅简单明确一个水泥掺入比例是不够的,应明确水泥掺入比例是指何中情况下的。 而且所谓的掺入水泥比例定额是按搅拌时地基土的容重考虑的,在第一次成活时地基土容重必定小于第二次成活时的地基土容重,所以,设计还应该明确搅拌桩成活后的地基土应该达到的容重,这样在造价计算时建施双方就不会有争议了。 一、三轴搅拌桩 1、多排坝体 图1.1.1 图1.1.2 1)、大幅桩截面积为:S =<(÷360)×××1/4+×>×2+(÷360× 1 2)×××1/4+××2≈或3×××1/4-((90/360)×××1/×)×4≈(注1)

水泥搅拌桩复合地基加固处理

水泥搅拌桩复合地基加固处理 【摘要】由于三环东路拼宽,新旧路基之间势必会产生沉降差,本次采用水泥搅拌桩复合地基处理方式进行加固,以期达到工后容许沉降量。 【关键词】1、导言 本项目位于嘉兴市湘家荡区域,随着嘉兴市城乡一体化建设和湘家荡区域“两分两换”试点工作的整体推进,湘家荡区域开发建设已全面展开,湘家荡区域加快路网建设已迫在眉睫,尤其是位于三环东路东侧的雀墓桥村半墩村安置房工程(湘都公寓暂名)的建设,给当地交通带来较大压力。根据《嘉兴市湘家荡区域总体规划》,该项目位于湘家荡四大分区结构中生活配套区,三环东路西侧、锦带河路北侧规划有学校、居民小区等主要交通人群。因此,该区域交通需求急剧增加,本工程的建成可以在很大程度上解决其周边区域的出行问题,加强本区域与外围的联系。 由于三环东路实施拼宽,新旧路基之间势必会产生沉降差。采取何种加固方式,尽可能减少产生其影响,是本次研究的重点。设计根据已有的地质勘察资料,按照相应的复合地基规程进行技术处理,达到工后容许沉降量。 2、基础资料 (1)路面高度根据左匝道终点标高为4.4m,考虑桥梁纵坡的影响,设本加固区的路面一般高度为4.7m,根据《地勘》之JT4处路面原状标高为2.27m,根据设计人员对道路路基的加固处理方式,本次拼宽的路面厚度为4.7-2.27+0.3=2.73m,结构层平均重度γ=23KN/m3。 (2)容许工后沉降为10cm,工后沉降基准期为180个月(15年)。 (3)加宽宽度为4.25m,两侧放坡1:1.5,加固宽度为4.25+(4.7-2.27)×1.5×2=11.6m; (4)沉降修正系数参考《土力学》; (5)地下水位位置为0.75m; (6)地基各层物理力学指标见表2-1: 表2-1

水泥土搅拌桩的施工质量问题和解决方法

第23卷第6期 岩 土 力 学 Vol.23 No.6 2002年12月 Rock and Soil Mechanics Dec. 2002 收稿日期:2001-10-15 作者简介:何开胜,男,1963年生,博士,高级工程师。南京水利科学研究院土工研究所工作,从事软土地基处理和土工数值分析研究。  文章编号:1000-7598-(2002) 06-0778-04 水泥土搅拌桩的施工质量问题和解决方法 何开胜  (南京水利科学研究院土工研究所,江苏 南京 210024)    摘 要:介绍了水泥土搅拌桩在我国的应用情况和可行性、危机性,指出了当前搅拌桩施工质量上存在的搅拌不均和桩身不连续问题,分析了出现质量问题的3方面原因:规范检测方法严重滞后;成桩工艺不合理;施工管理混乱,并针对性的提出了3大对策和9项工艺改进措施。 关 键 词:水泥土搅拌桩;施工工艺;质量问题;对策 中图分类号:TU 472.3+6 文献标识码:B Present construction quality problem of deep mixing cement-soil piles and solving measures He Kai-sheng ( Geotechnical Department Nanjing Hydraulic Research Institute ,Nanjing 210024, China ) Abstract: The application, feasibility and crisis of cement deep mixing piles are introduced. The mixing inhomogeneity and discontinuity along pile length in the present construction quality are pointed out. The reasons resulting in quality problem are analyzed as 3 aspects, i.e. severely delayed quality inspecting methods in the code, irrationality of construction techniques, disordered construction supervision. Then 3 kinds of countermeasures and 9 kinds of innovative approaches in construction techniques are put forward.  Key words: cement deep mixing pile ;construction techniques ;quality problem ;countermeasure 1 搅拌桩在我国的应用情况和可行性 1.1 搅拌桩工法的可行性  国外海上自动化程度很高的搅拌船最大施工深度已达海平面下70 m ,陆上加固深度也达40 m [1]。在地基的5种主要加固方法(置换法、降水法、致密法、固化法和加筋法)中,灌浆法和搅拌桩法是固化法的代表,经常被使用,且认为是以上加固技术中最有效的技术[2] 。  国内搅拌桩加固深度一般在15 m 左右,并曾有“深层搅拌桩属于柔性桩,其有效作用桩长只能达到15 m ”的观点,原因是搅拌桩施工质量不佳引起荷载难以向下传递。近几年,笔者接触了较多的搅拌桩工程,成功研制和应用了长达27 m 的超长搅拌桩,取得一些经验和认识[3~10]。实践证明,只 要施工设备和施工工艺适当,管理措施得力,现有设备完全可以在软土中将搅拌桩做到长达27 m ,复合地基承载力达240 kPa 以上。 1.2 搅拌桩在我国的生存危机  自1984年在我国投入批量生产后,水泥土搅拌桩以其低廉的价格、较快的施工速度、灵活的布桩形式和水泥掺入量,在土木建筑的软土地基处理中得到了广泛应用,节省了巨额的投资。但是,随着搅拌桩施工队伍的迅速发展,素质参差不齐,而搅拌桩工法的成败关键是水泥和土搅拌的均匀程度,施工中稍有不慎,就会出现水泥富集块或桩身不连续的质量问题,而导致工程事故。随着国内许多豆腐渣工程的暴露及其造成的严重后果,这几年时而发生的搅拌桩工程事故已严重影响了其生存空间,使其不断受到设计、业主和建设主管部门的质疑甚至

水泥搅拌桩软基处理施工方案

水泥搅拌桩软基处理施工方案 第一章 工程概况 ************* 公路改建工程 (*** 段)第*标段,起点桩号为 K10+25,, 向南经过前吴,终点位于上洋村附近,桩号为 K28+48,采用一级公路标准 设计,设计速度80km/h ,路基宽度为26m ,双向四车道,路幅布置为:中 央分隔带宽度为 2 米,行车道宽度为 2*2*3.75 米,路缘带宽为 2*0.5 米,硬 路肩宽为2*3.5米,土路肩宽为2*0.5米。桥梁净宽2x 11.5m ,涵洞与路基 同宽,设计荷载:公路一I 级,本项目的建设可改善和恢复公路全线公路功 能及服务水平,减轻国道、省道等公路的交通压力,完善公路网布局,提升 城市形象。 本合同段路基清表25万m ,挖方15.07万m (包括非适用性材料挖方 及改河、改渠、改路挖方),填方45.03万m (包括改河、改渠、改路填筑 及挖除淤泥后的清宕渣回填、软基处理的清宕渣垫层、挡土墙垫层及墙后回 填宕渣等),软基处理路段总长度约6.8km ,占全线约96.1%。因此,路基基 本上全线填筑,普遍填筑高度在 2.0m 左右,局部桥头地段路基填筑高度大 于等于 3.0m 。 本标段位于温黄平原,局部分部有丘陵,地貌类型为海积平原和丘陵, 软土路段地基地表分步:黄色可塑状黏土层(俗称“硬壳层” ),除河塘及人 工破坏路段外均有分部,厚度0-3.1m ;其下为流塑状、高压缩性软土层,厚 度在 5.3-20.3m ;淤泥层下分布为淤泥质粉质黏土,厚度 6.2-28.2m ,物理 力学性质一般,本项目沿线软土深度均在 12米以上。 各软土层主要物理力学性质见下表: 测区软土层物理力学性质指标一览表 ********** ***** 公路改建工程( *** 段)第 * 合同段

水泥土搅拌桩的施工质量问题和解决方法

水泥土搅拌桩的施工质量问题和解决方法 1.搅拌桩在我国的应用情况和可行性 1.1搅拌桩工法的可行性 国外海上自动化程度很高的搅拌船最大施工深度已达海平面下70 m,陆上加固深度也达40 m。在地基的5种主要加固方法(置换法、降水法、致密法、固化法和加筋法)中,灌浆法和搅拌桩法是固化法的代表,经常被使用,且认为是以上加固技术中最有效的技术。 国内搅拌桩加固深度一般在15 m左右,并曾有“深层搅拌桩属于柔性桩,其有效作用桩长只能达到15 m”的观点,原因是搅拌桩施工质量不佳引起荷载难以向下传递。近几年,笔者接触了较多的搅拌桩工程,成功研制和应用了长达27 m的超长搅拌桩,取得一些经验和认识。实践证明,只要施工设备和施工工艺适当,管理措施得力,现有设备完全可以在软土中将搅拌桩做到长达27 m,复合地基承载力达240 kPa以上。 1.2搅拌桩在我国的生存危机 自1984年在我国投入批量生产后,水泥土搅拌桩以其低廉的价格、较快的施工速度、灵活的布桩形式和水泥掺入量,在土木建筑的软土地基处理中得到了广泛应用,节省了巨额的投资。但是,随着搅拌桩施工队伍的迅速发展,素质参差不齐,而搅拌桩工法的成败关键是水泥和土搅拌的均匀程度,施工中稍有不慎,就会出现水泥富集块

或桩身不连续的质量问题,而导致工程事故。随着国内许多豆腐渣工程的暴露及其造成的严重后果,这几年时而发生的搅拌桩工程事故已严重影响了其生存空间,使其不断受到设计、业主和建设主管部门的质疑甚至禁止,大有“搅拌桩恐惧症”之倾向。 1.3关于湿喷和干喷 深层搅拌时的喷浆方式有干喷和湿喷二种,前者又称粉喷桩。从地基含水率的角度出发,干喷显然要好于湿喷。但是,干喷时出灰孔容易堵塞,其水泥土均匀性往往比湿喷差。因此,国外海上的搅拌桩都只使用湿喷,在陆地上则二者均有。国内这个问题比较突出,由此造成干喷桩的质量问题比湿喷桩更多、更严重。本文内容主要针对湿喷方法。 2搅拌桩施工质量问题和产生原因 2.1当前搅拌桩成桩质量问题 一般认为,含水率高的软土中水泥土桩体的强度较低;有机质含量高或呈酸性的土层中桩体强度也很低,因其阻碍水泥的水化反应,影响水泥土强度增长。依据搅拌桩规范,当决定用搅拌桩处理地基时,先要在室内标准条件下制备不同配比的水泥土试件,进行不同龄期强度试验,确定合适的水泥掺量和外加剂,再依据90 d龄期的试块强度标准值来计算单桩竖向承载力。国内工程开工前几乎都依规范做了室内配比试验,获得或推得90 d试块强度,符合要求后才进行搅拌桩施工。所以,工程桩出问题,一般不是土质原因。 从国内事故工程中的搅拌桩桩身钻孔取芯结果可以看出,这些桩

水泥搅拌桩软基处理施工方案

***************公路改建工程(***段)第*合同段 水泥搅拌桩软基处理施工方案 第一章工程概况 *************公路改建工程(***段)第*标段,起点桩号为K10+25,,向南经过前吴,终点位于上洋村附近,桩号为K28+48,采用一级公路标准设计,设计速度80km/h,路基宽度为26m,双向四车道,路幅布置为:中央分隔带宽度为2米,行车道宽度为2*2*3.75米,路缘带宽为2*0.5米,硬路肩宽为2*3.5米,土路肩宽为2*0.5米。桥梁净宽2×11.5m,涵洞与路基同宽,设计荷载:公路—Ⅰ级,本项目的建设可改善和恢复公路全线公路功能及服务水平,减轻国道、省道等公路的交通压力,完善公路网布局,提升城市形象。 本合同段路基清表25万m2,挖方15.07万m3(包括非适用性材料挖方及改河、改渠、改路挖方),填方45.03万m3(包括改河、改渠、改路填筑及挖除淤泥后的清宕渣回填、软基处理的清宕渣垫层、挡土墙垫层及墙后回填宕渣等),软基处理路段总长度约6.8km,占全线约96.1%。因此,路基基本上全线填筑,普遍填筑高度在2.0m左右,局部桥头地段路基填筑高度大于等于3.0m。 本标段位于温黄平原,局部分部有丘陵,地貌类型为海积平原和丘陵,软土路段地基地表分步:黄色可塑状黏土层(俗称“硬壳层”),除河塘及人工破坏路段外均有分部,厚度0-3.1m;其下为流塑状、高压缩性软土层,厚度在5.3-20.3m;淤泥层下分布为淤泥质粉质黏土,厚度6.2-28.2m,物理力学性质一般,本项目沿线软土深度均在12米以上。 各软土层主要物理力学性质见下表: 测区软土层物理力学性质指标一览表

水泥搅拌桩水泥浆比重和水灰比的计算

水泥搅拌桩水泥浆比重和水灰比的计算 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

水泥搅拌桩水泥浆比重和水灰比的计算 水泥搅拌桩施工中的水灰比一般是设计给出。大体的范围介于0.4~0.5之间。这个假如是0.5来推算一些公式,供大家参考使用。 一、水泥浆比重的概念 1、水泥浆比重,是指水泥浆的重量与体积之比。比如是水灰比是0.5,那么我们可以计算出水泥浆的比重如下: 假如是水是1,那么水泥是2,水的体积是1,水泥的体积是2/3.1(3.1是水泥的比重), 这样计算出水泥浆的比重为: (1+2)/(1+(2/3.1))=1.823 2、现场监测根据水泥浆的比重计算水灰比公式 现场水泥浆如何测算其水灰比,采用下面的公式很有用的。 我们使用NB-1水泥浆比重仪测量水泥浆的比重,然后反算这种水泥浆的水灰比。假如现场测量的水泥浆的比重为 x,设定水灰比为n,公式如下(推算过程略): n=(3.1-x)/(3.1*(X-1)) 我们可以验证一下。我们假如测量的水泥浆的比重是1.823,那么计算水灰比就是: 1.277/ 2.551=0.50 ,就是0.5了与前面计算是一致的。 好了,这个供大家参考。 给大家一个nb-1水泥浆比重计使用说明 一、用途:

NB-1型泥浆比重计是用于测定比重的仪器,其单位为克/立方厘米。二、主要技术特性: 测量范围从0.96~3克/立方厘米,刻度分度值为0.01克/立方厘米,泥浆杯的容量为140立方厘米。 三、结构简要说明: 本型泥浆比重计是不等臂杠杆式仪器,它的主要部件,如图所示。 四、使用简要说明: 本泥浆比重计使用时,须将泥浆注入(3)泥浆杯内,齐平杯口为止,不要留有气泡,将杯盖(4)轻轻盖上,多余泥浆和空气即从杯盖中间小孔中排出,再将溢出的泥浆揩刷干净。然后把(1)杠杆的主刀口(2)放到底座(7)的主刀垫(8)上去,将砝码(6)缓缓移动,当水泡位于中央时,杠杆呈水平状态,砝码左侧所示刻度,即为泥浆比重。 如需测得泥浆比重2~3克/立方厘米范围时,需将平衡圆柱盖旋开(11),然后将平衡重锤(10)放入,旋上螺纹盖即可测得。(测量方法及步骤同上)仪器使用后应冲洗揩刷干净。 五、校验方法: 检验仪器是否准确,可在泥浆杯中注满蒸馏水,用同样方法测量所测得比重如为1,则表时比重计是准确的。如果测得结果不为1,则可将比重计的平衡圆柱盖拧开,增减圆柱内的金属颗粒,使所测量的比重为1即可。 六、外形尺寸: 本泥浆比重计所占体积为:500×100×100毫米

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

浅析三轴水泥搅拌桩水泥用量及注浆量控制和 工程量的计算 The manuscript was revised on the evening of 2021

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算 本文摘自中国论文网,原文地址:摘要:根据型钢水泥土搅拌墙技术规程 JGJ199-2010,结合工程实例阐述三轴水泥搅拌桩施工过程中水泥用量及注浆量的计算和现场控制措施,以及根据浙江省市政工程预算定额(2010)及其定额解释阐述三轴水泥搅拌桩工程量的计算方法,为省内类似工程施工提供参考。中国论文网关键词:三轴水泥搅拌桩水泥用量及水泥浆量计算与控制工程量计算 中图分类号:文献标识码:A 文章编号: 三轴水泥搅拌桩就是利用新型的三轴搅拌桩机就地利用三轴螺旋式或螺旋叶片式两种搅拌机头钻进旋转切削土体,同时在其中两轴钻头端部将水泥浆液喷入土体,并在中轴钻头端部喷入高压空气,对水泥土进行充分搅拌,并置换出部分水泥土浆。在完成的三轴水泥搅拌桩内插入H型钢,就是型钢水泥土搅拌墙(一般在搅拌桩施工结束后30分钟内,再将H型钢插入搅拌桩体内,固化后形成水泥土“地下连续墙”墙体)。其主要特点是构造简单,止水性能好,工期短,造价低,环境污染小,特别适合城市建设中的深基坑工程。 型钢水泥土搅拌墙在市政工程的应用比较普遍,如管道沟槽的开挖、地铁车站的出入口基坑、过江隧道及城市地下通道的明挖段的围护结构等;三轴水泥土搅拌桩单独作为截水帷幕,具有土层适应性强、截水性能好、施工速度快、造价低等特点,在杭州粉土地区应用广泛,已基本取代高压旋喷桩;在软土地基上,采用三轴水泥土搅拌桩加固土体的效果明显优于普通水泥土搅拌桩,在开挖深度较深、环境保护要求严格的工程中应用较为普遍。

双头水泥搅拌桩工程量计算方法

深层水泥搅拌桩工程量计算方法 水泥搅拌桩工程量=桩径截面积×(设计桩顶标高-设计桩底标高+另加长度)×根数 空搅部分工程量=桩径截面积×(自然地坪标高-设计桩顶标高-另加长度)×根数 对于单头水泥搅拌桩来说,桩径截面就是一个圆,所以桩径截面积=π r 2 。 注:式中 r 为圆的半径,π为圆周率。 对于双头水泥搅拌桩来说,其桩径截面是由两个圆相交而组成的图形(如图所示),所以桩径截面积应按两个圆面积之和减去重叠部分(由两个弓形组成)面积来计算,然而这个重叠部分面积,计算起来是比较麻烦的。 如果圆的半径 r 、两圆连心距d均为已知数据,假设圆心角为θ(未知),图形中的三角函数关系为: cos( θ /2) = ( d / 2 )/r θ /2 = arccos[d/ ( 2r ) ] ∴θ= 2arccos[d/ ( 2r ) ] 根据平面几何和三角函数知识,且θ以弧度来计量,则可以推导出一个较简便的弓形面积计算公式: 扇形 O 1 AB 面积=( 1/2 ) r 2 ·θ 三角形 O 1 AB 面积=( 1/2 ) r 2 · sin θ ∴弓形面积=扇形 O 1 AB 面积 - 三角形 O 1 AB 面积 =( 1/2 ) r 2 (θ- sin θ) 所以 , 对于双头水泥搅拌桩来说 : 其桩径截面积= 2 π r 2 - r 2 (θ- sin θ)= r 2 ( 2 π-θ+ sin θ) 注:式中的θ必须用弧度来计量;计算时,可把计算器设置在弧度( RAD )状态;如θ为角度,只须乘以(π /180 )就可化为弧度。

双头水泥搅拌桩,桩径截面积计算举例:已知圆半径 r = 0.25m ,两圆连心距d= 0.40m ,则圆心角θ= 2arccos[d/ ( 2r ) ] = 2arccos[0.40/ ( 2 × 0.25 ) ] = 1.2870 (注:计量单位为弧度,一般可以不写),其桩径截面积= r 2 ( 2 π- θ+ sin θ)= 0.25 2 ×( 2 π- 1.2870 + sin1.2870 )= 0.3723m 2 。

水泥搅拌桩破桩头施工措施

船闸水泥搅拌桩破桩头施工措施 一、概述 船闸主体基础处理均按深层搅拌桩设计,有效桩长分别为上闸首10.5m、闸室10m、下闸首及消力池为深入砂砾石层0.5m。总桩数为8247根,总长度约为84999m,其中上闸首桩数2202根、闸室桩数4007根、下闸首1643根及消力池395根。桩径为80(85)cm。 按设计要求,桩头停浆面要高于设计桩顶不小于0.4m,高出桩顶部分的桩头,应结合基础第二次开挖进行桩头挖除。 二、施工程序 水泥搅拌桩破桩头按单元进行,在单元水泥桩全部施工完成(含废桩处理完成),并完成相关试验或检验后,先挖出桩间土,然后再挖除0.4m桩头。桩头挖除按先散桩后格栅桩的原则。 三、施工方法 桩间土开挖采用小型反铲配合人工轻轻地挖除,并装20T自卸汽车运输至弃渣场。清凿桩头紧跟随土方开挖进行。为避免去除桩头对水泥搅拌桩产生损伤,采用风镐在桩侧面清凿桩头,距设计桩顶预留150mm 高左右保护层采用钢钻或其它小型钻具人工仔细凿除平整。 在水平凿除桩头时,杜绝过大的水平力,防止断桩,清桩头时,桩头部分的松散砼或砼浮浆必须清除干净,清至砼密实层。在桩头处理达到设计桩顶高程后,对桩间土进行击实(夯实),要求表面30cm深度以内的桩间土的相对密度不小于0.7。在桩间土进行击实时,可适当洒水,具体洒水量根据实际情况确定。 凿除的桩头人工配合反铲装20T自卸汽车运输至弃渣场。 风镐由3.5m3移动式柴油空压机供风,在施工区域附近适当位置布置。 四、资源配置 1、设备配置

主要机械设备汇总表 2、人员配置 以单班计人员配置如下表: 人员配置表 五、进度安排 按1台风镐1天完成4个桩头计,1天总计完成50~60个桩头,则7~10天可完成1个单元的桩头破除。 六、质量要求及保证措施 1、质量要求 去除桩头时应避免对水泥桩产生损伤。在桩头清理施工前,应对每根桩进行精确的标高控制,做好标记。桩顶高程允许偏差不大于±5cm。搅拌桩顶内应相对平整,不出现尖锐棱角。 2、保证措施 2.1建立健全质量管理体制,各工序质量有专职质检部人员把关,并对职责落实到个人,实行谁主管谁负责的原则。现场施工员负责全过程施工质量监控,切实履行岗位职责。 2.2明确分工

相关文档
最新文档