混凝土本构关系模型
混凝土随机损伤本构模型与试验研究

混凝土随机损伤本构模型与试验研究混凝土材料在工程中广泛应用,其力学性能的研究一直是工程学领域的热点。
混凝土的随机损伤本构模型是近年来混凝土力学研究的一个重要方向。
本文将介绍混凝土随机损伤本构模型及其试验研究。
一、混凝土随机损伤本构模型混凝土材料的力学性能受到多种因素的影响,如材料的组成、结构、加载方式等。
在实际工程中,混凝土材料常常会受到多种力的作用,如轴向拉拉力、剪力、弯矩等。
因此,混凝土的本构模型需要考虑多种因素的影响。
混凝土随机损伤本构模型是一种能够考虑混凝土随机损伤的力学模型。
该模型将混凝土材料视为一个由多个单元组成的体系,每个单元都有可能发生损伤。
损伤会导致单元的刚度和强度降低,最终影响整个混凝土体系的力学性能。
混凝土随机损伤本构模型的基本思想是将混凝土体系分解为多个单元,每个单元都有可能发生损伤。
单元的损伤程度可以用一个参数来表示,该参数称为损伤变量。
损伤变量的值越大,表示单元的损伤程度越严重。
混凝土随机损伤本构模型的本质是一个随机过程,其基本形式可以表示为:$$sigma_{ij}=frac{1}{V}sum_{k=1}^{N}sigma_{ij}^k(1-d_k)$$ 其中,$sigma_{ij}$表示混凝土体系的应力张量,$V$为混凝土体系的体积,$N$为单元的数量,$sigma_{ij}^k$表示第$k$个单元的应力张量,$d_k$表示第$k$个单元的损伤变量。
混凝土随机损伤本构模型的主要优点是能够考虑混凝土材料的随机性和多种因素的影响。
然而,该模型也存在一些问题,如计算复杂度较高、参数难以确定等。
二、混凝土随机损伤本构模型的试验研究混凝土随机损伤本构模型的试验研究是验证模型有效性的重要手段。
目前,国内外研究者已经开展了大量的混凝土随机损伤本构模型的试验研究,取得了一些重要的成果。
首先,研究者通过轴向拉伸试验、三轴压缩试验、剪切试验等方法,获得了混凝土材料的力学性能参数。
这些参数包括弹性模量、泊松比、极限强度、损伤变量等,为混凝土随机损伤本构模型的建立提供了基础数据。
混凝土损伤本构原理

混凝土损伤本构原理一、引言混凝土是一种广泛应用于建筑工程和基础设施建设的材料,其力学行为的研究对于保证工程结构的安全和可靠具有重要意义。
混凝土材料在使用过程中不可避免地会受到各种外力的作用,从而导致不同程度的损伤。
因此,混凝土损伤本构原理的研究对于深入了解混凝土的力学特性和损伤行为具有重要意义。
二、混凝土的损伤机理混凝土的损伤机理包括两种类型的损伤:微观损伤和宏观损伤。
微观损伤是指混凝土内部的裂缝、毛细孔等缺陷,这些缺陷会导致混凝土的力学性能下降。
宏观损伤是指混凝土整体受到外力作用后出现的裂缝、断裂等破坏形态,这些破坏形态会导致结构的破坏。
混凝土的微观损伤主要包括以下几个方面:1.混凝土的毛细孔是混凝土内部的缺陷之一,其形成与水泥水化反应过程中的蒸发和水泥颗粒内部的饱和度有关。
毛细孔的存在会影响混凝土的力学性能,如弹性模量、抗压强度等。
2.混凝土中的微裂缝是混凝土内部的另一个缺陷,其形成与混凝土的物理性质有关。
微裂缝的存在会降低混凝土的抗拉强度和韧性。
3.混凝土在受到外力作用时,可能会出现局部压缩和剪切变形,这种变形会导致混凝土内部的微裂缝扩展,进而形成新的微裂缝,最终导致混凝土的破坏。
混凝土的宏观损伤主要包括以下几个方面:1.混凝土受到外力作用时,可能会出现局部裂缝,这些裂缝会随着外力作用的增加而扩展,最终导致混凝土的破坏。
2.混凝土的内部缺陷会导致混凝土的力学性能下降,从而降低其抗力水平,当受到超过其承受力的外力作用时,混凝土会发生宏观破坏。
三、混凝土的损伤本构原理损伤本构理论是描述材料本构关系的一种理论模型,混凝土的损伤本构原理是基于混凝土的损伤机理建立的。
1.混凝土的弹性本构关系混凝土的弹性本构关系可以用胡克定律描述,即应力与应变之间的关系是线性的,其中弹性模量是一个固定的常数。
当混凝土受到外力作用时,其应变与应力的关系可以用以下公式表示:σ=Eε其中,σ是混凝土的应力,E是混凝土的弹性模量,ε是混凝土的应变。
钢筋混凝土结构的本构关系及有限元模式共3篇

钢筋混凝土结构的本构关系及有限元模式共3篇钢筋混凝土结构的本构关系及有限元模式1钢筋混凝土结构的本构关系及有限元模式钢筋混凝土是建筑结构中广泛使用的材料之一。
在结构设计与分析过程中,了解钢筋混凝土的本构关系和有限元模式是十分重要的。
本文将从理论和实践两个层面介绍钢筋混凝土结构的本构关系及有限元模式。
一、理论基础1.1 本构关系本构关系是描述材料应力和应变之间关系的数学模型。
对于钢筋混凝土结构来说,其本构关系可以分为弹性和塑性两个阶段。
如图1所示,该曲线表现了材料的应变和应力之间的关系。
在开始阶段,钢筋混凝土材料表现出弹性行为,即在一定范围内,应变和应力呈线性关系,在这个范围内,应力的变化只取决于外力的变化。
当荷载增加时,材料进入塑性阶段,即出现残余变形,弹性不再适用。
此时,应变和应力的关系呈现非线性态势,应力会逐渐增大,直至材料失效。
图1 钢筋混凝土的本构关系曲线1.2 有限元分析有限元分析是一种近似解微分方程的数值分析方法。
该方法将问题分解成一个有限数量的小区域,在每个小区域内建立数学模型,通过连接小区域,组成总体的数学模型。
对于钢筋混凝土结构的有限元分析,可以采用三维有限元模型或二维\轴对称有限元模型等。
二、实践操作2.1 有限元模型的建立在进行有限元分析前,需要建立合适的有限元模型。
在钢筋混凝土结构的有限元分析中,通常采用ABAQUS、ANSYS软件进行模拟。
有限元模型的建立需要考虑结构的几何形状、材料特性、加载条件等,在模型建立的过程中需要进行模型分析和后处理,如应力监测、应变监测、变形量分析等。
2.2 本构关系的采用在建立有限元模型时需要设置材料弹性模量、泊松比、破坏应力等本构关系参数,这些参数可以通过试验数据和经验公式进行估算。
同时,基于实际结构的材料本身的特性和结构内力状态等影响因素,还需要考虑材料的非线性效应,包括弹塑性分析和的动力分析等。
三、应用现状在实际的建筑结构设计和分析中,钢筋混凝土结构的有限元分析被广泛采用,可以帮助工程师更加准确地预测材料的行为,并定位结构的破坏点及应急防御措施。
mander约束【混凝土】本构模型

1 横向配筋的作用混凝土结构中的配筋有两种:直接钢筋和间接钢筋。
直接配筋即沿构件轴力或主应力方向设置的纵向钢筋,直接承担拉力或者压力,钢筋的应力与轴力方向一致;间接配筋又称横向配筋,沿与压应力与最大主压应力垂直的方向设置,通过约束混凝土的横向变形,提高轴向抗压承载力。
横向配筋有多种,比如螺旋(圆形)箍筋、矩形箍筋、钢管、焊接网片等。
其主要作用是约束其内部混凝土的横向变形,使之处于三轴受压应力状态,从而提高了其强度和变形能力。
下面就箍筋对混凝土的约束作用做以简单分析。
箍筋的作用有许多种,•抗剪。
除了直接承受剪力外,还间接限制了斜裂缝的开展宽度,增强了腹部混凝土的骨料咬合力;还约束了纵筋对混凝土保护层的撕脱,增大了钢筋的销栓力;同时,纵筋与腹筋形成的骨架使内部混凝土受到约束,这也有利于抗剪;•通过减小纵筋的自由长度,防止纵筋受力后压屈,充分发挥其抗压强度,同时也起到固定纵筋位置的作用;•对于密排箍筋,通过约束核心区混凝土,提高了混凝土的抗压强度及延性(极限变形能力);•长期荷载作用下,可以承受因混凝土收缩和环境湿度变化等产生的横向应力,以防止或减少纵向裂缝;其中,通过约束核心区混凝土,提高受压混凝土的抗压强度及延性,对于地震区的混凝土结构尤为重要。
适当地增加箍筋和改进构造形式成为提高结构抗震性能的最简单、经济和有效的措施之一。
2 影响箍筋约束作用的因素箍筋对约束混凝土的增强作用,除了受被约束混凝土自身强度的影响外,主要取决于它能够施加在核心区混凝土表面的约束力的大小。
约束力越大,对混凝土的增强就越多。
约束力主要受以下几个因素影响:•体积配箍率。
体积配箍率隐含反应了四个因素:箍筋强度、直径、间距及(计算配箍方向的)核心区宽度(对于螺旋或圆形配箍的圆形截面,指核心区直径)。
箍筋的强度和直径直接决定了箍筋所能提供的约束力的大小,箍筋间距及核心区宽度则影响约束力在相邻箍筋间的分布。
对于矩形截面,通常两个方向上的尺寸和配箍形式不一样,因此提供的约束力也不一样,所以应分别计算两个方向的配箍率。
混凝土本构模型

高等混凝土结构学课程报告学生:汤鹏学号:2010202100018班级:硕士一班老师:何英明教授日期:2011.8混凝土非线性弹性本构模型有三种不同形式的基于弹性的本构模型用在一般公式中,它们是: (1)Cauchy 型;(2)Green(超弹性)型;(3)增量(亚弹性)型。
1) Cauchy 型的全应力—应变公式在Cauchy 弹性材料模型中,将当前的应力状态σij 惟一地表示成当前应变状态εkl 的函数,即σij =F ij (εkl )上式描述的弹性性质是可逆的和路径无关的,从这种意义上讲,应力由应变的当前状态惟一确定,反之亦然,材料性质与达到当前应力或应变状态的应力或应变历史没有相关性。
然而,一般地,应力由应变惟一确定或相反,而逆命题不一定正确。
而且,应变能W (εij )和余能密度函数Ω(σij )的可逆性和与路径无关的情况通常不能保证,0()()ijijij ij ij ij ij ijW d d εσεσεσεσ=Ω=⎰⎰已经证明,Cauchy 型弹性模型在加载-卸载循环中要产生能量。
这就是说,这类模型违背了热力学原理(实际上是不能接受的),这自然就让人想到第二类公式,Green 超弹性型。
一般说来,Cauchy 型各向异性线弹性模型有36个材料弹性模量。
对于最简单的各向同性线弹性材料,这个数目将减少到两个(E 和μ,或K 和G),相应的应力—应变关系简化为熟悉的广义虎克定律。
2) Green(超弹性)型的全应力—应变公式严格地说,弹性材料必须满足热力学平衡方程。
由此附加要求表征的弹性模型就叫做Green 超弹性型,此类模型的基础是假定有如下的应变能W (εij )和余能密度函数Ω(σij )ij ij ijijW σεεσ∂∂Ω==∂∂式中,W 和Ω分别是当前应变张量和应力张量分量的函数,这就保证了在加载循环过程中没有能量产生,热力学准则总能满足。
对初始各向同性弹性材料,w 或Ω分别用任意三个独立的应变或应力张量εij 或σij 的不变量表示。
钢纤维混凝土动态本构模型及其有限元方法

钢纤维混凝土动态本构模型及其有限元方法钢纤维混凝土是一种使用细小钢纤维增强的混凝土材料,具有较高的抗裂性能和韧性。
在结构工程中,钢纤维混凝土常用于加固和增强混凝土结构。
为了准确地分析和设计钢纤维混凝土结构,需要了解其动态本构模型和相应的有限元方法。
在弹性阶段,可以使用弹性本构模型来描述钢纤维混凝土的应力-应变关系。
常用的弹性本构模型包括线性弹性模型和非线性弹性模型。
线性弹性模型假设材料在弹性阶段呈线性的应力-应变关系,可以使用胡克定律进行描述。
非线性弹性模型则考虑了材料在弹性阶段的非线性特性,如拉伸性能、压缩性能和抗剪性能。
在塑性阶段,钢纤维混凝土的变形行为会出现一定的非弹性变形,主要包括塑性应变和残余应变。
因此,需要使用塑性本构模型来描述钢纤维混凝土在受力过程中的非弹性变形。
常用的塑性本构模型包括弹塑性模型、弹塑性损伤模型和塑性损伤模型。
在损伤阶段,钢纤维混凝土会出现损伤行为,如微裂缝的扩展和混凝土破碎。
为了精确地描述钢纤维混凝土在受力过程中的损伤行为,可以使用损伤本构模型。
损伤本构模型考虑了材料的弹塑性行为和损伤行为,并通过损伤变量来描述材料的损伤程度。
有限元方法是一种数值计算方法,在钢纤维混凝土动态分析中具有广泛的应用。
有限元方法将结构划分为多个小单元,通过在每个单元上建立代表该单元材料本构特性的方程来求解结构的响应。
对于钢纤维混凝土结构,可以使用弹塑性本构模型和损伤本构模型作为有限元模型。
在建立有限元模型时,需要根据钢纤维混凝土的实际工程应用情况选择合适的本构模型。
通过实验测试或文献调研获得钢纤维混凝土的材料参数,如弹性模量、泊松比、抗拉强度、抗压强度等。
然后,在有限元软件中建立钢纤维混凝土的有限元模型,选择适当的单元类型和网格划分方法。
在动态分析中,通过施加动力荷载或地震荷载模拟实际工程中的受力情况,在有限元模型中求解结构的应力、位移和损伤等响应。
同时,可以进行参数敏感性分析和结构优化设计,以确保结构的安全和可靠性。
三种混凝土本构模型
ABAQUS中的三种混凝土本构模型2010-05-12 22:19:14| 分类:ABAQUS | 标签:|字号大中小订阅资料来自SIMWE论坛shanhuimin923,特表示感谢!ABAQUS 用连续介质的方法建立描述混凝土模型不采用宏观离散裂纹的方法描述裂纹的水平的在每一个积分点上单独计算其中。
低压力混凝土的本构关系包括:Concrete Smeared cracking model (ABAQUS/Standard)Concrete Brittle cracking model (ABAQUS/Explicit)Concrete Damage plasticity model高压力混凝土的本构关系:Cap model1、ABAQUS/Standard中的弥散裂缝模型Concrete Smeared cracking model(ABAQUS/Standard):——只能用于ABAQUS/Standard中裂纹是影响材料行为的最关键因素,它将导致开裂以及开裂后的材料的各向异性用于描述:单调应变、在材料中表现出拉伸裂纹或者压缩时破碎的行为在进行参数定义式的Keywords:*CONCRETE*TENSION STIFFENING*SHEAR RETENTION*FAILURE RATIOS2、ABAQUS/Explicit中脆性破裂模型Concrete Brittle cracking model (ABAQUS/Explicit) :适用于拉伸裂纹控制材料行为的应用或压缩失效不重要,此模型考虑了由于裂纹引起的材料各向异性性质,材料压缩的行为假定为线弹性,脆性断裂准则可以使得材料在拉伸应力过大时失效。
在进行参数定义式的Keywords*BRITTLE CRACKING,*BRITTLE FAILURE,*BRITTLE SHEAR3、塑性损伤模型Concrete Damage plasticity model:适用于混凝土的各种荷载分析,单调应变,循环荷载,动力载荷,包含拉伸开裂(cracking)和压缩破碎(crushing),此模型可以模拟硬度退化机制以及反向加载刚度恢复的混凝土力学特性在进行参数定义式的Keywords:*CONCRETE DAMAGED PLASTICITY*CONCRETE TENSION STIFFENING*CONCRETE COMPRESSION HARDENING*CONCRETE TENSION DAMAGE*CONCRETE COMPRESSION DAMAGE。
混凝土的破坏准则与本构模型
混凝土的破坏准则与本构模型混凝土的破坏准则和本构模型是用来描述混凝土材料在外界荷载作用下的破坏行为和力学性能的模型。
破坏准则描述了混凝土在不同应力状态下发生破坏的临界条件,而本构模型描述了混凝土在荷载作用下的应力应变关系。
混凝土的破坏准则和本构模型对于结构设计、材料选择和力学分析等方面起着重要的作用。
混凝土的破坏准则主要包括强度准则和变形准则。
强度准则描述了混凝土的抗拉、抗压、抗剪等强度性能的破坏条件。
常见的强度准则包括最大拉应变准则、最大压应力准则和最大剪应变准则。
最大拉应变准则认为混凝土的破坏发生在混凝土最大拉应变达到临界值时,而最大压应力准则认为混凝土的破坏发生在混凝土最大压应力达到临界值时,最大剪应变准则认为混凝土的破坏发生在混凝土最大剪应变达到临界值时。
变形准则描述了混凝土在不同应力状态下的应变能力,常见的变形准则包括极限延性准则和极限应变准则。
极限延性准则认为混凝土的破坏发生在混凝土的最大延性达到临界值时,而极限应变准则认为混凝土的破坏发生在混凝土的最大应变达到临界值时。
混凝土的本构模型可以分为线性本构模型和非线性本构模型。
线性本构模型是指混凝土在整个受力过程中满足胡克定律,即应力与应变之间呈线性关系。
线性本构模型常用于结构设计和力学分析中,其优点是计算简单、易于理解和应用。
非线性本构模型是指混凝土在受力过程中出现非线性行为,即应力与应变之间呈非线性关系。
非线性本构模型可以更准确地描述混凝土的力学性能,常用于材料选择和细致的力学分析中。
常见的非线性本构模型包括卓尔金模型、拉勃森模型、屈曲温演模型等。
这些模型根据不同的假设和参数来描述混凝土在不同应力状态下的力学行为。
其中,卓尔金模型是最常用的非线性本构模型之一,它将混凝土的延性和强度性能分别考虑,可以比较准确地描述混凝土的变形和破坏行为。
总的来说,混凝土的破坏准则和本构模型对于混凝土的力学性能描述和结构设计起着重要的作用。
通过研究混凝土的破坏准则和本构模型,可以更好地理解混凝土的破坏机理和力学行为,为混凝土的设计和使用提供科学依据。
混凝土本构关系
11
弹塑性力学模型
加载—卸载法则:塑性 模型要求在加载、卸载 及中性变载等各种不同 条件下采用不同的本构 关系表达式, 加卸载条件
流动法则:塑性流动时 应力应变之间的关系。 分为正交流动法则(又称 相关流动法则) 和非正交 流动法则(又称非相关流 动法则)。
12
弹塑性力学模型
相关流动法则:根据Drucker 公设, 空 间屈服面为凸面。相关流动法则假定 屈服函数f 即为塑性势函数g , 流动方 向应正交于屈服面。流动法则表达式, 式中dK为标量比例因子, 可由一致性 条件求得, 塑性一致性条件为:f = 0和 f· =0 非相关流动法则:假定塑性势函数g 与屈服函数f 不同, 流动法则 标量比例因子仍可由一致性条件f · =0 求得。
初始屈服面; 后继屈服面(加载面或硬化法则) ; 加载—卸载准则; 流动法则。
引入不同的屈服函数(包括初始屈服面与加载面) 与不 同的流动法则即会产生不同的模型。
10
弹塑性力学模型
初始屈服面:当材料的应力或应变水平未达到初始屈服面时, 材 料的本构关系为弹性的; 当应力或应变水平超过初始屈服面时, 材 料的本构关系为弹塑性的。屈服函数 硬化法则:可分为均匀硬化、随动硬化、混合硬化等。假定塑性 流动时屈服面大小、位置和方向均发生改变为混合硬化。
23
发展
混凝土本构关系的研究正在孕育着新的突破. 关键的契机在于: 重视细观物理研究在本构关系研究中 的基础性地位. 现代实验技术与数值模拟技术的进步, 为利用这一契机提供了客观的支持. 在混凝土本构关系与结构非线性行为研究中, 深刻认识 非线性形成的物理本质, 客观反映混凝土力学行为的随 机性特征, 科学揭示非线性、随机性、率相关特征之间 的内在物理规律, 是建立正确的混凝土本构关系的关键; 充分注意不同尺度范围内的损伤扩散与随机涨落特征 并加以科学反映, 对于从一般科学意义上理解混凝土本 构关系及结构非线性分析研究的普适价值所在, 也具有 重要意义.
混凝土本构模型
高等混凝土结构学课程报告学生:汤鹏学号:2010202100018班级:硕士一班老师:何英明教授日期:2011.8混凝土非线性弹性本构模型有三种不同形式的基于弹性的本构模型用在一般公式中,它们是: (1)Cauchy 型;(2)Green(超弹性)型;(3)增量(亚弹性)型。
1) Cauchy 型的全应力—应变公式在Cauchy 弹性材料模型中,将当前的应力状态σij 惟一地表示成当前应变状态εkl 的函数,即σij =F ij (εkl )上式描述的弹性性质是可逆的和路径无关的,从这种意义上讲,应力由应变的当前状态惟一确定,反之亦然,材料性质与达到当前应力或应变状态的应力或应变历史没有相关性。
然而,一般地,应力由应变惟一确定或相反,而逆命题不一定正确。
而且,应变能W (εij )和余能密度函数Ω(σij )的可逆性和与路径无关的情况通常不能保证,0()()ijijij ij ij ij ij ijW d d εσεσεσεσ=Ω=⎰⎰已经证明,Cauchy 型弹性模型在加载-卸载循环中要产生能量。
这就是说,这类模型违背了热力学原理(实际上是不能接受的),这自然就让人想到第二类公式,Green 超弹性型。
一般说来,Cauchy 型各向异性线弹性模型有36个材料弹性模量。
对于最简单的各向同性线弹性材料,这个数目将减少到两个(E 和μ,或K 和G),相应的应力—应变关系简化为熟悉的广义虎克定律。
2) Green(超弹性)型的全应力—应变公式严格地说,弹性材料必须满足热力学平衡方程。
由此附加要求表征的弹性模型就叫做Green 超弹性型,此类模型的基础是假定有如下的应变能W (εij )和余能密度函数Ω(σij )ij ij ijijW σεεσ∂∂Ω==∂∂式中,W 和Ω分别是当前应变张量和应力张量分量的函数,这就保证了在加载循环过程中没有能量产生,热力学准则总能满足。
对初始各向同性弹性材料,w 或Ω分别用任意三个独立的应变或应力张量εij 或σij 的不变量表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、混凝土本构关系模型
1.混凝土单轴受压应力-应变关系
(1)Saenz等人的表达式
Saenz等人(1964年)所提出的应力-应变关系为:
(2)Hognestad的表达式
Hognestad建议模型,其上升段为二次抛物线,下降段为斜直线。
所提出的应力-应变关系为:
(3)我国《混凝土结构设计规范》(GB50010-2010)中的混凝土受压应力-应变曲线,其表达式为:
,
,
是混凝土单轴受压时的应力应变曲线在下降段的参数值,
是混凝土单轴抗压的强度代表值,
是与单轴抗压强度
相对应的混凝土峰值压应变。
2.混凝土单轴受拉应力-应变关系
清华大学过镇海等根据实验结果得出混凝土轴心受拉应力-应变曲线:
3.混凝土线弹性应力-应变关系
张量表达式,对于未开裂混凝土,其线弹性应力应变关系可用不同材料常数表达,其中用材料弹性模量E和泊松比v表达的应力应变关系为:
用材料体积模量K和剪变模量G表达的应力应变关系为:
4.混凝土非线弹性全量型本构模型
5.混凝土非线弹性增量型本构模型
各向同性增量本构模型:
(1)在式
中,假定泊松比
为不随应力状态变化的常数,而用随应力状态变化的变切线模量
取代弹性常数E,并采用应力和和应变增量,则可得含一个可变模量Et的各向同性模型,增量应力应变模型关系为:
(2)在式
中,如用随应力状态变化的变切线体积模量Kt和切线剪变模量Gt取代K和
G,并采用偏应力和偏应变增量,则可得含两个可变模量Kt和Gt的各向同性模型,
采用偏应力和偏应变增量,则可得以下应力应变关系:
双轴正交各向异性增量本构模型:
混凝土在开裂,尤其是接近破坏时,不再表现出各向同性性质,而呈现出明
显的各向异性性质。
因此,用各向异性描述混凝土开裂后的性能更为合理。
混凝土双轴受压时,由于泊松效应及混凝土内部裂缝受到约束,其强度和刚
度均可提高。
该模式假定,混凝土为正交各向异性材料,且各级荷载增量內应力-
应变呈线弹性关系,其关系式为:
6.混凝土弹塑性本构模型
弹塑性增量理论需要对屈服准则、流动法则和硬化法则作出假定。
设屈服条件用下式表示:
材料进入塑形阶段后的应变增量由弹性应变增量和塑形应变增量组成,即:
采用与屈服条件相关联的流动法则确定,即
增量理论的弹塑性本构矩阵一般表达式为
混凝土弹塑性全量理论基本假设
(1)假设体积的改变是弹性的,且与平均应力成正比,而塑形变形时体积不可压缩,即
(2)假设应变增量
和应力偏量
相似且同轴。
即
(3)单一曲线假设:对于同一种材料,无论应力状态如何,其等效应力与等效应变之间有确定的关系,即
弹塑性应力应变关系采用下式:
弹性阶段
塑性阶段
2、钢筋本构关系模型
1.单向加载下钢筋的应力-应变关系模型
硬钢钢筋的应力应变曲线可以分为三段:弹性段、软化段、后续段,根据试验资料得到的应力应变关系式为:。
2.反复加载下钢筋的应力-应变关系模型
(1)加藤模型
该模型对软化段曲线取局部坐标
,原点为加载或反向加载的起点,软化段试验曲线的方程为:
初始斜率与割线斜率之比为:
(2)Kent-Park模型
该模型采用Ramberg-Osgood应力应变曲线的一般表达式
r=1时,为反映弹性材料的直线;r=
时,为理想弹塑性材料的二折线;
时为逐渐过渡的曲线。
经变换后可得:
,取决于此前应力循环产生的塑性变形,经验计算公式为:
三、钢筋与混凝土的粘结-滑移本构模型
(1)锚固粘结强度计算模型
这种计算模型用于确定钢筋的锚固长度、搭接长度和保护层厚度,所用的试验资料为拔出试验或梁式试验结果。
给出了适合于我国月牙纹钢筋的微滑移粘结强度、劈裂粘结强度、极限粘结强度及残余粘结强度计算公式,
(2)反复荷载下粘结-滑移本构模型
清华大学腾智明等提出的计算模型上升段为曲线,下降段为双直线,其数学模型为:。