平行四边形导学案

合集下载

《平行四边形》导学案

《平行四边形》导学案

3.1.3 平行四边形【学习目标】1.了解三角形中位线的概.2.会证明三角形的中位线定理。

【重点】掌握和运用三角形中位线定理。

【难点】三角形中位线定理的证明。

【学习过程】 一、温故而知新1.在右图中,你可补充一些什么条件,使得△ADE ∽△ABC? 问: 补充 AB AD =32;AC AE =32呢?二、初生牛犊不怕虎,让我来探索:探索一:1、思考:你能将任意一个三角形分成四个全等的三角形吗?你是怎么做的?请画出草图。

2、如果连结三角形每两边的中点,能得到四个全等的三角形吗?※定义:连接三角形 的 叫做三角形的中位线。

探究二:1、你能猜想出三角形的中位线与第三边有怎样的关系?※定理:三角形的中位线 与第三边,且 第三边的 。

2、请写出已知、求证,并证明:B CADEC ADEAE B FCGDH3、请利用三角形中位线定理,证明连结三角形每两边的中点得到的四个三角形全等。

探究三:任意作一个四边形,并将其四边的中点依次连接起来,得到一个新的四边形,这个新的四边形的形状有什么特征?请证明你的结论.三、看我有多棒1、三角形的中位线平行于__________,且等于__________的一半.2、连结任意四边形的四边中点,所得到的四边形是__________.3、一个三角形的三边长分别为4,5,6,则连结各边中点所得三角形的周长为__________.4、三角形三条中位线将其分成__________个全等三角形.5、如图所示,△ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,AB =10 cm ,AC =6 cm ,则四边形ADEF 的周长为_________.。

第18章《平行四边形》四步导学案

第18章《平行四边形》四步导学案

人教版八年级上册数学第十八章《平行四边形》四步导学案18.1.1 平行四边形的性质(1)学习目标知识:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.能力:会用平行四边形的性质解决简单的平行四边形的计算问题。

情感:通过学生动手体验、探索、归纳等获取知识的途径,从而培养学生对学习数学的兴趣。

学习重点:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.学习难点:解决简单的平行四边形的计算问题。

教学流程【导课】1、说说下列图形是什么图形?2、观察课本83页图19.1-1,你能发现那些几何图形?【多元互动合作探究】活动一:1、观察平行四边形与一般的四边形有什么异同?2、归纳平行四边形概念:3、平行四边形记法:如图“ 平行四边形” 可用符号“”表示。

平行四边形ABCD记作:ABCD活动二:1、观察上面这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?2、证明你的猜想:已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.(分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论)由此得到:平行四边形性质1 平行四边形的.平行四边形性质2 平行四边形的.【训练检测目标探究】1.填空:AB CD AB CD50,则∠B=度,∠C=度,∠D=度.(1)在ABCD中,∠A=(2)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB=cm,BC=cm,CD=cm,CD=cm.2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3、平行四边形两角之比是2:3 ,各角都是多少度?4、、如图小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?【迁移应用拓展探究】1.在平行四边形ABCD中,∠A=50°,则∠B= °,∠D=°2、如果平行四边形ABCD的周长为28cm,且AB:BC=2∶5,那么AB=cm,BC=cm,CD= cm,CD=cm3、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.4、如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形.(1)线段AD和BC的长度有什么关系?为什么?若这个四边形的一个外角∠α=38°,这个四边形的每个内角的度数分别是多少?为什么?布置作业板书设计教后反思授课时间:累计课时:第十八章 平行四边形 18.1.1 平行四边形的性质(2)学习目标知识:理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质。

(完整版)最新人教版八年级数学下册第十八章平行四边形导学案(全章)

(完整版)最新人教版八年级数学下册第十八章平行四边形导学案(全章)

18.1.1 平行四边形及其性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)1. 由_____ 条线段首尾顺次连接组成的多边形叫四边形;四边形有__________ 条边,_个角,四边形的内角和等于________ 度;2. 如图AB与BC叫_______ 边,AB与CD叫______ 边;ZA与/B叫 ____ 角,/D与/B叫______ 角; 3多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有_______ 条,它们是—自学课本1. 有两组对边__________________ 的四边形叫平形四边形,平行四边形用“ _________ ”表示,平行四边形ABCD记作 _______________ 。

2. 如图CABCD中,对边有________ 组,分别是____________________ ,对角有______ ,分别是你能归纳ABCD的边、角各有什么关系吗?并证明你的结论,寸角线有条,它们是二、合作解疑(15分钟)如图,小明用一根36 m 长的绳子围成了一个平行四边形的场地,其中一条边 AB 长为8m ,其他三条边各长多少?个平行四边形的一个外角是38。

,这个平行四边形的各个内角的度数分别是: ____________ (3) ___________________________________________________________________________ _ ABCD 有一个内角等于40。

,则另外三个内角分别为: ______________________________________ (4) ________________________________________________________________________ 平行四边形的周长为50cm ,两邻边之比为2 :3,则两邻边分别为: _____________________________ 1. - ABCD 中,Z A : ZB : ZC :ZD 的值可以是()A.1 : 2 : 3: 4B.3 : 4 : 4 : 3C.3 : 3 : 4: 4 2. AABCD 的周长为40cm ,△ABC 的周长为27cm,AC 的长为 A.13cm B.3 cm C.7 cmD.11.5cm ___________________三、综合应用拓展(5分钟)1. 如图,AD //BC , AE //CD ,BD 平分Z ABC ,求证 AB=CE.四、当堂检测(10分钟) (一)填空:1•在-ABCD 中,Z A= 50,贝UZ B= ______ 度, Z C= ____ 度, Z D= _____ 度.2 •两组对边分别 ______ _ 勺四边形叫做平行四边形•它用符号“ □'表示,平行四边形ABCDD.3 : 4: 3: 4( )记作__________ 。

平行四边形导学案

平行四边形导学案

平行四边形的性质(一)导学案学习目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题.3.培养学生发现问题、解决问题的能力及逻辑推理能力.学习重点:平行四边形的定义;对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、列举实例,揭示课题1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?2.你还能举出平行四边形在生活中应用的例子吗?3.揭示平行四边形的概念。

如图,平行四边形ABCD可以表示为:,几何表示定义:二、观察比较,探索新知1.由定义可知平行四边形具有什么性质?2.亲自动手画一个平行四边形,从边与角两方面观察平行四边形所具有的性质。

3.结论:平行四边形的性质:4.思考:①已知平行四边形的一个内角的度数,能确定其他内角的度数吗?②用什么方法可以证明平行四边形的这些性质?5.例题解析①如图所示,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB 边长为8m,其他三边的长各是多少?②如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.三、练习巩固,提升能力填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。

2.平行四边形的两组对边分别____且____;平行四边形的两组对角分别______;两邻角____;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7题图9题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立.....的是( ).A、AF=EFB、AB=EFC、AE=AFD、AF=BE10.如图,下列推理不正确的是( ).A、∵AB∥CD∴∠ABC+∠C=180°B、∵∠1=∠2 ∴AD∥BCC、∵AD∥BC∴∠3=∠4D、∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).A、5B、6C、8D、12解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB 于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.四、总结反思,拓展升华1、平行四边形的性质2、平行四边形性质的证明过程3、质疑:平行四边形还有哪些性质?五、教学反思平行四边形的性质(二)导学案学习目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决有关计算问题和简单的证明题.3.培养推理论证能力和逻辑思维能力.学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.学习过程:一、复习旧知,揭示课题1. 什么样的四边形是平行四边形?四边形与平行四边形的关系是:2.平行四边形的性质:3、提出问题,揭示课题二、活动演示,探索新知1.在纸上画ABCD,并连接对角线AC、BD交于点O.在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和原来的图形完全重合吗?你还能发现平行四边形的什么性质吗?2.得出结论并证明3.例题解析已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA 的长以及ABCD的面积.三、练习巩固,提升能力1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为_____。

18.1 平行四边形导学案

18.1 平行四边形导学案

A B D C 第18章平行四边形第1课时 18.1.1 平行四边形的性质导学案(1)【学习目标】1、理解平行四边形的定义及有关概念;2、能根据定义探索并掌握平行四边形的对边相等、对角相等的性质;3、能根据平行四边形的性质进行简单的计算和证明;【学习重点】平行四边形的定义,平行四边形对角、对边相等的性质;【学习难点】如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法;一、学前预习认真学习课本83页至84页的内容。

1、叫做平行四边形。

平行四边形用符号“”来表示。

2、阅读以下文字并填空:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.如上图,在ABCD中,AB的对边是,AB的邻边是,AD是BC 的边。

∠C的邻角是,∠C的邻对角是。

二、探索思考探究(一)通过观察、测量,我们可以发现:①平行四边形的对边;②平行四边形的对角;请你用我们学过的知识证明(需要你自己作图、写已知、求证,最后证明。

)练习一1、(1)在ABCD中,∠A=50°,求∠B、∠C、∠D的度数。

2、已知:ABCD中,AB=5,BC=3,求它的周长探索(二)a // b,作AD // GH // BC,若a // b,DA、GH、CB垂直于a,1、上面两图中AD、GH、BC相等吗?为什么?2、两条平行线间的距离:两条平行线间的距离和点与点之间的距离、点到直线的距离有何联系与区别:三、典例分析例1:在ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF四、当堂反馈1、.判断题:(1)平行四边形两组对边分别平行且相等. ( ) (2)平行四边形的四个内角都相等. ( )(3)平行四边形的相邻两个内角的和等于180°( )(4)如果平行四边形相邻两边长分别是2cm和3cm,那么周长是10cm. ( )2、在平行四边形ABCD中,如果∠A=42°,那么∠B= ,∠C=3、在□ ABCD中,∠A:∠B=2:3,则∠A= _____ ,∠B= ______,∠C= ______,∠D= _______.4、已知□ ABCD的周长为20cm,且AD-AB=1cm,求AD,CD5、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.五、学习反思:(1)知识点:(2)数学方法:A BDCFEa ab bA AB BC CD DGHGHABCDO第2课时 18.1.1 平行四边形的性质导学案(2)【学习目标】1、理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2、能运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题.3、培养学生的推理论证能力和逻辑思维能力. 【学习重点】掌握平行四边形对角线互相平分的性质【学习难点】能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题 一、学前预习1. 如图,若要使四边形ABCD 是平行四边形,可以添加条件: , 添加的理由是 2、平行四边形的性质:如图∵四边形ABCD 是平行四边形∴ , ( ) 二、探索思考探究(一)1、如图,在□ABCD 中,画出对角线, 对角线能画 条,分是 . 2、新出现的线段之间有什么关系?新出现的三角形之间有什么关系?理由是什么?3、由以上关系你发现平行四边形的对角线有什么性质?4、请证明;平行四边形的对角线互相平分.已知: 求证:5、性质定理3的符号语言表示:∵∴ ( ) 练习一 1、如图,在ABCD 中,B C =10cm ,A C =8cm ,B D =14cm ,△AOD 的周长是多少?△ABC 与△DBC 的周长那个长?长多少?.三、典例分析例1、已知四边形ABCD 是平行四边形,AB =20cm ,AD =16cm ,AC ⊥BC , 求BC 、CD 、AC 、OA 的长以及ABCD 的面积.练习二、已知四边形ABCD 是平行四边形,BC =4cm ,BD =10cm ,AC=6cm, 求AB 、CD 的长以及ABCD 的面积.例2、已知:如图ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE=CF ,BE=DF .四、当堂反馈1. 如图,□ABCD 的两条对角线相交于点O, 已知AB=8cm,BC=6cm,△AOB 的周长是18cm ,那么△AOD 的周长是 .2.如图,在□ABCD 中,AB=3,BC=5,对角线AC ,BD 相交于点O , 则OA 的取值范围是 .3、如图:ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .①求证:OE =OF ,AE=CF ,BE=DF .②若其他条件都不变,将EF 转动到图b 的位置,那么①中结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),①中结论是否成立?说明你的理由.五、学习反思:(1)知识点: (2)数学方法BDA CBDA CCBADOB DCA OABCDO第3课时 18.1.2平行四边形的判定导学案(1)【学习目标】1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法. 2.会综合运用平行四边形的判定方法和性质来解决问题. 3.体会用类比、逆向联想及运动的思维方法来研究问题. 【学习重点】平行四边形的判定方法及应用【学习难点】平行四边形的判定定理与性质定理的灵活应用一、学前准备1.平行四边形的定义是2.平行四边形的性质:边的性质角的性质: :对角线的性质: 符号语言:如图∵∴(边) ,(角) (对角线二、探索思考探究(一)请写出平行四边形边、角、对角线的性质定理的逆命题:有关边的: 有关角的:有关对角线的:例1、如图, ABCD 的对角线AC 、BD 相交于点O ,E ,F 是AC 上的两点,并且AE=CF. 求证:四边形BFDE 是平行四边形.四、当堂反馈1、如图,AB=DC=EF ,AD=BC ,DE=CF ,图中有哪些互相平行的线段?并说明理由2、已知:如图,ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD于点O .求证:EO=OF .3、已知□ABCD 中,AC 、BD 相交于O ,E 、F 是BO 、DO 的中点求证:AE ∥CF五、学习反思:(1)知识点: (2)数学方法:这些命题正确吗?如果正确,请证明A BCDEF第4课时 18.1.2平行四边形的判定导学案(2)【学习目标】1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.【学习重点】平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.【学习难点】平行四边形的判定定理与性质定理的综合应用一、学前准备1、平行四边形的性质:如图1∵∴(边),( )(角) ,( )如图2∵(对角线)∴ ( )2、平行四边形的判定:如图1 (1)定义∵∴四边形ABCD是平行四边形. ( )如图1 (2)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图2(4)∵∴四边形ABCD是平行四边形. ( )二、探索思考探究(一)1、请同学们猜想一下,如果只考虑四边形的一组对边,当它满足什么条件时这个四边形是平行四边形?(据以下4个问题,写出一个你认为正确的猜想,并证明你的猜想)问题1:一组对边平行的四边形是平行四边形吗?如果是请给出证明,如果不是请举出反例说明.问题2:满足一组对边相等的四边形是平行四边形吗?问题3:如果一组对边平行,而另一组对边相等的四边形是平行四边形吗?问题4:一组对边平行且相等的四边形是平行四边形吗?例1如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.练习1 已知:如图,在四边形ABCD中,对角线AC和BD相交于O,AO=OC,BA⊥AC,DC⊥AC. 求证:四边形ABCD是平行四边形.四、当堂反馈1、如图,点EF是平行四边形ABCD边AD、BC上两点,AE=CF求证:BE∥DF2、已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.3、已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:①∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;②△ABC的顶点分别是△B′C′A′各边的中点.五、学习反思:(1)知识点:(2)数学方法:BD AC图1ACD 图2BO第5课时 18.1.2平行四边形的判定导学案(3)【学习目标】1、会综合运用平行四边形的四种判定方法和性质来证明问题.2、理解三角形中位线的概念,掌握三角形中位线的性质【学习重点】三角形中位线的概念和性质【学习难点】证明三角形中位线定理一、学前准备平行四边形的判定:如图1 (1)定义∵∴四边形ABCD是平行四边形. ( )如图1 (2)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图1 (3)∵∴四边形ABCD是平行四边形. ( )如图2(5)∵∴四边形ABCD是平行四边形. ( )二、探索思考探究(一)1、请按要求画图:(1)在右框画任意△ABC中,(2)画AB、AC边中点D、E,连接DE.2、定义:像DE这样,连接三角形两边中点的线段叫做.3、问题1:一个三角形有几条中位线?问题2:三角形中位线与三角形中线有什么区别?问题3:通过观察、测量,DE与BC有怎样的关系?4、尝试证明你的猜想5、三角形中位线定理:符号语言:∵∴2. 如图,△ABC中,D、E分别是AB、AC中点.(1)若DE=5,则BC= .(2)若∠B=65°,则∠ADE= °.(3)若DE+BC=12,则BC= .三、典例分析例:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA中点.求证:四边形EFGH是平行四边形.四、当堂反馈1、如图,A、B两点被池塘隔开,在AB外选一点C,连接AC和BC,怎样量出A、B两点间的距离?根据是什么?2、如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,求△DOE的周长3、如图,ABCD的对角线AC,BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是平行四边形五、学习反思:(1)知识点:(2)数学方法:BDAC图1ACD图2BEGFHB CDAABCAB CDOEGHF【学习目标】 【学习重点】 【学习难点】 一、学前准备二、探索思考 探究(一)三、典例分析四、当堂反馈五、学习反思:(1)知识点: (2)数学方法:1、在四边形ABCD 中:从下列条件(1)AB ∥CD ; (2)AD ∥BC ; (3)AD =BC ,(4)∠A =∠C ,选择两个条件,能判定四边形ABCD 是平行四边形的共有 种2、指出下列条件中,哪些一定能判定四边形ABCD 是平行四边形?(1). AB=BC, A D ∥BC (2). AB=CD,O A =OC (O 是对角线交点) (3). ∠A=∠B, ∠C=∠D (4).AB ∥CD, ∠A=∠C 3、如图,BD 是□ABCD 的对角线,点E 、F 在BD 上, 要使四边形AECF 是平行四边形,还需要增加的一个条 件是 (填上你认为正确的一个即可)。

人教版数学八年级下《第十八章平行四边形》导学案

人教版数学八年级下《第十八章平行四边形》导学案

18.1平行四边形学习目标、重点、难点【学习目标】1、理解平行四边形的定义,能根据定义探究平行四边形的性质.2、了解平行四边形在生活中的应用实例,能根据平行四边形的性质解决有关的问题.【重点难点】平行四边形性质的探究及应用;平行四边形性质的探究.知识概览图新课导引平行四边形是我们常见的图形,小区的伸缩门、庭院的竹篱笆、载重汽车的防护栏等,都是平行四边形的形象。

平行四边形在生活中比比皆是,那么它有什么样的性质?又如何判断一个四边形是平行四边形呢?教材精华知识点1 平行四边形的概念有两组对边分别平行的四边形叫做平行四边形.”表示,如图19-1所示,平行四边形ABCD 记作“ ABCD ”,其中表示顶点的字母要按顺时针或逆时针的顺序排列.相关概念:对边有AD 和BC ,AB 和CD ;对角有∠DAB 和∠DCB ,∠ABC 和∠ADC ;对角线是AC 和BD .知识点2 平行四边形的性质 (1)平行四边形的对边相等. (2)平行四边形的对角相等. (3)平行四边形的对角线互相平分. 知识点3 平行四边形的面积平行四边形的面积等于平行四边形的底与底边上的高的积。

用式子可表示为S a h =⋅,其中a为底边长,h 为底边上的高(即相应的两条平行线之间的距离).如图19-3所示,ABCDSBC AE CD AF =⋅=⋅知识点4 平行四边形的判定(1) 两组对边分别相等的四边形是平行四边形. (2) 对角线互相平分的四边形是平行四边形. (3) 两组对角分别相等的四边形是平行四边形. (4) 一组对边平行且相等的四边形是平行四边形. 知识点5 三角形的中位线概念连接三角形两边中点的线段叫做三角形的中位线.如图19-6所示,若点D,E,F分别为△ABC的边AB,BC,CA的中点,则线段DE,EF,DF均是△ABC的中位线.知识点6 三角形的中位线定理三角形的中位线平行于三角形的第三边,且等于第三边的一半.如图19-6所示,若D,E,F分别为△ABC的边AB,BC,CA的中点,则DE 12AC,EF12AB,DF12BC.【方法拓展】(1)三角形的中位线定理在同一条件下具有两个结论;一个定性的是平行于第三边,另一个定量的就是等于第三边的一半,此结论用途比较广泛,又因为中位线具有平移角度、倍分转化的功能,因此当遇到中点或三角形中线时,应考虑是否作中位线,这种思想方法就是我们常说的“遇到中点想中位线”.知识点7 两条平行线间的距离两条平行线间最短的线段的长度叫做两条平行线间的距离.课堂检测基本概念题1、如图19-10所示,小明用一根36m长的绳子围成了一个平行四边形的场地,一条边AB 的长为8m,则其他三边的长度各是多少?基础知识应用题2、平行四边形不一定具有的性质是()A. 对边平行B. 对边相等C. 对角线互相垂直D. 对角线互相平分3、如图19-11所示,已知ABCD的周长是28cm,AC与BD交于点O,△OAB的周长比△OBC 的周长大4cm,则AB=cm,BC=cm.综合应用题4、已知平行四边形的一边长为14,则下列各组数据中,能分别作为它的两条对角线长的是()A. 10和16B. 12和16C. 20和22D. 10和405、如图19-16所示,已知D,E,F分别在△ABC的边BC,AB,AC上,且DE∥AF,DF=AF,将FD延长到G,使FG=2DF,连接AG,求证:ED,AG互相平分.探索创新题6、如图19-20所示,在四边形ABCD中AD∥BC,且AD>BC,BC=6cm,P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,几妙后四边形ABQP是平行四边形?体验中考1、如图19-22所示,在四边形ABCD中,E是BC边的中点,连接DE 并延长,交AB的延长线于点F,AB=BF,添加一个条件,使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是()A. AD=BCB. CD=BFC. ∠A=∠CD. ∠F=∠CDE2、如图19-23所示,在ABCD中,E,F分别为边AB,CD的中点,连接DE,BF,BD.(1)求证△ADE≌△CBF;(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.学后反思附:课堂检测及体验中考答案课堂检测1、解:因为四边形ABCD是平行四边形,所以AB=CD,AD=BC.又因为AB=8m,所以CD=8m.因为AB+BC+CD+DA=36m,所以AD=BC=11(3682)2010(). 22AD BC m==⨯-⨯=⨯=所以8,10.CD m AD BC m===2、C3、9 54、C5、解:连接AD,EG.因为DE=AF,DF∥AF,所以四边形AEDF为平行四边形,所以AE FD.因为FG=2DF,所以GD=DF,所以AE=DG,即AE DG.所以四边形AEGD为平行四边形.所以ED,AG互相平分6、解:设经过x秒后,AP=BQ,则AP =x ,BQ=BC-CQ=6-2x , 所以x =6-2x ,所以x =2 。

第18章《平行四边形》四步导学案

人教版八年级上册数学第十八章《平行四边形》四步导学案18.1.1平行四边形的性质(1)学习目标知识:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质. 能力:会用平行四边形的性质解决简单的平行四边形的计算问题。

情感:通过学生动手体验、探索、归纳等获取知识的途径,从而培养学生对学习数学的兴趣。

学习重点:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.学习难点:解决简单的平行四边形的计算问题。

教学流程【导课】1、说说下列图形是什么图形?2、观察课本83页图19.1- 1,你能发现那些几何图形? 【多元互动合作探究】活动一:1、观察平行四边形与一般的四边形有什么异同?2、归纳平行四边形概念:3、平行四边形记法:如图“平行四边形”可用符号“表示。

平行四边形ABCD记作:ABCD活动二: B C1、观察上面这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?2、证明你的猜想:已知:如图二ABCD ,求证:AB = CD , CB= AD,/ B = Z D,/ BAD = Z BCD .(分析:作二ABCD的对角线AC,它将平行四边形分成△ ABC和厶CDA,证明这两个三角形全等即可得到结论)由此得到:平行四边形性质1平行四边形的.平行四边形性质2平行四边形的.【训练检测目标探究】1•填空:【训练检测目标探究】第十八章平行四边形(1)在二ABCD 中,/ A=50,则/ B=®,/ C=度,/ D=度.(2)如果二ABCD 的周长为28cm,且AB: BC=2 : 5,那么AB=cm, BC=cm, CD=cm, CD=cm.2. 在-ABCD中,如果EF // AD, GH // CD , EF与GH相交与点O,那么图中的平行四边形一共有().(A) 4 个(B) 5 个 (C) 8 个 (D) 9 个3、平行四边形两角之比是2 : 3 ,各角都是多少度?4、、如图小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?【迁移应用拓展探究】1•在平行四边形ABCD中,/ A=50 °则/ B= ° / D = °2、如果平行四边形ABCD的周长为28cm,且AB: BC=2 : 5,那么AB=cm, BC=cm, CD= cm, CD=cm3、如图,在平行四边形ABCD中,AE=CF,丁D 求证:AF =CE .4、如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形(1)线段AD和BC的长度有什么关系?为什么?若这个四边形的一个外角/ a= 38°这个四边形的每个内角的度数分别是多少?为什么?布置作业板书设计教后反思授课时间:累计课时:第十八章平行四边形18.1.1平行四边形的性质(2)学习目标知识:理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

认识平行四边形
【教学目标】
1.在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征,知道平行四边
形两组对边分别平行而且相等;认识平行四边形的高和底,能正确测量和画出它的高。
2.在观察、操作、比较、判断等活动中,经历探索平行四边形基本特征的过程,进一步积累认识图形
的学习经验。
3.感受图形与生活的联系,感受平面图形的学习价值,培养数学应用意识,进一步发展对“空间与图形”
的学习兴趣。
学生活动单 教师导学案

【活动方案】
活动一:认识平行四边形边的特征
1、利用提供的材料,做一个平行四边
形,小组汇报。
2、观察平行四边形,探索平行四边形
的边有什么特征?

活动要求:
(1)仔细观察平行四边形,猜想:它
的边有什么特征?
(2)用什么方法去验证你们的猜想?
怎样操作?
(3)通过观察,操作,验证,你们的
结论是什么?
(4) 先自主完成在小组交流。
3、判断下列图形哪些是平行四边形。

一、创设情境 导入新课
1、出示一个长方形框架,这是什么形状?(操作使它变形)
变成了什么形状?你还在哪些地方见过平行四边形?
2、师:是的,平行四边形在咱们的生活中无处不在。
3、今天这节课我们一起来研究平行四边形的基本特征。(板
书课题:认识平行四边形。)
二、动手操作,探索特征。
(一)制作
1、谈话:同学们看到了这么多的“平行四边形”,闭上眼
睛在小脑袋里想一想平形四边形是什么样子的?好,脑子里
有平行四边形样子了吗?想不想自己动手做一个呢?老师
为大家准备了一些材料,请你选择其中一种材料,制作一个
平行四边形。
2.汇报.
(二)猜测
谈话:刚才同学们用不同的材料制作了平行四边形,如果我
们把平行四边形画出来可能是这样的图形。
出示:

那么平行四边形的边有什么特点呢?请大家猜一猜。
(三)验证
1、谈话:你们真行,有了这么多的猜想,那我们能够自己
想办法来证明这些猜想是否正确吗?
2、出示小组活动要求:
3、小组派代表上来交流自己小组的验证方法。
4、师:同学们刚才通过观察,操作,验证了平行四边形边
的特征,我们可以用一句话概括它的特征是:两组对边分别
平行且相等。谁再来说说,平行四边形的边有什么特点呀?

( ) ( )

( ) ( )
活动二:认识平行四边形的底和高
1、在平行四边形草坪的上下两边中间
建一条小道,怎样建最近呢?把它画出来。

2、汇报:你们是怎样设计的?为什么
这样画最短呢?
3、画出下面平行四边形的高,并标上
底和高。

【检测反馈】
1、画出下面每个平行四边形底边上的
高并量出底和高分别是多少毫米。



2、怎样把一张平行四边形的纸剪成两
部分,再拼成一个长方形。先讨论交流,
再动手试一试。

5、我们已经知道了平行四边形边的特征,下面大家来判断
一下,哪些图形是平行四边形?

三、解决问题,增强技能
1、出示平行四边形草坪图:这是一块草坪,它是什么形状?
现在要在草坪的上下两边中间建一条小道,怎样建最近呢?
把你的设计方案画在活动二的第一题上面。 并汇报:你们
是怎样设计的?为什么这样画最短呢?
2、画高:
(1)师:我们刚才画的这一条线段就是平行四边形的高,
一般我们所画的高用虚线表示,下面我们一起来看一下怎样
画出平行四边形的高。
(2)师:从平行四边形一条边上的一点到它对边的垂直线
段是平行四边形的高,这条对边是平行四边形的底。(让一
个学生读一读)
(3)提问:这条底上可以画多少条高?
3、练习:先画高再量底和高。

四、了解特性。
拿出上课前拉的平行四边形,继续拉,提问:这是什么
图形?再拉,拉出长方形,质疑:是不是平行四边形?
总结:不管怎么拉,虽然形状发生改变,但始终是平行
四边形,这是平行四边形的一种特性,容易变形

五、课堂总结。
提问:通过本课的学习你们有了哪些收获?
六、检测反馈。

如果以左右两边为底
你能画出它的高吗?

相关文档
最新文档