白车身疲劳耐久仿真分析

白车身疲劳耐久仿真分析
白车身疲劳耐久仿真分析

10.16638/https://www.360docs.net/doc/ee7564274.html,ki.1671-7988.2019.06.046

白车身疲劳耐久仿真分析

杨劲飞1,陆雪华2,梁琴桂1

(1.广西艾盛创制科技有限公司,广西柳州545000;2.上海双杰科技有限公司,上海201804)

摘要:某汽车企业研发某款车型在进行可靠性道路试验过程中,车身后部的后尾梁钣金处发现开裂现象,此问题出现,影响车身耐久性能评估。通过道路信号采集、有限元疲劳耐久仿真软件,对此问题进行开裂原因分析,并根据开裂因素制定更改方案,保证该款车型满足疲劳耐久仿真及可靠性道路试验性能评价目标。

关键词:疲劳耐久;开裂;损伤理论

中图分类号:U467 文献标识码:A 文章编号:1671-7988(2019)06-133-03

White body fatigue simulation analysis

Yang Jingfei1, Lu Xuehua2, Liang Qinggui1

(1.ASIN Innovative Design and Manufacturing Co., Ltd., Guangxi Liuzhou 545000;

2.Shanghai Shuangjie Technology Co., LTD., Shanghai 201804)

Abstract: During the reliability road test of a certain automobile model developed by an automobile enterprise, cracks were found in the sheet metal of the rear tail beam of the automobile body, which affected the durability evaluation of the automobile body. Through road signal acquisition and finite element fatigue endurance simulation software, cracking causes are analyzed, and modification schemes are formulated according to cracking factors to ensure that the vehicle meets the performance evaluation objectives of fatigue endurance simulation and reliability road test.

Keywords: fatigue; cracking; Damage theory

CLC NO.: U467 Document Code: A Article ID: 1671-7988(2019)06-133-03

引言

在汽车设计中,白车身强度、疲劳寿命都是评价结构可靠性及耐久性的重要标准,白车身静态强度仿真计算在开发前期能较快将结构高应力风险区域进行暴露,但在汽车开发过程中往往存在准静态强度无法直接预测的开裂现象,此时使用疲劳耐久仿真手段进行前期预测及评估更为必要,车身结构80%以上的失效是疲劳引起的,为此对白车身结构提出疲劳强度设计与分析十分重要[1]。

传统的汽车疲劳耐久性评价一般是通过可靠性试验进行,随着技术的发展,基于疲劳耐久仿真软件寿命预测及道路试验验证的方法受到广大汽车企业的认可[2]。本次案例将结合相关的疲劳理论,并根据车型出现的实际问题对整车进行建模、疲劳仿真计算、计算结果合理性评估,最后根据问题原因制定相关的补救措施,实现结构优化。

1 疲劳累计损伤理论

Miner法则是较早提出的对机械结构进行疲劳耐久性能评价的方法。在汽车开发过程中,疲劳耐久寿命计算是较为重要的性能仿真验证阶段。为了得到更为准确的疲劳寿命计算值,在疲劳寿命仿真计算前需要对载荷进行特定的处理,目前较多情况下,对于疲劳载荷的处理方法都是在较早提出的Miner法则线性损伤积累上进行,根据该损伤法则的本质思路,我们可以得到以下的情形:零件在外界作用力循环作

作者简介:杨劲飞(1988.7-),男,就职于广西艾盛创制科技有限公

司工程分析部,从事车身结构强度及疲劳耐久仿真分析工作。

133

疲劳分析方法

疲劳寿命分析方法 摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。 疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。 金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。Goodman讨论了类似的问题。1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。1929年B.P.Haigh研究缺口敏感性。1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。 中国在疲劳寿命的分析方面起步比较晚,但也取得了一些成果。浙江大学的彭禹,郝志勇针对运动机构部件多轴疲劳载荷历程提取以及在真实工作环境下的疲劳寿命等问题,以发动机曲轴部件为例,提出了一种以有限元方法,动力学仿真分析以及疲劳分

疲劳强度的计算

摘要:零件的疲劳强度是一个值得深刻探讨的问题,在众多领域有着至关重要 的地位,零件的疲劳强度决定了其疲劳寿命,也就决定了对零件的选择和对这个器件的设计。本论文在参考多方资料,以及在平日学习中积累总结的经验之后,对零件疲劳强度的计算有了一些结论,得出影响导致零件疲劳的原因有破坏应力与循环次数之间量的变化影响,静应力的影响,应力集中的影响,零件绝对尺寸的影响,表面状态与强化的影响等方面。在分析零件疲劳产生原因之后,得出许多关系变化图与计算方法。运用这些计算方法,对零件疲劳极限进行了计算上的确定。并总结出疲劳强度在一些条件下的相关计算方法,如在简单应力状态,复杂应力状态下的不同。对疲劳强度安全系数的确定也进行了一系列分析,最后,尝试建立了疲劳强度的统计模型。 Abstract:The fatigue strength of parts is a worthy of deep discussion, have a vital role in many fields, the fatigue strength of parts determines its fatigue life, also decided on the part of the selection and the device design.This paper in reference to various data, and after the usual study accumulation experience, calculation of the fatigue strength of parts have some conclusion, that caused damage should change between force and the number of cycles of the causes of fatigue parts, the influence of static stress, effect of stress concentration, affects the absolute size, surface state and strengthening effect etc.. After the analysis of fatigue causes, draw many relationship graph and calculation method. Using the calculation method of fatigue limit, determined the calculation. And summarizes the related calculation under some conditions the method of fatigue strength, as in the simple stress state, the complex stress state under the different. Determination of the fatigue strength safety factor is also carried out a series of analysis, finally, try to establish a statistical model of fatigue strength. 关键词:零件疲劳寿命疲劳强度 Key word:Spare parts Fatigue life Fatigue strength

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract: In stress fatigue strength theory,bolt,design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid,fasten bolt connection as the object of research,this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes,cylinder diameters between = = 400mm,bolting materials D2 for ms5.6 35 steel,bolt number for 14,in F "= 1.5 F below 15 ℃,the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw,nut,cylinder under cover,cover model. Starts with theoretical knowledge calculate,analysis,and then during analysis,ANSYS finite element analysis software by this paper analyzes forces bolt connection,to verify the rationality of the design of and reliability. After nearly decades of development,the theory of finite element method is more perfect,more extensive application,has become an indispensable design,analysis the emollient tool. Then in its analysis and calculation for bolt connection,based on the type of connection to the fatigue strength design of the general formula classification,further on top of this summary. Keywords: bolt fatigue strength,calculation and analysis,strength theory,ANSYS finite elements analysis.

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 2013-08-29 17:16 by:有限元来源:广州有道有限元 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

基于实测载荷谱的白车身疲劳寿命计算

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处

基于实测载荷谱的白车身疲劳寿命计算 朱涛1 林晓斌2 1上海山外山机电工程科技有限公司 2英国恩科(nCode)国际有限公司上海代表处 摘要:汽车白车身疲劳分析由于缺乏真实载荷谱的输入而显得没有说服力,计算分析的结果往往与试车场或用户使用时发生的失效没有关联,这样导致了虚拟疲劳分析的强大作用无法发挥。本文通过六分力轮测试系统实测了某型乘用车在试车场的载荷谱数据,以此作为输入,并综合了多种CAE手段,包括有限元网格划分、有限元分析、多体动力学分析和疲劳分析,对该乘用车的白车身在实测载荷谱作用下的疲劳寿命分布进行了计算分析,获得了有价值的结果。同时给出了更符合真实工况的试验与虚拟相结合的白车身一体化疲劳分析流程。 关键词:白车身,虚拟疲劳分析,道路载荷谱,有限元网格划分,有限元分析,多 体动力学分析 1 前言 汽车结构疲劳的话题在当前各大整车制造企业越来越受到重视,几乎每种新开发的车型都需要考察其疲劳耐久性能。以前传统的方法,汽车企业对于新车型疲劳寿命的评估都是利用实车在各道路试车场进行路试[1],该方式虽然是最直接且最准确的,但测试时间却十分冗长且耗费人力与经费甚巨,即使发现了问题往往也很难去修改。近年来计算机软硬件的迅速发展,计算机辅助工程(CAE)分析技术在静态、碰撞、振动噪音等领域均有了相当不错的应用成果,但疲劳耐久性分析需要综合有限元应力分析和动力学载荷分析等专业技术,仍需花费非常大的计算量,且计算的准确性由于没有真实的道路载荷谱(RLD)作为计算输入而缺乏说服力。 本文针对上述问题,基于在国内汽车企业已经开始成熟运用的六分力轮测试技术实测获得的某乘用车在试车场的道路载荷谱数据[2],以此作为输入,驱动建立好的整车多刚体动力学仿真模型,获取作用在白车身各连接点上的载荷谱,同时对白车身进行有限元应力场分析。综合上述结果,调用相应的疲劳损伤模型对白车身的疲劳寿命进行了计算,从而建立起一套较为可行的更符合真实工况的车辆疲劳寿命分析技术流程。

疲劳强度考试整理

1.疲劳的定义:材料在循环应力或循环应变作用下,由于某点或某些点产生了局部的永久 结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程称为疲劳。 2.疲劳的分类: (1)按研究对象可以分为材料疲劳和结构疲劳 材料疲劳——研究材料的失效机理,化学成分和微观组织对疲劳强度的影响,使用标准试件。结构疲劳——则以零部件、接头以至整机为研究对象,研究它们的疲劳性能、抗疲劳设计方法、寿命估算方法和疲劳试验方法。 (2)按失效周次可以分为高周疲劳和低周疲劳 高周疲劳——材料在低于其屈服强度的循环应力作用下,经104-105以上循环产生的失效。低周疲劳——材料在接近或超过其屈服强度的应力作用下,低于104-105次塑性应变循环产生的失效。 (3)按应力状态可以分为单轴疲劳和多轴疲劳 单轴疲劳——单向循环应力作用下的疲劳,零件只承受单向正应力或单向切应力。 多轴疲劳——多向应力作用下的疲劳,也称复合疲劳。 (4)按载荷变化情况分为恒幅疲劳、变幅疲劳、随机疲劳 恒幅疲劳——所有峰值载荷均相等和所有谷值载荷均相等。 变幅载荷——所有峰值载荷不等,或所有谷值载荷不等,或两者均不等。 随机疲劳——幅值和频率都是随机变化的,而且是不确定的。 (5)按载荷工况和工作环境可以分为常规疲劳、高低温疲劳、热疲劳、热—机械疲劳、腐 蚀疲劳、接触疲劳、微动磨损疲劳和冲击疲劳 常规疲劳——在室温和空气介质中的疲劳。 高低温疲劳——低于室温的疲劳和高于室温的疲劳。 热疲劳——温度循环变化产生的热应力所导致的疲劳。 热-机械疲劳——温度循环与应变循环叠加。 腐蚀疲劳——腐蚀环境与循环应力的复合作用。 接触疲劳——滚动接触零件在循环应力作用下产生损伤。 微动磨损疲劳——接触面的微幅相对振动造成磨损疲劳。 冲击疲劳——重复冲击载荷所导致的疲劳。 3.金属疲劳破坏机理

整车-20_车身疲劳分析规范V1.0版

车身疲劳分析规范编号:LP-RD-RF-0020 文件密级:机密 车身疲劳分析规范 V1.0 编制: 日期: 编制日期审核/会签日期批准日期

车身疲劳分析规范 修订页 编制/修订原因说明:首次编制 原章节号现章节号修订内容说明备注 编制/修订部门/人 参加评审部门/人 修订记录: 版本号提出部门/人修订人审核人批准人实施日期备注

目录 1 简介 (2) 1.1 分析背景和目的 (2) 1.2 软硬件需求 (2) 1.3 分析数据参数需求 (2) 2 模型前处理 (2) 2.1 模型处理 (2) 2.2 约束及加载方式 (3) 3 有限元分析步骤 (3) 3.1 Nastran 静力分析模块 (3) 3.2 NCODE DesignLife 疲劳分析模块 (4) 4 分析结果后处理 (10) 5 结果评价 (11)

车身疲劳分析规范 1 简介 1.1 分析背景和目的 车身在路试过程中及售后反馈中80%以上的开裂问题为疲劳破坏,车身的疲劳性能是车身质量的重要体现,有必要对车身进行疲劳分析。目前比较通用的疲劳分析方法是准静态法。 1.2 软硬件需求 软件 前处理HyperMesh – Nastran模块 求解器Nastran Solution 101,nCode DesignLife 后处理HyperView 硬件 前、后处理:HP或DELL工作站; 求解:HP服务器、HP或DELL工作站。 1.3 分析数据参数需求 所需模型为简化的TB模型,(白车身及各质量点配重) 2 模型前处理 2.1 模型处理 1)导入简化的TB模型,详细建模细则参考《CAE分析共用模型建模指南》,所有搭载在白车身上的零件均需配重; 2)将各接附点重新编号,编号细则参考《整车疲劳分析连接点编号规范》; 图2.1 简化的TB模型

客车车身骨架准静态疲劳强度分析.

第9期 2010年9月 文章编号:1001-3997(2010)09-0099-03 机械设计与制造 MachineryDesign&Manufacture 99 客车车身骨架准静态疲劳强度分析* 朱健苏小平陈本军 )(南京工业大学机械与动力工程学院,南京210009 Pseudo-staticfatiguestrengthanalysisofbusbodyframework ZHUJian,SUXiao-ping,CHENBen-jun (SchoolofMechanicalandPowerEngineering,NanjingUniversityofTechnology,Nanjing210009,China) 【摘要】运用有限元方法建立了某轻型客车车架骨架的有限元模型,在确定载荷的简化和施加方 法后,进行了该车身骨架在满载弯曲工况下的有限元仿真,以此对其进一步的疲劳分析。为该车车身骨架的优化设计和进一步研究提供了理论依据。 关键词:车身骨架;有限元;疲劳分析 【Abstract】Finiteelementmodelingofthebusframeworkisestablishedbyusingfiniteelementmeth-ods.Whenthesimplifiedloadandloadwayexertingontheframeworkareensured,thefiniteelementsimula-tionofbusframeworkisexecutedunderfullyloadedbendingcondition.Andthenfurtherfatigu eanalysisfinishes.Theseresultsprovidetheoreticalbasisforoptimizationandfurtherstudyoft hebusframework. Keywords:Busframework;Finiteelementanalysis;Fatigueanalysis 1引言 车身骨架是客车的主要承载结构,车身骨架的强度、刚度及安全性、操作稳定性等疲劳性能都直接影响着客车的使用寿命、 基本性能。本文运用通用有限元分析软件对某客车车身进行了准 *来稿日期:2009-11-06 弦弧公差:叶盆、叶背为1;进布点方法生成,选取U=V=0.5的截面, ********************************************* 的问题,提高了系统检测的安全性。

车辆疲劳耐久性分析及其优化技术研究_赵成刚

Science and Technology & Innovation ┃科技与创新 ?17? 文章编号:2095-6835(2015)06-0017-02 车辆疲劳耐久性分析及其优化技术研究 赵成刚1,屈 凡2 (1.中国汽车技术研究中心汽车工程研究院,天津 300300; 2.天津一汽夏利汽车股份有限公司产品开发中心,天津 300300) 摘 要:车辆在人们的生活、生产中占据的地位日益重要,其在运行过程中会受到各种因素的影响,进而降低了其使用效率和服务年限,因此,必须做好车辆零部件的维护管理工作。就车辆运行的实际情况看,大部分关键零部件的失效都是因疲劳使用而导致的,疲劳耐久性是衡量车辆产品性能的主要指标之一,在很大程度上代表了车辆的安全性、经济性和可靠性现状。对车辆的耐久性进行了分析,并提出了相应的优化措施。 关键词:疲劳耐久性;优化措施;循环荷载;EIFS 分布 中图分类号:U467 文献标识码:A DOI :10.15913/https://www.360docs.net/doc/ee7564274.html,ki.kjycx.2015.06.017 现代车辆的结构逐渐向高速化和载重化的方向发展,为了保证车辆运行的安全性和稳定性,就要对车辆结构和各零部件有更为严格的要求。疲劳耐久性是衡量车辆零部件和结构性能的主要指标之一,可直接反映车辆的运行状态。但就车辆疲劳耐久性研究的现状来看,还存在一定的不足。因此,为了提高对车辆疲劳耐久性研究的效果,需要对现存的不足进行分析,并选择有效的优化措施,争取不断提高车辆的运行效率。 1 车辆耐久性疲劳分析 耐久性即产品在规定使用和维修的条件下,达到极限状态前完成规定功能的能力,从本质上看,即产品在达到服务年限前,可维持正常状态的时间。对于车辆而言,经常会将汽车或零部件可以行驶一定里程而不发生故障作为衡量车辆耐久性的重要指标。但在车辆长时间运行的过程中,各零部件和构件会受到循环荷载的影响,造成结构部分发生永久性结构变化,并在多次循环后形成裂纹或断裂,这种情况称为耐久性疲劳。一旦车辆结构或零部件出现耐久性疲劳,则直接影响车辆运行的稳定性和安全性。对于车辆的耐久性疲劳而言,其产生的主要原因是循环荷载作用,与疲劳损坏还有一定的距离,且一旦发生疲劳断裂,则会导致车辆结构产生宏观塑性变形。 2 车辆耐久性分析方法 2.1 分析对象 车辆耐久性分析的对象为疲劳寿命与强度有重要联系的重要零部件,并基于结构损伤度和可靠度进行详细分析,最终判断其使用寿命。在对车辆进行耐久性分析时,可将整个车辆机械结构或一部分作为研究对象,比如圆角、紧固孔和焊接件等,尤其是应力水平高且应力水平集中的部位。 2.2 材料参数 材料参数的分析对象包括断裂韧性、EIFS 分布和表面粗糙系数等。在研究时,基本上以概率断裂力学为基础,并通过试验的手段得到相应数据。其中,对于普通材料而言,可直接在相应的数据库中搜寻相应的参数信息,比如尺寸系数、断裂韧性和表面粗糙度系数等。 2.3 使用期断裂纹扩展控制曲线 对于给定应力区,随着时间t 的变化,对细节描述的当量缺陷尺寸也会发生变化,且车辆的应力区不同,裂纹的扩展率也不同。在对车辆耐久性进行分析时,为了提高预测裂纹超越数概率的可靠性,可以结合使用期裂纹扩展控制曲线与EIFS 分布,导出EIFS 控制曲线所用的裂纹扩展方式形式一致,则使用期裂纹扩展率为: d a /dN =Q i a . (1) 式(1)中:a 为裂纹长度;N 为应力循环次数;Q i a 为使用期裂纹扩展率。 控制曲线为: y Ti (t )=a r exp (-Q i t ). (2) 式(2)中:y Ti 为当量初始缺陷尺寸;a r 为试验常数;Q i 为裂纹扩展参数。 2.4 裂纹超越数 给定应力区i 裂纹超越数即在指定时间t 内该应力区i 结构细节群中裂纹尺寸超过a r 的细节数量,用N (i ,t )表示,并作为一个离散型随机变量,且会随着时间t 的变化而变化。假设应力区每个细节相对小裂纹尺寸扩展相互独立,则每个细节在 时间t 时,裂纹尺寸可达到a r 的概率为p (i ,t ) 。如果确定应力区i 中所含细节数为N i ,则在时间t 时的裂纹尺寸超过a r 的细节数为N ’(i ,t ),服从参数为N i 与p (i ,t )二项式分布,则平均裂纹超越数为: N ’(i ,t )=N i p (i ,t ). (3) 式(3)中:N ’(i ,t )为时间t 内裂纹尺寸超过a r 的细节数;N i p (i ,t )为平均裂纹超越数。 标准差为: σN (i ,t )={N i p (i ,t ) [1-p (i ,t )]}1/2. (4) 在对车辆耐久性进行分析时,则其结构指定细节群会包含多个应力区,可用L (t )表示结构细节群中裂纹尺寸超过a r 的细节数量,且会随着时间t 的变化而变化。如果每个应力区的细节数N 都比较大时,N (i ,t )所对应的二项式分布依据中心极限定理趋近于数学期望N ’(i ,t )和方差σN 2(i ,t )正态分布,则近似有N (i ,t )~N [N ’(i ,t ),σN 2(i ,t )],则细节群裂纹超越数为: ∑==m i t i N t L 1) ,()(. (5) 式(5)中:L (t )为正态变量。 则细节群平均裂纹超越L t ()和标准差σL (i )表示为: 1m i t N t ==∑,). (6) 12 2 1 []m i i i t σσ==∑L N ()(,). (7) 3 基于CAE 技术的车辆疲劳耐久性分析 3.1 建立多体动力学模型 建立多体动力学模型时,应利用整车和零部件参数建立总成系统,以完成运动学个动力学虚拟实验,主要包括汽车操纵的稳定性、安全性和平顺性等性能的精确模拟和计算。整个ADAMS/CAR 建模过程为自下而上,逐次完成各个模板的建立,再由相应的模板生成子系统,最终由每个子系统组装成整个车的模型。其中,子系统是以模板为基础建立的,由多个零件组合而成,主要包括设计参数、模板文件和引用属性文件等多方面的说明。整车建模需要对部分零部件进行简化处理,比如将车身看作为刚体,利用车身质心位置处的质量点建模。 (下转第20页)

某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计 李明1李源2陈斌3 (1湖南工业大学机械工程学院,湖南株洲,412008;2国防科学技术大学指挥军官基础教育学院,湖南长沙,410072;3 湖南大学汽车车身先进设计制造国家重点实验室,湖南长沙,410082) 摘要:本文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue对该型商用车白车身进行S-N全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用 结构优化、合理选材等方法,提高白车身结构的疲劳寿命。 关键词:白车身;有限元;静态分析;疲劳寿命分析;优化 Body-in-white Fatigue Analysis and Optimization Design of the Commercial Vehicle LI Ming1, LI Yuan2, CHEN Bin3 (1 School of Mechanical Engineering , Hunan University of Technology, Zhuzhou, Hunan 412008, China; 2 College of Basic Education for Officers, National University of Defense Technology, Changsha, Hunan 410072, China;3 State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha, Hunan 410082,China) Abstract:Based on the results of stress analysis, this paper took the effective way of the fatigue life estimating, used the professional durability fatigue life analysis system MSC. Fatigue, and the S-N life-cycle analysis of the certain type of commercial vehicle body-in-white finite element model, got the distribution of fatigue life and the fatigue life value of the danger points. Finally, by the structural optimization and material selection, writer improved the fatigue life of white body structure. Keywords: B ody-in-white structure, FEM, Static analysis, Fatigue lifetime analysis; Optimization 0 前言 在车身结构疲劳领域的国内研究中,1994年,江苏理工大学陈龙在建立了车辆驾驶室疲劳强度计算的力学和数学模型基础上,提出了车辆驾驶室疲劳强度研究方法[1]。2001 年,清华大学孙凌玉[2]等首次计算机模拟了汽车随机振动过程。2002年,上海汇众汽车制造有限公司王成龙[3]等应用FATIGUE 软件的分析,结合疲劳台架试验,探讨了疲劳强度理论在汽车产品零部件疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。2004年,同济大学汽车学院靳晓雄[4]等人提到进行零部件疲劳寿命预估,

整车-38_后背门SLAM疲劳分析规范V1.0版

后背门SLAM疲劳分析规范编号:LP-RD-RF-0038 文件密级:机密 后背门SLAM疲劳分析规范 V1.0 编制: 日期: 编制日期审核/会签日期批准日期

后背门SLAM疲劳分析规范 修订页 编制/修订原因说明:首次编制 原章节号现章节号修订内容说明备注 编制/修订部门/人 参加评审部门/人 修订记录: 版本号提出部门/人修订人审核人批准人实施日期备注

目录 1 简介 (2) 1.1 分析背景和目的 (2) 1.2 软硬件需求 (2) 软件 (2) 硬件 (2) 1.3 分析数据参数需求 (2) 2 模型前处理 (2) 2.1 模型处理 (2) 2.2 约束及加载方式 (2) 3 有限元分析步骤 (3) 3.1 Ls-Dyna动态分析模块 (3) 3.2 NCODE DesignLife 疲劳分析模块 (6) 4 分析结果后处理 (10) 4.1 HyperView模型动态姿态及沙漏能后处理 (10) 4.2 HyperView疲劳结果后处理 (10) 5 结果评价 (11)

后背门SLAM疲劳分析规范 1 简介 1.1 分析背景和目的 后背门是汽车的重要部件,后背门在日常使用过程中经常开启和关闭,很可能会发生疲劳破坏,从而导致后背门开裂题,直接影响其使用性能及用户体验。后背门开关耐久性已经成为评价后背门品质好坏的一个重要标准。 1.2 软硬件需求 软件 前处理HyperMesh –LsDyna 求解器Ls-Dyna、nCode 后处理HyperWorks 硬件 前、后处理:HP或DELL工作站; 求解:HP服务器、HP或DELL工作站。 1.3 分析数据参数需求 所需模型后背门及白车身模型 2 模型前处理 2.1 模型处理 整个分析模型建立接触关系,后背门铰链处释放转动自由度。 2.2 约束及加载方式 约束白车身截取处节点1~6自由度,后背门总成分别加载1.3m/s、1.8m/s、2.0m/s初始速度。

高铁车体结构件应力分析与疲劳强度评估 王磊 但龙 姜晓艳

高铁车体结构件应力分析与疲劳强度评估王磊但龙姜晓艳 发表时间:2019-07-15T16:09:32.903Z 来源:《当代电力文化》2019年第05期作者:王磊但龙姜晓艳 [导读] 2007年4月18日,我国的高铁开始正式投入使用,由于是刚刚开始进行高铁的建设,因此在高铁运营过程中往往会出现各种各样的问题和缺陷。 中车青岛四方机车车辆股份有限公司山东青岛 266000 摘要:2007年4月18日,我国的高铁开始正式投入使用,由于是刚刚开始进行高铁的建设,因此在高铁运营过程中往往会出现各种各样的问题和缺陷。其中有80%的机械零件都是因为疲劳破坏而失效的。高铁车体结构大部分都是采用金属材料制作的,而金属不可能做无数次的交变载荷试验,都存在一个疲劳强度,一旦所加的应力值超过金属材料的疲劳强度,就会导致金属变形,从而出现严重事故。基于此,本文首先简单的介绍一下影响疲劳强度的因素;随后详细的介绍一下计算疲劳强度的疲劳试验方法。以此仅供相关人士进行交流与参考。 关键词:高铁车体结构件;应力分析;疲劳强度评估 引言: 在这短短的十几年间,我国的高铁行业得到了突飞猛进的发展,装备生产、运行管理等质量水平也在不断的进步和提高。而机械零件作为高铁车体结构的一个重要组成部分,确实应该引起高铁部门的重视。本文首先介绍一下影响机械零件疲劳强度的因素,随后介绍一下计算机械零件疲劳强度的疲劳试验方法,从而准确的进行疲劳强度的评估,从而不断提高高铁结构件的质量。 一、影响高铁车体结构的疲劳强度因素 高铁车体结构件的疲劳强度评估研究一直都在进行,其中最初的评估方法就是对零件疲劳极限进行测定。但由于实际零件在制作过程中尺寸、形状、材料等都各有不同,因此通过测定零件疲劳极限来评估疲劳强度的试验方法在实施起来具有很大的困难。以此,我们可以通过研究影响机械零件疲劳强度的因素来评估机械零件的疲劳强度。影响机械零件疲劳强度的因素主要是应力集中与梯度;尺寸效应以及表面加工质量这三点(见图一)。 (一)应力集中与梯度 为了满足高铁车体结构的要求,机械零件的制作和加工一般都有拐角、切口、沟槽等缺口,这些缺口自然而言的就出现了应力集中,从而提高了零件的局部应力。在零件部件承载静载荷时,随着静载荷的增加,零件会出现一个宏观塑性变形的阶段,重新分配应力并趋于均匀。而对于疲劳破坏而言,零件并不会出现明显的宏观塑性变形,也不会重新分配应力,因此缺口处的疲劳强度比光滑部位高,出现问题的概率也比较大。缺口处的最大局部应力ɑmax和名义应力ɑn的比值为理论应力集中系数K,K=ɑmax/ɑn。K可以用来表示应力集中提高零件局部应力作用,也被称为形状系数,一般采用弹性力学解析方法或者是光测弹性力学试验来求解[1]。 (二)尺寸效应 机械零件的尺寸对于疲劳强度的影响较大,尺寸效应指的就是当尺寸增大时,疲劳强度就会降低。一般用尺寸系数ε来表示尺寸效应作用的大小。δ-1d为零件的疲劳极限,δ-1为几何相似式样的疲劳强度,d为试样和零件的尺寸(一般在6mm到7.5mm),所以ε=δ-1d/δ-1。引起尺寸效应的因素可以分为制作工艺因素和比例因素。制作工艺因素主要是指机械零件在加工制造过程中因为制作差异出现的尺寸变化[2]。而且铸造件的规模大小也会不同程度的增加铸造困难,一般体积越大的铸造件铸造难度更高,也比较容易出现气孔、沙眼等缺陷,这些缺陷都会成为零件的薄弱部分,从而降低零件的疲劳强度。 (三)表面加工质量 表面加工质量一般由表面粗糙度来衡量,金属种类的不同、加工方法的不同都会对表面加工质量造成影响,像金属表面切削深度、切削用量等,都会对零件部件的疲劳强度产生影响。根据相关研究证明,金属式样的疲劳强度随硬化程度的增加而增加,而且应变硬化的式样都会产生残余的压应力,这种压应力会大大提高零件的拉伸疲劳强度,进而降低零件的疲劳强度[3]。 (图一)影响高铁车体结构的疲劳强度因素 二、计算疲劳强度的疲劳试验方法 (一)常规疲劳试验方法介绍 在进行疲劳实验之前,首先要制备好疲劳式样,疲劳式样需要经过机械加工、热处理以及尺寸测量、表面检验等步骤,保证疲劳式样能够达到疲劳试验的设备要求标准。常规的疲劳试验方法主要用于式样个数不多、生产任务紧急的情况,该方法可以直接给出零件式样的

细解Ansys疲劳寿命分析

细解Ansys疲劳寿命分析 ANSYS Workbench 疲劳分析 本章将介绍疲劳模块拓展功能的使用: –使用者要先学习第4章线性静态结构分析. ?在这部分中将包括以下内容: –疲劳概述 –恒定振幅下的通用疲劳程序,比例载荷情况 –变振幅下的疲劳程序,比例载荷情况 –恒定振幅下的疲劳程序,非比例载荷情况 ?上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses. A. 疲劳概述 ?结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关 ?疲劳通常分为两类: –高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳. –低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算. ?在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论. …恒定振幅载荷 ?在前面曾提到, 疲劳是由于重复加载引起: –当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论. –否则,则称为变化振幅或非恒定振幅载荷

…成比例载荷 ?载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:?在两个不同载荷工况间的交替变化?交变载荷叠加在静载荷上?非线性边界条件

疲劳分析流程fatigue

摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。 关键词:疲劳UIC标准疲劳载荷IIW标准S-N曲线机车车辆 一、国内外轨道车辆的疲劳研究现状 6月30日15时,备受关注的京沪高铁正式开通运营。作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。 在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。随着国内铁路运行速度的不断提高,一些关键结构部件,如转向架的构架、牵引拉杆等都出现了一些断裂事故。因此,机车车辆的结构疲劳设计已经逐渐成为机车车辆新产品开发前期的必要过程之一,而通过有效的计算方法预测结构的疲劳寿命是结构设计的重要目标。 国外 早在十九世纪后期德国工程师Wohler系统论述了疲劳寿命和循环应力的关系并提出了S-N

疲劳强度设计

疲劳强度设计 对承受循环应力的零件和构件,根据疲劳强度理论和疲劳试验数据,决定其合理的结构和尺寸的机械设计方法。机械零件和构件对疲劳破坏的抗力,称为零件和构件的疲劳强度。疲劳强度由零件的局部应力状态和该处的材料性能确定,所以疲劳强度设计是以零件最弱区为依据的。通过改进零件的形状以降低峰值应力,或在最弱区的表面层采用强化工艺,就能显著地提高其疲劳强度。在材料的疲劳现象未被认识之前,机械设计只考虑静强度,而不考虑应力变化对零件寿命的影响。这样设计出来的机械产品经常在运行一段时期后,经过一定次数的应力变化循环而产生疲劳,致使突然发生脆性断裂,造成灾难性事故。应用疲劳强度设计能保证机械在给定的寿命内安全运行。疲劳强度设计方法有常规疲劳强度设计、损伤容限设计和疲劳强度可靠性设计。 简史19世纪40年代,随着铁路的发展,机车车轴的疲劳破坏成为非常严重的问题。1867年,德国A.沃勒在巴黎博览会上展出了他用旋转弯曲试验获得车轴疲劳试验结果,把疲劳与应力联系起来,提出了疲劳极限的概念,为常规疲劳设计奠定了基础。 20世纪40年代以前的常规疲劳强度设计只考虑无限寿命设计。第二次世界大战中及战后,通过对当时发生的许多疲劳破坏事故的调查分析,逐渐形成了现代的常规疲劳强度设计,它非但提高了无限寿命设计的计算精确度,而且可以按给定的有限寿命来设计零件,有限寿命设计的理论基础是线性损伤积累理论。早在1924年,德国 A.帕姆格伦在估算滚动轴承寿命时,曾假定轴承材料受到的疲劳损伤的积累与轴承转动次数(等于载荷的循环次数)成线性关系,即两者之间的关系可以用一次方程式来表示。1945年,美国M.A.迈因纳根据更多的资料和数据,明确提出了线性损伤积累理论,也称帕姆格伦-迈因纳定理。 随着断裂力学的发展,美国A.K.黑德于1953年提出了疲劳裂纹扩展的理论。1957年,美国P.C.帕里斯提出了疲劳裂纹扩展速率的半经验公式。1967年,美国R.G.福尔曼等又对此提出考虑平均应力影响的修正公式。这些工作使人们有可能计算带裂纹零件的剩余寿命,并加以具体应用,形成了损伤容限设计。 用概率统计方法处理疲劳试验数据,是20世纪20年代开始的。60年代后期,可靠性设计从电子产品发展到机械产品,于是在航天、航空工业的先导下,开始了可靠性理论在疲劳强度设计中的应用。 1961年联邦德国H.诺伊贝尔提出的关于缺口件中名义应力-应变与局部应力-应变之间的关系,称为诺伊贝尔公式。1968年加拿大R.M.韦策尔在诺伊贝尔公式的基础上,提出了估算零件裂纹形成寿命的方法,即局部应力-应变法,在疲劳强度设计中得到了应用和发展。 常规疲劳强度设计假设材料没有初始裂纹,经过一定的应力循环后,由于疲劳损伤的积累,才形成裂纹,裂纹在应力循环下继续扩展,直至发生全截面脆性断裂。裂纹形成前的应力循环数,称为无裂纹寿命;裂纹形成后直到疲劳断裂的应力循环数,称为裂纹扩展寿命。零件总寿命为两者之和。 根据零件所用材料的试样的疲劳试验结果,以最大应力为纵坐标、以达到疲劳破坏的循环数N为横坐标,画出一组试样在某一循环特征下的应力-

相关文档
最新文档