混凝土支撑轴力监测分析

混凝土支撑轴力监测分析
混凝土支撑轴力监测分析

混凝土支撑轴力监测分析

混凝土支撑轴力监测分析

摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。

关键词:钢筋混凝土;支撑轴力;监测;分析

引言

我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。

1工程概况

该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在灌梁和斜撑上共埋设 13 个钢筋混凝土支撑轴力监测点。基坑监测点平面位置见图 1。

由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。

2轴力监测的原理

对于混凝土支撑,目前实际工程采用较多的是钢弦式应力计方法测量钢筋的应力,其基本原理是利用振动频率与其应力之间的关系建立的。受力后,钢筋两端固定点的距离发生变化,钢弦的振动频率也发生变化,根据所测得的钢弦振动频率变化即可求得弦内应力的变化值。其计算公式如下:

Pg=K ( ) + b ⑴

Pg 平均= (P1+P2+P3+P4+…+Pn) /n ⑵

δg=Pg 平均/Sg

P混凝土=δg·S混凝土·E混凝土/Eg ⑷

式中 Pg———钢筋计轴力; Pg 平均———钢筋计荷载平均值;δg———钢筋计应力值; Sg———钢筋计截面积; P混凝土———混凝土桩荷载值; E混凝土———混凝土弹性模量; Eg———钢筋弹性模量;S混凝土———混凝土桩横截面积。

在监测中由于内外部温差变化以及混凝土徐变特性会使钢筋应力计产生一定的伸缩变形,引起其自振动频率变化,因此必须采取必要的修正参数进行温差改正,以

提高监测结果的可靠性。

3 监测方案

3.1 测点的布置

本工程混凝土支撑设计强度等级为 C30,弯曲抗压强度为 16 MPa,抗拉力为1.75 MPa,采用钢弦式钢筋计进行轴力监测。监测点位埋设在混凝土支撑中部位置,应力计安装位置如图 2 所示,分别对应所在的支撑编号后加编 1、 2、 3、 4 予以区分。

3.2 监测方法和要求

由于混凝土初期浇筑会产生水化热,为了减少温度的影响,在混凝土浇筑 24 h 以后进行量测,在以后的几天内混凝土散热渐次进行,可认为混凝土的收缩是产生应力计中应力的主要来源。现场条件下,为了控制无外荷条件,在混凝土浇筑后 4~7 d 内,未进行挖土的条件下,连续测得应力计读数与时间的关系,读得应力计读数基本稳定时的值,作为修正后应力计值,以此作为初始值进行应力量测。

3.3 支撑轴力测试与计算

支撑轴力的测试是了解围护结构受力特性、监测结构物安全性的重要依据。在监

测过程中首先通过采集钢筋计的读数,按照上述公式编制相应的程序进行轴力结果自动计算,然后在支撑浇筑初期计入混凝土龄期对弹性模量的影响。在室外温度变化幅度较大的季节,通过相应的温度改正,避免暴冷暴热温差对测试结果的干扰影响测试精度。图 3 是部分支撑轴力测试值随时间的变化曲线图。

总的来看,从 6 月初期基坑开挖施工开始,随着基坑逐步分区域开挖的进行与开挖深度的加大,支撑结构的支撑轴力逐渐加大,到 8 月底开挖至坑底时,支撑轴力逐渐趋于稳定。图 3 中盾构始发井和轨排井所在区域的监测点E101 最终支撑轴力接近8 500 kN, E102 最终支撑轴力接近7 000 kN,E103 最终支撑轴力接近 6 500 kN, E104 最终支撑轴力接近6 000 kN, E105最终支撑轴力接近5 500 kN,E106 最终支撑轴力接近 5 000 kN,都远远大于其所在混凝土支撑设计值 1 600 kN,明挖段的监测点 E107、 E108、 E109 最终支撑轴力接近3 000 kN,也都远远大于设计值 1 100 kN 的2 倍。 E103 和 E104、 E105 和 E106 等两个位置相邻的测点监测结果曲线基本一致,所有的混凝土支撑曲线形状基本类似,只是处于盾构始

发井钢筋混凝土支撑的最终轴力比明挖段的最终轴力大,可以认为是由于开挖深度不同导致。

4监测数据分析

4.1 监测数据异常分析

监测初期, E104、 E105 和 E106 测点的支撑轴力实测值为负值,随开挖深度的加大,支撑轴力由负变正,即由理论上的轴向拉力变为轴向压。出现负值的原因,笔者认为是埋设在支撑上的钢筋计、应变计等元件所测到的钢筋或混凝土应力并非全部是由荷载产生的,还有多种非荷载因素产生的附加应力,而引起非荷载应力的主要原因有混凝土的干缩、湿胀、徐变和构件温度变化等。

混凝土支撑系统的轴力监测在基坑开挖 6 月 9日至 25 日期间, E101、 E102、E103、 E104 已经超过设计允许值。随着开挖的进行,到 8 月底,轴力监测值最大监测点 E101 处达到 8 500 kN,其余几个监测点的轴力监测值也已大大超过支撑的设计安全值 1 600 kN,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象。同步监测的支护结构墙(桩)顶水平位移和沉降、支护结构(墙体)侧向位移也没有突然变化加大的趋势,一直处于变形比较稳定的状态。由于基坑场地范围砂质地层厚度大,砂层含水丰富、渗透性强,为了确保基坑安全施工,基坑安全应急处理专家在 7 月 2日采取停止基坑开挖和加强监测频率的应急预案。通过后来连续 3 天的监测结果表明基坑各项变形暂时比较缓慢,观察支撑未出现裂缝等不安全、失稳迹象。通过检查验证监测方法和监测数据的计算后,综合分析同步监测的支护结构墙(桩)顶水平位移和沉降、支护结构(墙体)侧向位移监测数据,基坑安全应急处理专家小组集体判断认为基坑暂时处于安全状态。混凝土支撑系统的轴力监测结果普遍异常一直到基坑开挖结束,最大值达到设计允许值的 6 倍,而支撑系统一直处于正常的工作状态。

4.2 原因分析

在实际工程施工过程中,出现混凝土轴力监测异常的原因是多方面的,主要有以下几个:

a)由于基坑工程设置于力学性质相当复杂的地层中,基坑围护结构支撑的空间受力是三维的,而在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受

轴力计算公式

计算公式 3、钢板桩、H型钢应力计算公式: δ=E s·K(f i2-f02)○1应变传感器计算公式 式中:δ—钢板桩(H型钢)应力变化值(KPa); E s —钢的弹性模量(KPa);碳钢:2.0—2.1×108 KPa 混凝土:0.14—×108 KPa K—应变传感器的标定系数(10-6/Hz2); f i—应变传感器任一时刻观测值(Hz) f0—应变传感器的初始观测值(零值) δ= K(f i2-f02)○2测力传感器(钢筋计)计算公式 式中:δ—钢板桩(H型钢)应力变化值(KPa); K—测力传感器的标定系数(KPa /Hz2); f i—测力传感器任一时刻观测值(Hz) f0—测力传感器的初始观测值(零值)(Hz) 4、钢筋砼支撑轴力计计算公式: 4.1 N= E c·A【K(f i2-f02)+b(T i-T0)】○1砼应变传感器的计算公式式中:N—钢筋砼支撑轴力变化值(KN); E c—砼弹性膜量(KPa); A—钢筋砼支撑截面积(mm2); f i—应变传感器任一时刻的观测值(Hz); f0—应变传感器的初始观测值(零值)(Hz);

K — 应变传感器的标定系数(10-6/Hz 2); b — 应变传感器的温度修正系数(10-6/Hz 2); T i — 应变传感器任一时刻的温度观测值(℃); T 0— 应变传感器的初始温度观测值(℃); 4.2 N i = Es Fc (As A -1)【K (f i 2-f 02)+b (T i -T 0)】 ○ 2钢筋测力传感器计算公式(基坑施工监测规程中公式) 式中:E s — 钢筋弹性膜量(KPa ); A s — 钢筋的截面积(mm 2 ); N i — 单根钢筋测力传感器的计算出的支撑轴力值(KN ); b — 钢筋测力传感器的温度修正系数(KN/℃) K — 钢筋计的标定系数(KN /Hz 2) 4.3 根据相关规范、规程要求,每道钢筋砼支撑轴力测试,一般可分为4个测点,故该式为: N= (N 1+N 2+N 3+N 4)/4 ○ 3 式中:N — 钢筋砼支撑轴力值(KN ); N i —钢筋砼支撑某测点受力值(KN )

混凝土支撑轴力监测分析

混凝土支撑轴力监测分 析精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

混凝土支撑轴力监测分析 摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。 关键词:钢筋混凝土;支撑轴力;监测;分析 引言 我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。 1工程概况 该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 m,明挖段基坑开挖深度约 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在

围护结构钢支撑施工工艺工法

围护结构钢支撑施工工艺工法 1前言 工艺工法概况 钢支撑是明挖结构内支撑体系重要组成部分,每根钢支撑有多个短节钢管拼接而成,通过法兰盘进行连接,钢支撑一头安放在钢围檩的托板上,另一头通过活络头安装在对面的一侧,通过活络头用千斤顶对钢支撑按照设计要求预施加一个轴力,并对该轴力实行监控,以便掌握结构变形情况。在结构拐角处由于距离比较小,不适合架设钢支撑,可以用型钢焊接成短节的型钢支撑作为支撑体系。工艺原理 钢支撑是支撑体系的一种形式。目前较为广泛的应用于地下工程,特别是深基坑开挖工程中最为常见,它主要是将基坑一侧土压力通过钢支撑的作用,传递到另一侧,与另一侧的土压力保持平衡,从而使基坑处于安全的状态,钢支撑轴力的变化能间接的反应出基坑两侧土压力变化情况,因此可以通过对钢支撑轴力监测,正确的指导安全施工。 基坑在开挖过程中,随着深度的增大,两侧土压力也随之增大,土压力通过力的传递到围护结构上,向基坑内侧侵斜,采用刚性的型钢对撑之后,将基坑两侧的土压力很好的平衡。以达到预期效果。 2工艺工法特点 钢支撑施工简单,适用性强,操作方便,时效性强,可周转重复使用。 3适用范围 主要使用在地下工程、深基坑工程。 4主要引用标准 《地铁设计规范》(GB50157) 《建筑基坑工程技术规范》(YB9258) 《建筑基坑支护技术规程》(JGJ120) 《地下铁道工程施工及验收规范》(GB50299)

《建筑桩基技术规范》(JGJ94) 《建筑工程施工现场供用电安全规范》(BG50104) 《建筑地基基础设计规范》(GB50007) 《建筑钢结构焊结技术规程》(JGJ81) 5施工方法 钢支撑架设与基坑土方开挖是深基坑施工密不可分的两道关键工序,支撑架设极具时间性和协调性,支撑架设的方法、时间、位置及预加力的大小直接关系到深基坑稳定的成败。支撑架设必须严格满足设计工况要求。 钢支撑拼装过程 钢支撑在拼装时保证支撑接头的承载力符合设计要求。钢支撑连接时必须对称上螺栓,按顺序紧固。要有钢支撑支托措施,防止坠落。 钢支撑安装前一定要检查钢管的平直度,若不平直要进行矫正。 钢支撑架设方法 每节段分层开挖至钢支撑架设的高度后,立即放出支撑位置线及标高线。 第一道钢支撑架设在冠梁预埋钢板上,其它各层钢支撑安装钢围檩支架牛腿后,安装加工好的钢围檩,钢支撑两端的钢围檩应保持同一水平位置。 将焊接好的三角形钢支架在钢支撑中心位置与钢围檩相焊接,并与其背后的抗剪加强肋板相焊接。 将厂家制作的单根支撑钢管与活接头采用高强螺栓进行现场连接,组装成为成型的单根钢支撑。 用2台25t汽车吊或1台50t履带吊(或龙门吊)吊放钢支撑到钢支座上,并使活动端较宽位置支撑于围护桩上。 钢支撑的长度由现场实际长度确定。微调采用特制钢楔,完成钢支撑组装的各种工作。 为防止钢支撑在施加轴力时由于自重产生过大的挠度,在对钢支撑施加预应力时汽车吊(或龙门吊)吊装钢丝绳必须持力,不得放松。 在钢支撑支架处焊接防坠钢板,完成施加预应力前的各种准备。

力学计算公式

? 常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA @ 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 … 对y轴的惯性矩I y=∫A z2dA

其中:A为图形面积,z为形心到y轴的距离,单位为m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 " 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12(二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 》 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

支撑轴力特点及支承轴力监测方案

第一部分轴力支持方案特点及发展 随着高层建筑数量和高度的增加,基础埋深也随着增加。进入90年代后,我国经济的迅速发展,城市地价不断上涨,空间利用率随之提高,出现了众多的超高层建筑,使有些地下室埋深达20米以上,对基坑开挖技术提出更高、更严的要求,即不仅要确保边坡的稳定,而且要满足变形控制的要求,以确保基坑周围的建筑物、地下管线、道路等安全。同时,为了适应建筑市场日趋激烈的竞争,还要考虑提高土方挖运的机械化程度、缩短土方工期、降低工程成本、提高经济效益等方面的因素。我公司自1994年以来,先后在佛山国际商业中心,中山六福广场、广州文化娱乐广场、广州博成大厦等基坑施工中,采用了大跨度钢筋混凝土内支撑梁或圆环拱形钢筋混凝土内支撑支护,由于它们具有在计算方面的正确性、土方施工的经济性和施工实践的安全可靠性,所以在施工中越来越多地应用,并通过广东省建筑工程总公司及有关专家的鉴定,获得科技进步奖三等奖,得到推广和应用。 1.特点 .发挥材料的优点。深基坑土方施工中,基坑深度往往较大,挡土结构的水平压力也较大,因此,钢筋混凝土支撑表现为水平受压为主,由于钢筋混凝土支撑与钢支撑不同,它具有变形小的特点,加上采用配筋和加大支撑截面的方法,可以提高钢筋混凝土支撑的强度,用以作为支撑的混凝土能充分发挥材料的刚度大和变形小的受力特性,它能确保地下室施工和基础施工以及周边邻近建筑物、道路和地下管线等公共设施的安全,因此,它是作为深基坑支护技术的新形式和新材料。 .加快土方挖运速度。在软地基深基坑施工时采用钢筋混凝土支撑,由于它的跨度大,尤其是采用圆环拱形钢筋混凝土内支撑形式,基坑内的平面形成大面积无支撑的空旷,空旷面积可达到整个基坑面积的65%~75%,形成开阔的工作面,满足挖土机械回转半径的要求,有利于多台大型挖土机械自如运转作业,在基坑内可以留坡道让运土车直接驶入基坑装土,并采用逐层开挖或留岛形式开挖,这样,最后剩余小量土方用吊土机吊起即可。挖土速度可以提高三倍以上,达到缩短土方施工工期的目的,同时有利于基坑挡土结构变形的时效控制和缩短基坑内的降水时间,保证邻近建筑物的安全。 .降低工程造价。采用了大跨度钢筋混凝土内支撑梁或圆环拱形钢筋混凝土内支撑形式,材料便宜,节省了其它支撑结构(如钢结构)一次性投入的大笔资金。

5、地铁车站钢支撑轴力自动补偿施工工艺工法

地铁车站钢支撑轴力自动补偿施工工艺工法 (QB/ZTYJGYGF-DT-0307-2014) 广州分公司王小孟 1 前言 1.1 工艺工法概况 钢支撑自动轴力补偿系统,是结合了现代机电液压一体化自动控制技术、计算机信息处理技术、总线通信技术以及可视化监控技术等高新技术手段,对支撑轴力进行全天候不间断监测,并根据高精度传感器所测参数值对支撑轴力进行适时的自动补偿来达到控制基坑变形目的支撑系统。 钢支撑自动轴力补偿系统将传统支撑技术与现代高科技控制技术等有机结合起来,对钢支撑轴力实时补偿与监控,实现对钢支撑轴力24小时不间断的监测和控制,使支撑系统始终处于可控和可知的状态。与传统钢支撑体系相比,自动轴力补偿系统能明显降低基坑围护结构的最大变化速率,控制基坑的变形,减小对邻近运营线路、建筑等周边环境的影响,有效解决常规施工方法无法控制的苛刻变形要求和技术难题。 目前在上海地区邻近地铁运营线的基坑应用较多,在深圳地铁11号线前海湾站首次应用。 1.2 工艺原理 钢支撑是基坑内支撑体系的一种常用型式。每根钢支撑有多个标准节钢管拼接而成,通过法兰盘进行连接。钢支撑两端为固定端、活动端端头,活动端通过活络头调节长度。常规做法是通过活动端的活络头用千斤顶对钢支撑按照设计要求预施加一定轴力,并安装轴力计监控钢支撑的轴力,以便掌握基坑结构变形引起的应力变化情况。钢支撑自动轴力补偿系统,是采用钢支座套箱端头替代活动端,钢支座套箱端头内安装千斤顶(设计轴力决定其吨位),通过液压转换为支撑轴力,与基坑外侧土压力保持平衡,从而使基坑处于安全的状态。地面通过监控站、操作站、现场控制站、液压伺服泵站等成套系统即时控制钢支撑端部千斤顶压力,通过持续“保压”,使钢支撑恒定轴力,起到自动控制、监测钢支撑轴力作用。 1.2.1 系统组成

基坑轴力监测

基坑工程混凝土支撑轴力监测方法的讨论 2014-01-18 13:52 来源:中国岩土网阅读:1060 通过现场试验,探讨混凝土支撑轴力监测过程中的问题及解决方法。 基坑工程混凝土支撑轴力监测方法的讨论 1.混凝土支撑轴力监测的问题及现状 国内明挖基坑工程的监测中,混凝土支撑系统的轴力监测结果异常(轴力监测值过大,但实际工程结构中并非内力过大或不稳定;如:一根C35 1m×1m截面的钢筋混凝土支撑,有时轴力监测值会达到20000~30000kN,而依然处于正常工作状态)问题普遍地存在着,时常会对监测结果分析及工程施工的进行造成不必要的阻碍。如苏州轨道交通一号线广济路站基坑混凝土支撑轴力监测数据,在实际监测过程中发现随着基坑开挖深度的加深,基坑支撑的监测轴力值变化较快并远大于设计值,有的甚至好几倍,以标准段8-2道混凝土支撑轴力为例,最大监测轴力值接近15000kN,远远超过该段8700kN的设计值。广州地铁五号线员村站基坑工程,在D101监测点处支撑横断面下表面钢筋所测应力为负值,即为拉应力,说明斜撑在土压力的作用下已向下弯曲,且下表面混凝土拉应力为 2.51 MPa,超过了混凝土的设计抗拉强度,就现场观看支撑上表面有细微裂缝,而轴力平均值才达到1440.44 kN,还远未达到轴力设计报警值3000 kN。广州某地铁基坑工程混凝土支撑系统的轴力监测结果起初均为负值,随着基坑的开挖轴力值持续增大,一直到基坑开挖结束,最大值达到设计允许值的6倍,而支撑系统一直处于正常工作的状态。天津某轨道换乘中心⑩轴~⑩轴工程截至2009年8月6日,⑦轴轴力值为18247 kN,占设计值204%;⑦轴轴力值为18994 kN,占设计值213%;已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象。上海虹桥国际商城基坑开挖深度13.70m,3道混凝土支撑,第2道支撑(C351200mm×l000mm)轴力监测值最大处曾达到30500kN,已大大超过支撑的安全报警值,但支撑一直安全工作,未出现裂缝等不安全、失稳迹象,直至支撑拆除;南京地铁指挥中心基坑开挖深度15.40m,4道钢筋混凝土支撑,施工过程中第3道支撑(C35 1200mm×1000mm)轴力监测值最大处达到21000kN,已超出轴力安全报警值,但并未出现不安全工作的迹象,直至支撑拆除。南京鼓楼峨眉路北侧某基坑工程混凝土轴力的设计值为2000kN,但是实际监测值基本上都超过2000kN,最大值5139kN,超过了设计值的2.5倍。青岛地铁一期工程火车北站A区基坑第一层混凝土支撑轴力采用混凝土应变计进行监测,期间日变化量波动很大,范围在-1140kN~1560kN之间,甚至一天内上下午监测数据变化达800kN。可以看出,国内各基坑工程混凝土支撑轴力监测过程中,该监测异常的现象比较普遍。 本人参建扬州某大型市政工程,其基坑工程第一层多为混凝土支撑,现场监测采用钢筋应力计进行混凝土支撑轴力的量测,自2012年3月6日,大部分混凝土支撑轴力监测值超过5000kN,有的甚至超过10000kN,远大于设计轴力及设计所提控制值,现场就此事讨论激烈。 2.混凝土支撑轴力的主要监测方法

混凝土弹性模量及温度变化对混凝土支撑轴力计算的影响

混凝土弹性模量及温度变化对混凝土支撑轴力计算的影响 摘要在施工监测过程中,混凝土支撑轴力对基坑安全性的判定非常直观也十分重要,但由于围护结构受力十分复杂导致支撑实测轴力和理论工况下的设计轴力相差较大。根据扬州市瘦西湖隧道工程湖东明挖段基坑混凝土支撑轴力的监测数据,综合现场工况,对混凝土支撑轴力监测计算结果进行了详细的分析,通过对混凝土弹性模量和监测温度进行相应的修正,可有效的提高混凝土支撑轴力计算准确性。 关键词: 基坑监测;混凝土弹性模量;支撑轴力计算;修正 Abstract: In the construction monitoring process, the concrete supporting shaft force is very important and intuitive to judge the safety of foundation pit, However, there is a big difference in the supporting axial force between measured and designed; cause of the force of the retaining structure is very complex. According to the monitoring data of the Lake East open-cut segment Pit concrete supporting shaft force in Yangzhou Slender West Lake tunnel project, combining the on-site conditions, the monitoring result of the concrete supporting shaft force is analyzed in detail. By amending the modulus elasticity of the concrete and the monitoring temperature, the accuracy of the concrete supporting shaft force can be improved effectively. Key words: excavation monitoring; elastic modulus of concrete; support shaft force; amend 1引言 随着社会经济与城市建设的快速发展,地下工程围护结构监控量测变得越来越重要。这这其中基坑支撑轴力的监测,其目的在于及时掌握施工过程支撑受力大小及变形情况,进而对整个基坑支护体系的安全与否做出科学的评价,指导现场安全施工。混凝土支撑轴力需在混凝土构件内埋设测力钢筋计来测试轴力[1],由于其轴力不能直接测得,而是通过模拟计算获得,在此基础上就需要提高计算的可靠性,才能对设计进行验证。 结合扬州市瘦西湖隧道工程施工的实际情况,通过对其围护结构混凝土支撑轴力的整体分析,对计算混凝土支撑轴力的公式[2]加入混凝土弹性模量和温度变化相对应的修正,以提高混凝土支撑轴力计算准确性。 2影响因素理论分析 扬州瘦西湖工程在基坑围护结构中的第一道支撑为混凝土支撑,其轴力大小若要通过应力传感器直接测得是很困难的,因此我们可以根据钢筋与混凝土的变形协调做一假定来求算,采用振弦式钢筋应力传感器进行监测。其工作原理为:

混凝土支撑轴力监测分析

混凝土支撑轴力监测分析 摘要:结合广州地铁某基坑工程的设计和施工方案,对混凝土支撑轴力监测的原理进行介绍。在对基坑施工过程中轴力监测数据变化进行分析的基础上,对其形成原因进行了探讨,得到一些经验性规律,供类似工程参考。 关键词:钢筋混凝土;支撑轴力;监测;分析 引言 我国基础建设的快速发展,深基坑工程的建设也越来越多,在深基坑施工过程中,深基坑的支护起着举足轻重的作用。只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,支撑结构轴力的监测是基坑工程现场监测的主要内容之一。通过对轴力的监测,可准确掌握支护结构的受力状况,从而对基坑的安全性状进行分析,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计方案,从而保证基坑本身和周围建筑物、构筑物的安全,以确保工程的顺利进行。结合广州地铁某基坑工程的设计方案和监测数据,对基坑的混凝土支撑轴力变化进行初步分析。 1工程概况 该工程包括盾构始发井兼轨排井及后明挖段,设计为 1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为 18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。基坑设计采用 800 mm 厚的地下连续墙+内支撑的围护结构体系。内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、 t=14 的钢管,在灌梁和斜撑上共埋设 13 个钢筋混凝土支撑轴力监测点。基坑监测点平面位置见图1。

由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。 2轴力监测的原理 对于混凝土支撑,目前实际工程采用较多的是钢弦式应力计方法测量钢筋的应力,其基本原理是利用振动频率与其应力之间的关系建立的。受力后,钢筋两端固定点的距离发生变化,钢弦的振动频率也发生变化,根据所测得的钢弦振动频率变化即可求得弦内应力的变化值。其计算公式如下: Pg=K ( ) + b ⑴ Pg 平均= (P1+P2+P3+P4+…+Pn) /n ⑵ δg=Pg 平均/Sg ⑶ P混凝土=δg·S混凝土·E混凝土/Eg ⑷ 式中 Pg———钢筋计轴力; Pg 平均———钢筋计荷载平均值;δg———钢筋计应力值; Sg———钢筋计截面积; P混凝土———混凝土桩荷载值; E混凝土———混凝土弹性模量; Eg———钢筋弹性模量;S混凝土———混凝土桩横截面积。 在监测中由于内外部温差变化以及混凝土徐变特性会使钢筋应力计产生一定的伸缩变形,引起其自振动频率变化,因此必须采取必要的修正参数进行温差改正,以

混凝土支撑轴力计算方法

混凝土支撑轴力监测范本 1工程概况 该工程包括盾构始发井兼轨排井及后明挖段,设计为1~3 跨的闭合框架结构,其中盾构始发井基坑开挖深度约为18.9 m,明挖段基坑开挖深度约17.5 m;基坑深度范围内大部分为砂层,以淤泥质粉细砂层为主,基坑底部几乎全部位于淤泥质粉细砂层。基坑设计采用800 mm 厚的地下连续墙+内支撑的围护结构体系。内支撑采用 3 道支撑体系,第一道为具有一定刚度的冠梁,第二、三道为Ф 600、t=14 的钢管,在灌梁和斜撑上共埋设13 个钢筋混凝土支撑轴力监测点。基坑监测点平面位置见图1。 由于基坑开挖深度较大且附近有一级公路高架桥和铁路双线桥,属于一级基坑,必须通过监测随时掌握土层和支护结构的内力变化情况,将监测数据与设计预估值进行分析对比,以判断前一步施工工艺和施工参数是否符合预期值,以确定优化下一步施工参数,以此达到信息化施工的目的,确保工程安全。 2轴力监测的原理 对于混凝土支撑,目前实际工程采用较多的是钢弦式应力计方法测量钢筋的应力,其基本原理是利用振动频率与其应力之间的关系建立的。受力后,钢筋两端固定点的距离发生变化,钢弦的振动频率也发生变化,根据所测得的钢弦振动频率变化即可求得弦内应力的变化值。其计算公式如下: P g=K ( ) + b ⑴ P g 平均= (P1+P2+P3+P4+…+P n) /n ⑵ δg=P g 平均/S g⑶ P混凝土=δg·S混凝土·E混凝土/E g ⑷ 式中P g———钢筋计轴力;P g 平均———钢筋计荷载平均值;δg———钢筋计应力值;S g———钢筋计截面积;P混凝土———混凝土桩荷载值;E混凝土———混凝土弹性模量;E g———钢筋弹性模量;S混凝土———混凝土桩横截面积。 在监测中由于内外部温差变化以及混凝土徐变特性会使钢筋应力计产生一定的伸缩变形,引起其自振动频率变化,因此必须采取必要的修正参数进行温差改正,以提高监测结果的可靠性。 3 监测方案 3.1 测点的布置 本工程混凝土支撑设计强度等级为C30,弯曲抗压强度为16 MPa,抗拉力为1.75 MPa,采用钢弦式钢筋计进行轴力监测。监测点位埋设在混凝土支撑中部位置,应力计安装位置如图2 所示,分别对应所在的支撑编号后加编1、2、3、4 予以区分。

钢支撑架设技术要求

钢支撑架设技术要求 一、钢支撑场外组装 钢支撑在运送到场后,根据基坑开挖宽度尺寸和钢支撑长度进行选材配节,拼装成完全能吊装的单根成型钢支撑。预拼装完毕后,需按设计文件允许值要求检查钢支撑轴线偏差。 二、三角托架施工 按照设计要求的材料及尺寸制作三角托架,焊好后的钢三角托架应保证两直角边相互垂直,焊接牢靠,并有足够的稳定性,不得出现歪扭、虚焊现象。 每层土方开挖至指定标高后,测量放出三角托架轴线位置及标高,按设计间距、设计标高在围护结构上安装三角支撑,安装完毕后应检查相邻三角托架之间是否在同一水平面及标高。 膨胀螺栓钻孔后,应检查孔内是否存在地下水,若有地下水,应及时除水处理。

三、钢围檩施工 钢围檩一般采用双拼工字钢。分段加工,一般分段长度取2~3个支撑间距,同时确保每根钢支撑安装位置避开钢 围檩与钢围檩接缝。转角部位应根据实际长度加工。 钢围檩随支撑架设顺序逐段吊装,人工配合吊机将钢 围檩安放于钢三角托架上,并及时按设计要求安装防脱落装置。钢围檩安装后应检查钢三角托架是否因撞击而松动。钢围檩就位后,应检查与钢支撑接触面垂直度是否满足设计要求。若有设计要求,需在检查无误后在钢围檩与围护结构之间空隙填嵌设计填充物,一般为细石混凝土。本段钢围檩上的钢支撑预应力施加完毕后,应及时与上段钢围檩三面焊接,接成连续梁,避免出现悬臂现象。每段钢围檩接缝处,安装平面位置和高程位置应一致,不允许出现错台等现象。每层钢围檩须设置抗剪凳,,抗剪凳位置应与实际护披桩位置相 对应,凿出护披桩保护层内钢筯,与抗剪凳钢板相焊接,焊接长度应与钢板长度相对应。 三面焊接

四、钢支撑架设 采用吊车将在基坑外预拼装完毕的钢支撑吊入安装位置,吊装过程应严格按照起重吊装规范施工。 将钢支撑吊装就位在固定于钢围檩上的挂板处,安装必须保证钢支撑端头与围檩或预埋钢板密贴,钢支撑就位后应初步固定活络头。若施工场地及操作空间允许,应初步施加预应力后,再解开吊装钢丝绳。钢支撑安装完成后,为了防止钢支撑因轴力变化而产生不稳定现象,可利用钢丝绳和U 型卡拴住钢支撑两端头,并将钢丝绳一端采用膨胀螺栓固定在围护结构上,防止支撑掉落或倾覆。 背后填充 生命绳 钢支撑防脱落 钢围檩防脱落 五、施加预应力 钢支撑安装就位并复核位置、水平合格后,根据设计预加轴力确定千斤顶,预应力施工前,必须对油泵及千斤顶进行标定,并出具有效的标定报告。 钢支撑轴力施加分三次进行,支撑第一次施加设计轴力的40%,第二次施加设计轴力的70%,第三次施加设计轴力的100%。支撑的第一、二次加压完成后保持压力不小于3min,第三次加压完成后保持压力不小于5min,稳定后采用45号铸钢制作的楔块楔牢锁定,并设置插销。锁定后进行观察,3分钟无明显回压,保证轴力锁定及稳压情况符合设计及规

地铁站钢支撑轴力计算新

地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根14.5米最长的钢支撑和对基坑垂直的钢支撑单根23.2米最长的钢支撑进行受力分析计算,已知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑两头45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取1.2的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。

查表得,单根槽钢28c的几何特性为: 截面面积A=51.234 cm2, Ix=268cm^4, Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=51.234×2+4×30=222.5 cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/222.5=1.96cm iy=√Iy/A=√29000/222.5=11.42cm (二)、截面验算 1.强度 σ=1.2N/A=(1.2×2695×103)/(222.5×102) =145.4N/mm2

1.2N/φA=(1.2×2695×103)/(0.791×22 2.5×10 2)=183.7N/mm2

支撑轴力

深基坑钢支撑轴力作用指导书 随着城市建设的迅猛发展,城市中心深基坑工程也越来越多,深基坑支护体系的结构计算和现场测试信息化施工也显示出其重要的意义。钢支撑轴力监测则是反映支撑结构计算成果与施工工况的差距是否合理。同时也是深基坑开挖施工过程中预警的一个最直观的方法。 测量目的: 基坑围护支撑体系处于动态平衡之中,随着基坑施工工况的变化建立新的平衡。通过支撑轴力监测,可及时了解钢支撑受力及其变化情况,准确判断基坑围护支撑体系稳定情况和安全性,以指导基坑施工程序、方法,确保基坑施工安全。 测量原理: 通过设置在仪器内部的振弦,感知仪器轴向应变,通过其自身频率的变化反映出来的,他们之间的差别主要就是在于安装及费用方面。 观测方法: 使用FX-180型多功能读数仪进行测量,一般情况下轴力计的电缆线分为红色和黑色,先打开读数仪,将仪器模式切切换到F模式下,测量时将读数仪的鳄鱼夹红色的夹子夹到轴力计红色的电缆线上,黑色的夹子夹到黑色的电缆线上,读取读数仪显示屏上F值并做好记录。计算方法: 将现场记录的数据检查时间、观测员、记录员是否准确、清晰。在将

检查合格的数据输入电脑,计算出刚支撑的受力p,计算公式如下: P=K(f02-fi2) P:应力(单位KN); f0:初始频率; fi:本次频率; k:标定系数; 将计算出的受力整理成表、画出曲线图。做好分析报告,上报有关单位。 报警应急措施: 支撑轴力计是随基坑开挖围护结构变形或位移直接影响支撑受力的。当支撑受力达到报警时,分析报警的原因及因素,做好书面报告。及时通知各有关单位,特别是施工单位,采取相应措施,以保证基坑的安全性和稳定性。 注意事项: 装有轴力计的基坑一般为深基坑,在观测时必须做好安全三宝(安全帽、安全绳、安全网),雨天观测注意仪器的保护。我们使用的仪器都是电子仪器,雷雨天最好别进行观测,以防雷击。

力学计算公式

力学计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA 为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标 轴的静矩不同,如果参考轴通过图形的形心,则 x c=0,y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为 m4

常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩 I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正 应力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。8.抗弯截面模量 W x=I x/y c

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

钢支撑轴力计算表.docx

建设十一路站主体第三道支撑预加轴力支撑设计参数预加轴力 间距轴力设围檩预加施工控 支撑支撑轴计值角度轴力制轴力编号线位置 轴力预加锁定 m KN/m°轴力轴力 (KN) (KN)(KN) B3- 6-7轴 3.017090510510561.0 10 B3- 6-7轴 3.017090510510561.0 11 B3- 7-8轴 3.017090510510561.0 12 B3- 7-8轴 3.017090510510561.0 13 B3- 7-8轴 3.017090510510561.0 14 B3- 8-9轴 3.017090510510561.0 15 B3- 8-9轴 3.017090510510561.0 16 B3- 9-10轴 3.017090510510561.0 17 B3- 9-10轴 3.017090510510561.0 18 分级控制预加力 回归方程 标定系数 Y=a+bX(X:千斤第1级顶,Y:油压表) 千斤预加 油表油表 理论实际 顶编a b轴力 读数读数 号(KN) (MPa)(MPa) 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5 1-0.440.0655181287.9 20.030.0664681288.5

混凝土支撑轴力测定及计算的相关问题探讨

混凝土支撑轴力测定及计算的相关问题探讨 摘要:为保证深基坑的安全,需要对基坑进行监测。本文对采用钢筋计或应变计测定混凝土支撑轴力时,就传统的支撑轴力计算公式的适用范围等问题做了一些探讨。 关键词:钢筋计 支撑轴力 监测 1 引言 对于钢筋混凝土支撑,主要采用钢筋计测量钢筋的应力或采用混凝土应变计测量混凝土的应变,然后通过钢筋与混凝土共同工作、变形协调条件反算支撑的轴力。 采用混凝土应变计测量混凝土的应变后反算支撑轴力,其计算公式如下: []s s c c i A E A E N +=ε 对于采用钢筋计测量钢筋应力后反算支撑轴力,传统轴力计算公式为: ?? ? ???+=s c s c s i A A E E N σ (1) 式中i N —支撑杆件测量轴力; ε-混凝土应变计测量出的混凝土应变均值,∑=n i i n /εε; s σ—钢筋计测出的应力平均值,∑=n i i s n /σσ或s s E εσ=; n —一个量测断面内布置的钢筋计数目; s c E E 、—混凝土、钢筋的弹性模量; s c A A 、—支撑的混凝土截面面积、钢筋截面面积。 对于由式(1)计算出的轴力,存在以下一些问题: ① 当所量测支撑为纯受压杆件或小偏心受压杆件时,采用式(1)计算轴力所得结果较能反映实际轴力值; ② 当所量测支撑为大偏心受压杆件时,若支撑混凝土未产生裂缝,利用式(1)计算出的轴力仍能较好地反映实际轴力;若支撑混凝土已经产生裂缝,此时再用式(1)求得的轴力值会与实际轴力值产生较大的差别。这样,监测轴力值就不能正确反映支撑的实际受力状态,而且若监测值小于实际值,往往会造成错误的判断,给围护工程的安全带来隐患。造成这种问题的原因是,在这种情况下,支撑截面上已经出现了比较大的弯矩,混凝土已经产生

深基坑内支撑体系轴力监测探讨

深基坑内支撑体系轴力监测探讨【内容提要】针对武汉市轨道交通二号线一期工程循礼门站地铁车站土建工程的基坑支撑体系的轴力监测情况。在以下本人简单的介绍一下在施工过程中遇到的问题解决办法. 【关键词】钢支撑、混凝土支撑、轴力计、应力计 1.工程概况 循礼门车站为标准地下两层车站,地下一层为站厅层;地下二层为站台层。外包总长182m,标准段外包宽29m.站台为地下两层岛式站台,主体建筑面积为10191.1m2,出入口通道、风道(风亭)建筑面积为3272.2m2,车站主体建筑面积13463.3m2。 车站主体结构采用明挖法施工,在跨越京汉大道段采用盖挖顺作法施工。沿车站长度方向(由解放大道向京汉大道方向)依次分别开挖施工。车站主体结构采用钢筋混凝土箱型结构,围护结构采用地下连续墙加内支撑,围护结构与主体结构采用复合墙的连接方式。车站主体设全外包防水层。盖挖段基坑底部采用旋喷被动区土体加固,加固厚度为坑底3米。 本站位于汉口解放大道与京汉大道之间的江汉路正下方,平行于江汉路布设。基坑东南侧为房地产开发商和记黄埔用地;基坑周边主要建(构)筑物有:基坑西侧的循礼门地下通道、基坑东侧的京汉大道上轻轨1号线桥梁区间、基坑西南侧大润发商场、基坑西北侧30层武汉船舶工业公司大楼、基坑东北28层的世纪大厦大楼。 2.设计背景 本车站位于武汉市解放大道与京汉大道之间的江汉路上,江汉路北侧为武汉船舶工业公司用地,后面是一栋30层的高层建筑,南侧为地面3层、地下1层砼框架结构的大润发超市,已建成的轻轨一号线江汉路站位于站位的东北角。车站所处的位置以北为解放大道,以南为京汉大道,车流量大。 由于该工程基坑所在位置处于闹市区,基坑西南侧大润发商场和轻轨桥墩距离基坑2-3m,周围的高大建筑物距离基坑较近,所以基坑的支撑体系采用了围护结构与内支撑共同作用的体系。所以在后续的开挖和主体施工过程中,内支撑体系的轴力监测是非常重要的一项内容,尤其是开挖阶段的轴力监测,会为后阶段的施工起到一定的指导作用。 3.轴力监测方案及实施 3.1混凝土支撑: (1)采用振弦式钢筋应力计进行轴力监测。 (2)根据围护结构施工图纸中的设计,在11个断面安装钢筋计,所以在实际安装过程中,依次将22个钢筋应力计安装在了11道混凝土支撑内,且安装在同一截面,该截面上下侧各安装1支。 (3)钢筋应力计应安装在截断支撑主筋的部位,并与两端进行搭接焊。但由于现场的条件限制,

相关文档
最新文档