《三角函数模型的简单应用》的教学设计

合集下载

三角函数模型的简单应用教案北师大版

三角函数模型的简单应用教案北师大版
3. 拓展思维:提供一些开放性问题,鼓励学生思考并运用三角函数模型进行创新性思考,以拓展他们的思维能力。
作业反馈:
1. 及时批改意见和评分。
2. 指出存在的问题:在批改作业时,教师应指出学生在作业中存在的问题,如计算错误、概念不清、逻辑推理不严密等,并给出具体的改进建议。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
教学资源拓展
1. 拓展资源
- 数学杂志和期刊:推荐学生阅读一些与三角函数模型相关的数学杂志和期刊,如《数学通报》、《数学进展》等,以了解最新的研究进展和应用实例。
- 在线数学论坛和社区:鼓励学生参与在线数学论坛和社区,如数学吧、知乎数学板块等,与其他学习者和专业人士交流问题和经验。
(2)实际问题与三角函数模型的联系。
学生可能难以将实际问题与三角函数模型建立联系,无法从实际问题中抽象出三角函数模型。
(3)三角函数模型在实际问题中的应用方法。
学生可能对如何运用三角函数模型解决实际问题感到困惑,无法正确选择和使用三角函数模型。
(4)三角函数模型的推理和论证。
学生可能对如何运用三角函数模型进行推理和论证感到困难,无法逻辑清晰地阐述推理过程。
- 学习三角函数的历史和发展:介绍三角函数的历史背景和发展过程,让学生了解三角函数的重要性和影响,培养他们对数学的兴趣和好奇心。
- 探索三角函数的性质和图像:引导学生深入研究三角函数的性质和图像,如周期性、奇偶性、单调性等,通过实践活动和数学软件工具进行探索和验证。
- 参与数学研究和交流:鼓励学生积极参与数学研究和交流活动,如参加数学研究小组、参与数学研讨会等,与他人分享自己的研究成果和思考。

《三角函数模型的简单应用(第2课时)》教学教案2

《三角函数模型的简单应用(第2课时)》教学教案2

1.6 三角函数模型的简单应用学习目标1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.2.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.重点难点学习重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.学习难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题.学习过程导入新课思路1.通过展示上节作业引入,学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.提出问题①本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?在指数、对数模型中是怎样处理搜集到的数据的?活动:这样的开头对学生来说是感兴趣的.教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,让学生尽快回忆到上节课的学习氛围中,使学生的思维状态进入到现在的情境中.应用示例例1 货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:时刻0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 水深/米5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久? (3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生注意仔细准确观察散点图,如图6.教师引导学生根据散点的位置排列,思考可以用怎样的函数模型来刻画其中的规律.根据散点图中的最高点、最低点和平衡点,学生很容易确定选择三角函数模型.港口的水深与时间的关系可以用形如y=Asin(ωx+φ)+h的函数来刻画.其中x是时间,y是水深,我们可以根据数据确定相应的A,ω,φ,h的值即可.这时注意引导学生与“五点法”相联系.要求学生独立操作完成,教师指导点拨,并纠正可能出现的错误,直至无误地求出解析式,进而根据所得的函数模型,求出整点时的水深.图6根据学生所求得的函数模型,指导学生利用计算器进行计算求解.注意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思考:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?让学生养成检验的良好习惯.在本例(3)中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢?引导学生思考,怎样把此问题翻译成函数模型.求货船停止卸货,将船驶向深水域的含义又是什么?教师引导学生将实际问题的意义转化为数学解释,同时提醒学生注意货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候.进一步引导学生思考:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思考、讨论后再由教师组织学生进行评价.通过讨论或争论,最后得出一致结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨.解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图6).根据图象,可以考虑用函数y=Asin(ωx+φ)+h 刻画水深与时间之间的对应关系.从数据和图象可以得出:A =2.5,h =5,T =12,φ=0,由T =ωπ2=12,得ω=6π. 所以这个港口的水深与时间的关系可用y =2.5sin6πx+5近似描述. 由上述关系式易得港口在整点时水深的近似值:令2.5sin 6πx+5=5.5,sin 6πx=0.2. 由计算器可得2 SHIFT sin -10.2=0.201 357 92≈0.201 4.如图7,在区间[0,12]内,函数y =2.5sin6πx+5的图象与直线y =5.5有两个交点A 、B,图7因此6πx≈0.201 4,或π-6πx≈0.201 4. 解得x A ≈0.384 8,x B ≈5.615 2.由函数的周期性易得:x C ≈12+0.384 8=12.384 8,x D ≈12+5.615 2=17.615 2.因此,货船可以在0时30分左右进港,早晨5时30分左右出港;或在中午12时30分左右进港,下午17时30分左右出港.每次可以在港口停留5小时左右.图8(3)设在时刻x 货船的安全水深为y,那么y=5.5-0.3(x-2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6—7时之间两个函数图象有一个交点(如图8). 通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.因此为了安全,货船最好在6.5时之前停止卸货,将船驶向较深的水域.点评:本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第(2)问的解答,教师引导学生利用计算器进行计算求解.同时需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释.变式训练发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t的函数,I A=Is inωt,I B=Isin(ωt+120°),I C=Isin(ωt+240°),则I A+I B+I C=________.答案:0例2 图9,是一个单摆的振动图象,据图象回答下列问题:(1)单摆振幅多大;(2)振动频率多高;(3)摆球速度首次具有最大负值的时刻和位置;(4)摆球运动的加速度首次具有最大负值的时刻和位置;(5)若当g=9.86 m/s2J,求摆线长.活动:引导学生观察图象并思考,这个简谐运动的函数模型是什么?引导学生结合函数上例.点拨学生考虑最高点、最低点和平衡点.通过学生讨论、思考确定选用函数y=Asin(ωx+φ)来刻画单摆离开平衡位置的位移与时间之间的对应关系.图9解:结合函数模型和图象:(1)单摆振幅是1 cm;(2)单摆的振动频率为1.25 HZ;(3)单摆在0.6 s通过平衡位置时,首次具有速度的最大负值;(4)单摆在0.4 s 时处正向最大位移处,首次具有加速度最大负值;(5)由单摆振动的周期公式T=2πgL ,可得L=224πgT =0.16 m . 点评:解决实际问题的关键是要归纳出数学函数模型,然后按数学模型处理.同时要注意检验,使所求得的结论符合问题的实际意义.变式训练1.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为24π+.(1)求函数f(x)的解析式;(2)若sinx+f(x)=32,求sinxcosx 的值. 解:(1)∵f(x)为偶函数,∴f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ).∴φ=2π. ∴f(x)=sin(ωx+2π)=cosωx . 相邻两点P(0x ,1),Q(0x +ωπ,-1). 由题意,|PQ|=4)(2+ωπ=π2+4.解得ω=1. ∴f(x)=cosx .(2)由sinx+f(x)=32,得sinx+cosx =32. 两边平方,得sinxcosx =185-. 2.小明在直角坐标系中,用1 cm 代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2 cm 代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2 cm 代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?解:小明原作的曲线为y=sinx,x ∈R ,由于纵坐标改用了2 cm 代表一个单位长度,与原来1 cm 代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1 cm只能代表21个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y =21sinx,x ∈R .同理,若纵坐标保持不变,横坐标改用2 cm 代表一个单位,则横坐标被压缩到原来的21,原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为y =sin2x,x ∈R .3.求方程lgx =sinx 实根的个数.解:由方程式模型构建图象模型. 在同一坐标系内作出函数y =lgx 和y =sinx 的图象,如图10.可知原方程的解的个数为3.图10点评:单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法.课堂小结1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用.2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活的运用三角函数的图象和性质解决现实问题.。

三角函数模型教案的实践应用案例

三角函数模型教案的实践应用案例

三角函数模型教案的实践应用案例一、教学目标1. 知识与技能:(1)理解三角函数的概念和性质;(2)学会使用三角函数模型解决实际问题;(3)培养学生的数学思维能力和创新意识。

2. 过程与方法:(1)通过观察和实验,引导学生发现三角函数的规律;(2)运用三角函数模型,解决生活中的实际问题;(3)培养学生的合作意识和团队精神。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)感受数学在生活中的重要作用;(3)培养学生的责任感和使命感。

二、教学内容1. 三角函数的概念和性质2. 三角函数模型的建立3. 三角函数模型在实际问题中的应用4. 三角函数模型的优化和改进5. 三角函数模型实践应用案例的讨论和分析三、教学重点与难点1. 教学重点:三角函数的概念和性质,三角函数模型的建立和应用。

2. 教学难点:三角函数模型在实际问题中的灵活运用,三角函数模型的优化和改进。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探索和发现三角函数的规律;2. 通过实例分析和讨论,让学生学会运用三角函数模型解决实际问题;3. 运用小组合作学习,培养学生的团队协作能力和沟通能力;4. 结合现代教育技术,如多媒体和网络资源,丰富教学手段,提高教学质量。

五、教学过程1. 导入新课:通过生活实例,引出三角函数的概念和作用;2. 自主学习:学生通过教材和课外资料,了解三角函数的性质和模型;3. 课堂讲解:教师讲解三角函数的基本性质,引导学生发现和总结规律;4. 实例分析:教师给出实际问题,学生运用三角函数模型进行解决;5. 小组讨论:学生分组讨论,分享各自的解题思路和方法;6. 总结提升:教师引导学生总结三角函数模型的应用方法和注意事项;7. 课后作业:布置相关练习题,巩固所学知识。

教学评价:通过课堂表现、作业完成情况和实践应用案例的分析,评价学生在三角函数模型实践应用方面的掌握程度。

六、教学评价设计1. 形成性评价:通过课堂讨论、提问以及学生解答实际问题的表现,实时监控学生的学习进度和理解程度。

1.6三角函数模型的简单应用示范教案

1.6三角函数模型的简单应用示范教案

1.6三角函数模型的简单应用教学目的:1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法;2、体验实际问题抽象为三角函数模型问题的过程;3、体会三角函数是描述周期变化现象的重要函数模型。

教学重点、难点重点:精确模型的应用——即由图象求解析式,由解析式研究图象及性质。

难点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题。

教学过程:一、复习引入:简单介绍大家熟悉的“物理中单摆对平衡位置的位移与时间的关系”、“交流电的电流与时间的关系”、“声音的传播”等等,说明这些现象都蕴含着三角函数知识二、讲授新课:例1.如图,某地一天从6~14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω.(1)求这一天6~14(2)写出这段曲线的函数解析式. 解:(1(2)从图可以看出:从6~14是b x A y ++=)sin(ϕω的半个周期的图象,∴86142=-=T ∴16=T ∵ωπ2=T ,∴8πω=又∵⎪⎪⎩⎪⎪⎨⎧=+==-=20210301021030b A ∴⎩⎨⎧==2010b A ∴20)8sin(10++=ϕπx y将点)10,6(代入得:1)43sin(-=+ϕπ, ∴Z k k ∈+=+,23243ππϕπ, ∴Z k k ∈+=,432ππϕ,取43πϕ=, ∴)146(,20)438sin(10≤≤++=x x y ππ。

例2.画出函数x y sin =的图象并观察其周期.分析与简解:如何画图?法1:去绝对值,化为分段函数(体现转化与化归!);从图中可以看出,函数x y sin =是以π为周期的波浪形曲线.例3.如图,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,ϕ为该地的纬度值,那么这三个量之间的关系是δϕθ--=ο90.当地夏半年δ取正值,冬半年δ取负值.如果在北京地区(纬度数约为北纬ο40)的一幢高为0h 的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?分析与简解:与学生一起学习并理解教材解法(地理课中已学习过),指出该实际问题用到了三角函数的有关知识.例4. 如图,某地一天从6~14时的温度变化曲线近似满足函数()sin y A x b ωϕ=++.(1) 求这一天的最大温差;(2) 写出这段曲线的函数解析式.答案:解:象,所以 (12A = 12b =θφφ-δδ太阳光∵121462ω=-g π, ∴8ω=π. 将6x =,10y =代入上式,解得34ϕ=π. 综上,所求解析式为310sin 2084y x ⎛⎫=++ ⎪⎝⎭ππ,[]6,14x ∈. 四、课堂练习:课本第73页练习第1、2、3题五、课堂小结六、作业:课本第73页习题A 组第1、2、3、4题。

三角函数模型的简单应用(教学设计)

三角函数模型的简单应用(教学设计)

1.6三角函数模型的简单应用(教学设计)[教学目标]一、知识与能力:1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法;2、体验实际问题抽象为三角函数模型问题的过程;3、体会三角函数是描述周期变化现象的重要函数模型.二、过程与方法:通过几例具体的三角函数问题的分析探究,使学生掌握在给出具体待定模型的情况下,解决一些实际应用问题,并能够建立简单的精确三角函数模型;三、情感、态度与价值观:通过丰富多彩的“周期世界”,诱导激发学生的兴趣和情感投入,通过问题的探究、合作学习努力使学生学会学习与思考;[教学重点]精确模型的应用——即由图象求解析式,由解析式研究图象及性质.[教学难点]分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题.[教学方法]创设情境—主体探究—合作交流—应用提高.[教学过程]一、问题的呈现1、给出待定的三角函数模型,解决实际问题例1(课本P60例1)如图, 某地一天变化曲线近似满足:b x A y ++=)sin(φω(1)求这一天从6时到14时的最大温差;(2)写出这段曲线的函数解析式.解析:(1)由图可知:这段时间的最大温差是C 20;(2)从图可以看出:从6~14是b x A y ++=)sin(φω的 半个周期的图象, ∴86142=-=T ∴16=T ∵ωπ2=T ,∴8πω=又∵⎪⎪⎩⎪⎪⎨⎧=+==-=20210301021030b A ∴⎩⎨⎧==2010b A ∴20)8sin(10++=φπx y 将点)10,6(代入得:1)43sin(-=+φπ,∴Z k k ∈+=+,23243ππφπ, ∴Z k k ∈+=,432ππφ,取43πφ=,∴)146(,20)438sin(10≤≤++=x x y ππ。

思考1:①?0?0<>A A ②得到20)8sin(10++=φπx y 后,代入点)20,10(结果会怎样?代入点)30,14(结果又会怎样? 思考2:如何根据b x A y ++=)sin(φω图象求解析式中的待定参数?;;,φωb A2、借助三角函数模型研究的思想方法研究一些较复杂的三角函数.例2(课本P61例2)画出函数x y sin =的图象并观察其周期.解析:法1:去绝对值,化为分段函数(体现转化与化归!);法2:图象变换——对称变换,可类比x y =的作法.观察得:周期π=T思考:①利用图象的直观性,通过观察图象而获得对函数性质的认识,是研究数学问题的常用方法;本题也可用代数方法即周期性定义验证:)(sin sin )sin()(x f x x x x f ==-=+=+ππ∴x x f sin )(=的周期是π.(体现数形结合思想!)②变式思考:x x x f sin sin )(+=的周期是 . )3sin()(π+=x x f 的周期是 .yx x f sin 2)(+=的周期是 .问题的反思:根据图象写出x y sin =的单调增减区间.例3(课本P62例4):如图所示,下面是瓯江江心屿码头在某年某个季节每天的时间与水深的关系表:【师】请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?【生】(思考中)发现水深的最大值是7.5米,最小值是2.5米。

三角函数模型的简单应用 说课稿 教案 教学设计

三角函数模型的简单应用   说课稿  教案 教学设计

三角函数一、教学目标:知识与技能:回顾本章基本概念及公式:任意角的概念、弧度制、任意角三角函数的定义,同角三角函数基本关系及诱导公式,三角函数的图像与性质及其应用,三角函数图像变换等。

掌握常见问题的解法。

过程与方法:通过对基本知识的梳理回顾,帮助学生形成知识网络。

由基本问题的解决,促使学生形成解题技能。

情感、态度与价值观通过章节复习培养学生总结归纳能力。

在问题逐步深入的研究中唤起学生追求真理、乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观.二.重点难点重点:基本知识的回顾及基本问题的解法难点:知识的综合运用能力。

三、教材与学情分析通过章节复习引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力。

四、教学方法问题引导,主动探究,启发式教学.五、教学过程一、构建知识网络,完善认知体系二、归纳基本题型,形成解题技能专题一 三角函数的概念三角函数的概念所涉及的内容主要有以下两方面:理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算;掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域. [例1] (1)设角α属于第二象限,⎪⎪⎪⎪cos α2=-cos α2,试判定α2角属于第几象限. (2)求函数y =3tan x +3的定义域.解:(1)依题意得2k π+π2<α<2k π+π(k ∈Z),所以k π+π4<α2<k π+π2(k ∈Z).当k =2n (n ∈Z)时,α2为第一象限角; 当k =2n +1(n ∈Z)时,α2为第三象限角.又⎪⎪⎪⎪cos α2=-cos α2≥0,所以cos α2≤0. 所以α2应为第二、三象限角或终边落在x 非正半轴上或y 轴上.综上所述,α2是第三象限角.(2)3tan x +3≥0,即tan x ≥-33. 所以k π-π6≤x <k π+π2,所以函数y =3tan x +3的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π6≤x <k π+π2,k ∈Z .归纳升华1.由α所在象限,判断α2角所在象限时,一般有两种方法:一种是利用终边相同角的集合的几何意义,用数形结合的方法确定α2的所属象限;另一种方法就是将k 进行分类讨论.2.求函数的定义域注意数形结合,应用单位圆中三角函数线或函数图象解题;求与正切函数有关问题时,不要忽视正切函数自身的定义域.变式训练1 (1)若θ为第四象限的角,试判断sin(cos θ)·cos(sin θ)的符号; (2)已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π,求α的正切值. 解:(1)因为θ为第四象限角,所以0<cos θ<1<π2,-π2<-1<sin θ<0,所以sin(cos θ)>0,cos(sin θ)>0, 所以sin(cos θ)·cos(sin θ)>0.(2)因为θ∈⎝⎛⎭⎫π2,π,所以cos θ<0, 所以r =x 2+y 2=9cos 2θ+16cos 2θ=-5cos θ,故sin α=y r =-45, cos α=x r =35,tan α=y x =-43.专题二 同角三角函数的基本关系与诱导公式在知道一个角的三角函数值求这个角的其他的三角函数值时,要注意题中的角的范围,必要时按象限进行讨论,尽量少用平方关系,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简,求值时,要注意正负号的选取. [例2] 已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)·(cos θ-sin θ)的值.解:法一:由已知2+tan θ1-tan θ=-4,所以2+tan θ=-4(1-tan θ),解得tan θ=2,所以(sin θ-3cos θ)(cos θ-sin θ)=4sin θcos θ-sin 2θ-3cos 2θ= 4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan 2θ-3tan 2θ+1=8-4-34+1=15.法二:由已知2+tan θ1-tan θ=-4,解得tan θ=2,即sin θcos θ=2,所以sin θ=2cos θ,所以(sin θ-3cos θ)(cos θ-sin θ)= (2cos θ-3cos θ)(cos θ-2cos θ)=cos 2θ=cos 2θsin 2θ+cos 2θ=1tan 2θ+1=15.归纳升华三角函数式的化简,求值与证明问题的依据主要是同角三角函数的关系式及诱导公式.解题中的常用技巧有:(1)弦切互化,减少或统一函数名称;(2)“1”的代换,如:1=sin 2α+cos 2α(常用于解决有关正、余弦齐次式的化简求值问题中),1=tan π4等;(3)若式子中有角k π2,k ∈Z ,则先利用诱导公式化简.变式训练2. 若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125C.512D .-512解析:法一:因为α为第四象限的角,故cos α=1-sin 2α=1-⎝⎛⎭⎫-5132=1213,所以tan α=sin αcos α=-5131213=-512.法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.答案:D专题三 三角函数的图象及变换三角函数的图象是研究三角函数性质的基础,又是三角函数性质的具体体现.在平时的考查中,主要体现在三角函数图象的变换和解析式的确定,以及通过对图象的描绘、观察来讨论函数的有关性质.[例3] 如图是函数y =A sin(ωx +φ)+k ⎝⎛⎭⎫A >0,ω>0,|φ|<π2的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的?解:(1)由图象知A =-12-⎝⎛⎭⎫-322=12,k =-12+⎝⎛⎭⎫-322=-1,T =2×⎝⎛⎭⎫2π3-π6=π, 所以ω=2πT =2.所以y =12sin(2x +φ)-1.当x =π6时,2×π6+φ=π2,所以φ=π6.所以所求函数解析式为y =12sin ⎝⎛⎭⎫2x +π6-1. (2)把y =sin x 向左平移π6个单位得到y =sin ⎝⎛⎭⎫x +π6,然后纵坐标保持不变、横坐标缩短为原来的12,得到y =sin ⎝⎛⎭⎫2x +π6,再横坐标保持不变,纵坐标变为原来的12得到y =12sin ⎝⎛⎭⎫2x +π6, 最后把函数y =12sin ⎝⎛⎭⎫2x +π6的图象向下平移1个单位,得到y =12sin ⎝⎛⎭⎫2x +π6-1的图象. 归纳升华1.求解析式的方法:A =y max -y min 2,k =y max +y min 2,ω=2πT,由“五点作图法”中方法令ωx +φ=0,π2,π,32π或2π求φ. 2.图象变换中应注意方向变化与解析式加减符号变化相对应.变式训练3. 将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π4 C .0 D .-π4解析:由题意得g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ为偶函数,所以π4+φ=k π+π2,k ∈Z ,所以φ=k π+π4.令k =0,得φ=π4.答案:B专题四 三角函数的性质三角函数的性质,重点应掌握y =sin x ,y =cos x ,y =tan x 的定义域、值域、单调性、奇偶性、对称性等有关性质,在此基础上掌握函数y =A sin(ωx +φ),y =A cos(ωx +φ)及y =A tan(ωx +φ)的相关性质.在研究其相关性质时,将ωx +φ看成一个整体,利用整体代换思想解题是常见的技巧.[例4] 已知函数f (x )=2sin ⎝⎛⎭⎫2x +π6+a +1(其中a 为常数). (1)求f (x )的单调区间;(2)若x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为4,求a 的值; (3)求f (x )取最大值时x 的取值集合.解:(1)由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得-π3+k π≤x ≤π6+k π,k ∈Z ,所以函数f (x )的单调增区间为⎣⎡⎦⎤-π3+k π,π6+k π(k ∈Z),由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z ,所以函数f (x )的单调减区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z).(2)因为0≤x ≤π2,所以π6≤2x +π6≤7π6,所以-12≤sin ⎝⎛⎭⎫2x +π6≤1, 所以f (x )的最大值为2+a +1=4,所以a =1,(3)当f (x )取最大值时,2x +π6=π2+2k π,所以2x =π3+2k π,所以x =π6+k π,k ∈Z.所以当f (x )取最大值时,x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪x =π6+k π,k ∈Z归纳升华1.形如y =A sin(ωx +φ)+k 单调区间求法策略:可把“ωx +φ”看作一个整体,代入正弦函数的相应区间求解.2.求形如y =A sin(ωx +φ)+k 的值域和最值时,先求复合角“ωx +φ”的范围,再利用y =sin x 的性质来求解.变式训练4.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x ,当0≤x ≤π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解析:因为f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f (x )的周期T =2π, 又因为当0≤x <π时,f (x )=0,所以f ⎝⎛⎭⎫5π6=0,即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, 所以f ⎝⎛⎭⎫-π6=12,所以f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 答案:A专题五 转化与化归思想化归思想贯穿本章的始终,在三角函数的恒等变形中,同角关系式和诱导公式常化繁为简,化异为同,弦切互化;在研究三角函数的图象与性质时,常把函数y =A sin(ωx +φ)化归为简单的y =sin x 来研究.这些均体现三角函数中的转化与化归的思想方法. [例5] 求函数y =12sin ⎝⎛⎭⎫π4-23x 的单调区间. 解:将原函数化为y =-12sin ⎝⎛⎭⎫23x -π4.由2k π-π2≤23x -π4≤2k π+π2(k ∈Z), 得3k π-38π≤x ≤3k π+98π(k ∈Z),此时函数单调递减.由2k π+π2≤23x -π4≤2k π+32π(k ∈Z),得3k π+98π≤x ≤3k π+218π(k ∈Z),此时函数单调递增.故原函数的单调递减区间为⎣⎡⎦⎤3k π-38π,3k π+98π(k ∈Z), 单调递增区间为⎣⎡⎦⎤3k π+98π,3k π+218π(k ∈Z).归纳升华1.求形如函数y=A sin(ωx+φ),(ω<0)的单调区间时:先把此函数化为y=-A sin(-ωx -φ)的形式后,再利用函数y=sin x的单调区间来求解是常用策略,其目的是使x 的系数为正数是关键.2.在求形如y=A sin2x+B sin x+C的值域或最值时,常令t=sin x转化为一元二次函数来求解.。

三角函数模型的简单应用(水车问题)

三⾓函数模型的简单应⽤(⽔车问题)§9 三⾓函数模型的简单应⽤第⼀课时⼀、教学⽬的1、对⼀些简单的周期现象,能够选择适当的三⾓函数模型,刻画和解决实际问题。

2、通过本节学习,培养学⽣的数学应⽤意识。

⼆、教学重点:体会三⾓函数模型在实际问题中的应⽤。

三、教学难点:⽤三⾓函数描述周期现象的实际问题。

四、教学过程:例:⽔车问题如图,⽔车的直径为3m,其中⼼(即圆⼼O)距⽔⾯1.2m,如果⽔车每4min 逆时针旋转3圈.在⽔车轮边缘上取⼀点P,点P 距⽔⾯的⾼度h(m)与时间(t)有怎样的关系?分析:设⽔车的半径为R ,R=1.5m ;⽔车中⼼到⽔⾯的距离为b ,b=1.2m ;∠QOP=α⽔车旋转⼀圈所需的时间为T ;单位时间(s)旋转的⾓度(rad)为ω过P 点向⽔⾯作垂线,交⽔⾯于M 点,PM 的长度为P 点的⾼度h ;∠QOP=φ;则:h=PM=PN+NM=Rsin(α-φ)+b根据问题的条件确定这个模型中的变量和参数: α,φ,R 和b.⽤ω表⽰单位时间(s)内⽔车转动的⾓度(rad),这样,在时刻t ⽔车转动的⾓度为α= ωt ⽔车旋转⼀圈所需的时间T=ωπ2 ⼜由于⽔车每4min 转3圈,旋转⼀圈所需的时间T=80s所以ω=40πrad/sSin φ=5.12.1⾬季河⽔上涨时,函数解析式中的b 减⼩,旱季河⽔流量减少时,参数b 增⼤. 如果⽔车转速加快,将使周期T 减⼩,如果⽔车转速减慢,将使周期T 增⼤.五、课堂⼩结六、课后作业rad , 295.01.53≈?≈φ所以)(2.1)295.040sin(5.1m t ,h +-=ππ所以。

三角函数模型的简单应用教案高一数学湘教版(2019)必修第一册

5.5三角函数模型的简单应用考纲要求:本节课以单摆运动和摩天轮作为问题情境,让学生在常见的问题情境中学会分析问题、收集数据并建立函数模型,最终运用函数模型解决问题,同时也对用三角函数模型刻画生活中的周期现象规律.通过本节课的学习,将提升学生数学知识的综合应用能力,培养数学抽象、数学建模、数学运算、数据分析等核心素养,将进一步领会数形结合、转化与化归的数学思想方法.学习目标:1.用三角函数模型y =A sin(ωx +φ)+B 解决一些具有周期变化规律的实际问题.2.能够从已知的数学模型及图象,确定函数sin()y A x ωϕ=+中各参数的值学习重点:通过已知的函数模型及图象,确定参数,,A ωϕ的值.学习难点:应用函数sin()y A x ωϕ=+的图象与性质解决简单的实际问题.核心素养:数学运算、数学抽象、数学建模教学过程一、情境引入正如章前语的描述,周期变化的现象在生活中比比皆是,如潮涨潮落、月圆月缺、四季交替等都是自然界中按一定规律周而复始出现的周期现象,在这些周期现象中蕴藏着哪些规律呢?如何用数学模型刻画这些规律并解决实际问题呢?这就是本节课我们要学习的内容.问题1:简谐振动的图像就对应着函数sin()y A x ωϕ=+,且式子中的参数,,A ωϕ的物理意义是什么?学生:A 叫振幅,表示这个振动物体偏离平衡位置的最大距离.如x 表示时间,2πT ω=表示周期,它的倒数表示单位时间内往复振动的次数,称为频率. x ωϕ+称为相位,ϕ称为初相设计意图: 引导学生复习前面的内容,让学生理解现实生活中具有周期性变化的内容都可以用三角函数进行解决,三角函数模型的应用做铺垫。

二、例题讲解例1、图5.5-1为小球再做单摆运动时,离开平衡位置时的位移y (cm )随时间t (s )变化所满足的函数图像,已知该图像满足y=Asin (ωx+ϕ)( x ∈[0,+∞) , ω>0,0< ϕ<π2)的形式. 试根据函数图象求出这个单摆运动的函数解析式。

1..6三角函数模型的简单应用(教、教案)

1. 6三角函数模型的简单应用一、教材分析本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力LwtUpWh8vG二、教学目标1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解读式的方法;2、根据解读式作出图象并研究性质;3、体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型.4.让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。

LwtUpWh8vG三、教学重点难点重点:精确模型的应用——由图象求解读式,由解读式研究图象及性质难点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题.由图象求解读式时的确定。

四、学法分析本节课是在学习了三角函数的性质和图象的基础上来学习三角函数模型的简单应用,学生已经了解了数学建摸的基本思想和方法,应用三角函数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。

LwtUpWh8vG在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。

LwtUpWh8vG五、教法分析数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。

《三角函数模型的简单应用》教学设计交流

苏教版 (必修4)1.3.2 三角函数的应用(第一课时)白塔高级中学马彦红教材分析本节选择了2个例题和2 个探究案例,循序渐进地从四个层次来介绍三角函数模型的应用,素材的选择上注意了广泛性,新颖性,同时又关注到三角函数的性质的应用。

教学目标1、体验实际问题抽象为三角函数模型问题的过程;体会三角函数是描述周期变化现象的重要函数模型.2、让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力.3、通过切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,从而激发学生的学习兴趣;培养学生勇于探索、勤于思考的精神。

教学重难点教学重点:用三角函数模型解决一些具有周期变化规律的实际问题。

教学难点:分析、整理、利用信息,从实际问题中抽取基本的三角函数关系来建立数学模型,并运用相关学科的知识来解决问题.教法分析1、数学是一门培养人的思维、发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,所以要充分呈现获取知识和方法的思维过程。

本节课的特点是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后老师启发、总结、提炼、升华为分析解决问题的能力。

2、多媒体辅助教学:通过几何画板、动画等技术制作多媒体课件,直观反映生活中的三角函数例子,并用多媒体反映图形的变化过程。

预习发现、合作交流、讲解点拨、演练提升相结合.教学设计思路:我们已经学习了三角函数的概念,图象以及性质,研究了三角函数的周期性,在现实生活中如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?对于一个实际问题,如何恰当选择一个数学模型来刻画它呢?由数学理论巧妙引入到生活中实际问题更易理解接受。

教学设计说明《标准》把发展学生的数学应用意识和创新意识作为其目标之一, 在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间, 促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力, 发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断.通过已知三角函数图象求三角函数解析式,构建三角函数模型解决实际问题.在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略, 使学生认识到数学原来就来自身边的现实世界, 是认识和解决我们生活和工作中问题的有力武器, 同时也获得了进行数学探究的切身体验和能力.增进了他们对数学的理解和应用数学的信心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.6 三角函数模型的简单应用教学设计 一、教学分析 三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用. 三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节教材通过4个例题,循序渐进地从四个层次来介绍三角函数模型的应用,在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用. 通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等. 二、教学目标 1、知识与技能: 掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象; (3)将实际问题抽象为与三角函数有关的简单函数模型. 2、过程与方法: 选择合理三角函数模型解决实际问题,注意在复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题。切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用及数学和日常生活和其它学科的联系。 3、情态与价值: 培养学生数学应用意识;提高学生利用信息技术处理一些实际计算的能力。 三、教学重点与难点 教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题. 教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题. 四、教学过程: 三角函数模型的简单应用 一、导入新课 思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周 期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课. 思路2.我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?回忆必修1第三章第二节“函数模型及其应用”,面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.

二、推进新课、新知探究、提出问题 ①回忆从前所学,指数函数、对数函数以及幂函数的模型都是常用来描述现实世界中的哪些规律的? ②数学模型是什么,建立数学模型的方法是什么? ③上述的数学模型是怎样建立的? ④怎样处理搜集到的数据? 活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助回忆并快速激起相应的知识方法.在教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题. 这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知. 讨论结果:①描述现实世界中不同增长规律的函数模型. ②简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法. ③解决问题的一般程序是: 1°审题:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系; 2°建模:分析题目变化趋势,选择适当函数模型; 3°求解:对所建立的数学模型进行分析研究得到数学结论; 4°还原:把数学结论还原为实际问题的解答. ④画出散点图,分析它的变化趋势,确定合适的函数模型. 三、应用示例 例1 如图1, 某地一天从6—14时的温度变化曲线近似满足函数y=sin(ωx+φ)+b.

图1 (1)求这一天的最大温差; (2)写出这段曲线的函数解析式. 活动:这道例题是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本例是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本例给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决. 题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6是到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解. 解:(1)由图可知,这段时间的最大温差是20 ℃. (2)从图中可以看出,从6—14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象, ∴A=21(30-10)=10,b=21 (30+10)=20. ∵21·2=14-6, ∴ω=8•.将x=6,y=10代入上式,解得φ=43. 综上,所求解析式为y=10sin(8•x+43)+20,x∈[6,14]. 点评:本例中所给出的一段图象实际上只取6—14即可,这恰好是半个周期,提醒学生注意抓关键.本例所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特 别注意自变量的变化范围,这点往往被学生忽略掉. (互动探究)图5表示的是电流I与时间t的函数关系

图5 I=Asin(ωx+φ)(ω>0,|φ|<2)在一个周期内的图象. (1)根据图象写出I=Asin(ωx+φ)的解析式; (2)为了使I=Asin(ωx+φ)中的t在任意一段1001s的时间内电流I能同时取得最大值和最小值,那么正整数ω的最小值为多少? 解:(1)由图知A=300,第一个零点为(-3001,0),第二个零点为(1501,0), ∴ω·(-3001)+φ=0,ω·1501+φ=π.解得ω=100π,φ=3,∴I=300sin(100πt+3). (2)依题意有T≤1001,即2≤1001,∴ω≥200π.故ωmin=629.

例2 做出函数y=|sinx|的图象并观察其周期 例3 如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值. 如果在北京地区(纬度数约为北纬40°)的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少? 活动: 如图2本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系. 首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值. 根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知 太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系: h0=htanθ. 由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.

图3 解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意两楼的间距应不小于MC. 根据太阳高度角的定义, 有∠C=90°-|40°-(-23°26′)|=26°34′,

所以MC=Chtan0='3426tan0h≈2.000h0, 即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距. 点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这 道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究. 变式训练 某市的纬度是北纬23°,小王想在某住宅小区买房,该小区的楼高7层,每层3米,楼与楼之间相距15米.要使所买楼层在一年四季正午太阳不被前面的楼房遮挡,他应选择哪几层的房?

图4 解:如图4,由例3知,北楼被南楼遮挡的高度为 h=15tan[90°-(23°+23°26′)]=15tan43°34′≈14.26, 由于每层楼高为3米,根据以上数据, 所以他应选3层以上.

例4货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00 水深/米 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001). (2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久? (3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域? 活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生注意仔细准确观察散点图,

相关文档
最新文档