拉伸法测金属丝的杨氏模量
用拉伸法测量金属丝的杨氏模量实验报告

用拉伸法测量金属丝的杨氏模量实验报告《用拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我来给大家讲讲我做的这个超有趣的用拉伸法测量金属丝杨氏模量的实验!(就像我们要探索一个神秘的宝藏一样刺激!)
实验开始前,那根金属丝乖乖地躺在那儿,仿佛在等待着我们去揭开它的秘密呢。
(这不就像一个等待被唤醒的小战士嘛!)我和小伙伴们可兴奋了,都迫不及待地想开始。
我们小心地把金属丝安装在实验装置上,这过程就好像在给它打扮一样,得特别仔细。
(就跟给宝贝穿衣服一样不能马虎呀!)然后,慢慢给它施加拉力,看着它一点点被拉长,哇,那种感觉真奇妙!(这就像看着小树苗一点点长大一样神奇!)
在测量数据的时候,我们可是全神贯注,眼睛瞪得大大的,生怕错过一点。
(那认真的样子,就像侦探在寻找关键线索呢!)每一个数据都感觉好重要啊!“哎呀,这个数字读对了没?”我还时不时问小伙伴。
经过一番努力,终于测得了所有的数据。
这时候大家都特别有成就感。
(就像打了一场大胜仗一样开心!)
分析数据的时候,才发现这里面可藏着大学问呢。
就好像解开一道复杂的谜题一样。
(哎呀,原来这里面有这么多门道啊!)
这次实验,让我对杨氏模量有了更深刻的理解,也让我感受到了科学实验的魅力。
(真的太棒啦!)以后我还要多做这样的实验,探索更多的科学奥秘呢!(大家也快来试试呀!)。
金属丝杨氏模量的测定实验报告

一、实验目的1. 了解杨氏模量的概念和意义;2. 掌握用拉伸法测量金属丝杨氏模量的原理和方法;3. 学会使用实验仪器进行测量,并学会数据处理和误差分析;4. 培养实验操作能力和科学思维。
二、实验原理杨氏模量(E)是描述材料弹性性能的物理量,定义为材料在弹性形变时,单位应力所引起的单位应变。
其计算公式为:E = σ / ε其中,σ为应力,ε为应变。
应力是指单位面积上的力,应变是指单位长度的形变量。
本实验采用拉伸法测量金属丝的杨氏模量。
在实验过程中,对金属丝施加一定的拉力,使其产生弹性形变。
通过测量金属丝的伸长量和所受拉力,根据上述公式计算出杨氏模量。
三、实验仪器与材料1. 金属丝:直径约为1mm,长度约为100mm;2. 拉伸仪:用于施加拉力;3. 量角器:用于测量金属丝的伸长角度;4. 标尺:用于测量金属丝的伸长量;5. 计算器:用于计算数据。
四、实验步骤1. 将金属丝固定在拉伸仪上,确保金属丝与拉伸仪的轴线一致;2. 将金属丝的另一端固定在支架上,确保支架与拉伸仪的轴线一致;3. 调整量角器,使其与金属丝轴线垂直;4. 拉伸金属丝,使其产生弹性形变;5. 记录金属丝的伸长角度和伸长量;6. 重复上述步骤,进行多次实验,以确保数据的准确性;7. 根据实验数据,计算金属丝的杨氏模量。
五、数据处理与结果分析1. 计算金属丝的应力:σ = F / S其中,F为拉力,S为金属丝的横截面积。
2. 计算金属丝的应变:ε = ΔL / L其中,ΔL为金属丝的伸长量,L为金属丝的原始长度。
3. 根据实验数据,计算金属丝的杨氏模量:E = σ / ε4. 分析实验结果,与理论值进行比较,讨论误差来源。
六、实验结论通过本次实验,我们成功测量了金属丝的杨氏模量。
实验结果表明,金属丝的杨氏模量与理论值基本吻合。
在实验过程中,我们学会了使用拉伸法测量金属丝的杨氏模量,掌握了数据处理和误差分析的方法。
同时,本次实验也提高了我们的实验操作能力和科学思维。
用拉伸法测钢丝杨氏模量实验报告

金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量:2.掌握光杠杆法测量微小伸长量的原理:3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达:【疝仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、破码)钢卷尺(0-200cm,0.1)、游标K•尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属统弹性形变,为此.应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属统受到外力后的伸长和缩短。
金属税长乙,截面积为S,沿长度方向施力F后,物体的伸长则在金属统的弹性限度内.有:FE=i~L我们把E称为杨氏弹性模量。
8FLD F 1 , — —m£ = _5_ = ^_ _ ,亶 X7^1 X •——---M L W _L真实测量时放大倍数为4倍,即E=2£[实验内容】<一>仪器调整1、 杨氏弹性模量测定仪底座调节水平:2、 平面镜镜面放置与测定仪平面垂直:3、 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上:4、 粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像:5、 调节物镜焦距能看到尺子清晰的像.调节目镜焦距能清晰的看到叉统:6、 调节叉税在标尺±2"〃以内,并使得视差不超过半格。
〈二〉测量1、 记下无挂物时刻度尺的读数〃°:2、 依次挂上】00g 的虢码,8次,计下〃],〃2,〃3,〃4,〃5,〃6,〃7 :3、 依次取下 100g 的瑟码,8 次,计下 no 〃[ ,〃2 ,〃3 ,〃4,〃S ,〃6:4、 用米尺测量出金属税的长度L (两K •口之间的金属统)、镜面到尺子的距离。
杨氏模量测量实验报告

杨氏模量测量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握用光杠杆放大法测量微小长度变化量。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习用逐差法处理实验数据。
二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的均匀金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力 F/S 与应变ΔL/L成正比,比例系数即为杨氏模量 E,其表达式为:E =(F/S)/(ΔL/L) = FL/(SΔL)2、光杠杆放大原理光杠杆是一个附有三个尖足的平面镜,其前两尖足放在平台的沟内,后足尖置于与金属丝下端相连的圆柱体上。
当金属丝被拉长时,光杠杆的后足尖随圆柱体下降ΔL,使光杠杆绕前足尖转动一微小角度θ。
此时,反射光线相对入射光线偏转2θ 角。
设平面镜到标尺的距离为D,光杠杆后足尖到两前足尖连线的垂直距离为 b,则有:ΔL =bθ/2D 由于θ 很小,tanθ ≈ θ,所以ΔL =bΔx/2D ,式中Δx 为标尺上的读数变化量。
三、实验仪器杨氏模量测量仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调整杨氏模量测量仪(1)调节底座水平,使金属丝铅直。
(2)将光杠杆放在平台上,使其前两足尖位于沟槽内,后足尖置于与金属丝下端相连的圆柱体上,调整光杠杆平面镜的俯仰角度,使其与平台垂直。
(3)调节望远镜及标尺,使其与光杠杆平面镜等高,且望远镜光轴水平,标尺与望远镜光轴垂直。
2、测量金属丝的长度 L用米尺测量金属丝的长度,测量多次,取平均值。
3、测量金属丝的直径 d用螺旋测微器在金属丝的不同部位测量直径,测量多次,取平均值。
4、测量光杠杆常数 b用游标卡尺测量光杠杆后足尖到两前足尖连线的垂直距离 b,测量多次,取平均值。
5、测量望远镜中标尺的初始读数 n₀在未加砝码时,通过望远镜读取标尺的读数 n₀。
伸长法测金属杨氏模量(范文4篇)

伸长法测金属杨氏模量(范文4篇)以下是网友分享的关于伸长法测金属杨氏模量的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
《伸长法测金属杨氏模量范文一》拉伸法测金属杨氏模量实验目的: ①调节光系统,使之处于正常工作状态②测出钢丝随负载的变化率③将有关参量代入公式求出杨氏模量实验原理:根据胡克定律有ζ截面积为S =14=E ε, 其中E 为比例系数,若金属原长为L ,直径为d, 2πd ∆L因为∆F ,L,d 。
比较容易测量,但是∆L 十分微小,不易测量,因此可以在拉力∆F 作用下,长度伸长∆L ,因此E =πd ,4∆FL2。
利用光杠杆系统来测量。
光杠杆系统主要有平面镜,T 刑支架以及前后支脚,设钢丝为伸长时标尺的读数为n 1,钢丝伸长∆L 时标尺的读数为钢丝夹下降∆L , 平面镜法线偏转θ上E =8LBg⨯∆m ∆n角综n 2刻度为n =n 2-n 1,πd b2。
实验仪器:光杠杆、带小平台的立柱、带钢丝夹的砝码的被测钢丝、游标卡尺、千分尺、望远镜及标尺实验步骤:㈠选择测量工具其中l 和B 用卷尺,d 用千分尺,b 用游标卡尺测量,△m 用标准砝码,△n 用尺读望远镜测量,前四个量是直接测量的,后两个是双变量测量,目的是要m 对n 的变化率,根据上述内容绘制数据表。
㈡根据几何光学的原理来调节望远镜,光杠杆和标尺之间的位置。
1 望远镜、平面镜、标尺的位置要自习调节,使标尺在平面镜的像处在望远镜的视场中,以变能在望远镜中看到标尺的像。
2 望远镜的光轴与平面镜的法线平行,标尺要竖直。
㈢对望远的调节1调节目镜,看清划板。
2调节物镜,是目标成像在分划板上,这里的“目标”是指钢丝再砝码盘上加载,测出m 与n 的对应关系数据处理:实验装置常数测量表根据以上的数据可以绘制如下的图像:直线的方程为m =5. 1158n -23. 2994,因此∆m ∆n=5. 1158∆n =∆n 1+∆n 2+∆n 3+∆n 4+∆n 55=0. 9654cm∆m =5kg__22__22_2S (∆n ) =(∆n 1-∆n) +(∆n 2-∆n ) +(∆n 3-∆n ) +(∆n 4-∆n ) +(∆n 5-∆n )5⨯(5-1)=0. 026-UA=S (∆n ) =0. 026u B =ins3=0. 0577u-∆n=U A +U B =0. 06322E =8lBg ∆mπd b ∆n11=3. 649052278⨯10根据E 的不确定度传递公式可得:-c(E )-=((-nE∆n)2=0. 07-U--=2UC -(E )=0. 14E E因此扩展不确定度为U E=0. 51⨯101111综上结果表达式是 E =(3. 65±0. 51)⨯10Nm2不确定度为1位有效数字-0.5分注意事项:Ⅰ加砝码,测出n 随m 的变化,然后减砝码,测出-m 与n 的关系,n 与你n 有可能不同,去二者的平均值即可,采用反正向测量取平均值的办法是为了消除弹性形变的滞后效应带来的系统误差,测量之前,砝码盘上需要加适量的砝码将钢丝拉直Ⅱ加减砝码时轻拿轻放,钢丝的晃动容易使光杠杆的位置变化。
金属丝杨氏模量的测定

金属丝杨氏模量的测定实验目的1. 学会用拉伸法测量金属丝的杨氏模量。
2. 掌握用光杠杆测量微小伸长量的原理和方法。
3. 学会用逐差法处理数据。
实验原理实验表明,在弹性范围内,对于长度为L ,截面积为S 的金属丝,如果沿长度方向施外力F 使金属丝伸长(或缩短)L ∆,则有LL YS F ∆= (1)Y 为比例系数,对一定的材料是一个常数,称为该材料的杨氏弹性模量。
设金属丝直径为d ,则其截面积241d S π=,代入(1)得Ld FLY ∆=24π (2)(2)式中L d F 、、可用常用的方法和仪器测得,而L ∆很小,这里用光杠杆测量。
光杠杆包含T 形架和镜面。
T 形架由3个尖足a 、b 和c 支撑,形成一个等腰三角形,a 足到b 、c 两足连线的垂直距离b 称为光杠杆长度,它是可以调节的。
金属丝上端由A 点固定,下端由一圆柱体螺旋夹夹于B 点。
光杠杆a 足尖置于圆柱体上。
如图望远镜叉丝对准标尺的初始值为0x ,加砝码后,足尖将随圆柱体的升降而升降。
平面镜绕轴旋转一个小角度θ,标尺读数变为i x ,由图可知,b L <<∆,θ很小,则有bL ∆=≈θθtan Dl Dx x i =-=≈02tan 2θθ 由上两式得l Db L 2=∆(3)因为b D >>,由(3)知L l ∆>>,我们利用光杠杆把微小长度变化L ∆转化为数值有较大变化的标尺读数l ,这也就是光杠杆系统的放大原理。
bD 2称为放大倍数。
将(3)代入(2)得杨氏模量为bld FLDY 28π=(4)实验仪器杨氏模量仪、望远镜标尺系统、光杠杆、水准仪、螺旋测微器、游标卡尺、钢卷尺、砝码光杠杆光杠杆测量原理操作要点1. 利用水准仪调节杨氏模量仪的底脚螺钉使支架保持铅直。
2. 调节望远镜标尺装置,使望远镜和光杠杆等高,且使望远镜镜身和标尺在平面镜中的像在一条直线上。
3. 调节望远镜目镜使十字叉丝清晰,调节物镜,并适当移动标尺系统,使标尺像清晰。
拉伸法测量金属丝的杨氏模量实验报告
拉伸法测量金属丝的杨氏模量实验报告《拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我要来给你们讲讲我做的拉伸法测量金属丝杨氏模量的实验,那可真是一次超级有趣的体验啊!
实验开始前,我就像要去探险一样兴奋!我准备好了各种器材,那根金属丝就静静地躺在那里,好像在等着我去揭开它的秘密。
我心里想着:“这根小小的金属丝里到底藏着怎样的奥秘呢?”
然后我和小伙伴们一起动手啦!我们小心翼翼地把金属丝安装到实验装置上,就像在给一个小宝贝安家一样。
我还打趣地说:“嘿,可得轻点儿对它呀!”大家都笑了。
当我们开始施加拉力的时候,那种感觉就像是在和金属丝拔河一样。
它一开始还有点不情愿呢,不过慢慢地就开始伸长啦!看着它一点点变化,我心里那个激动啊,哎呀,真的很难形容!就好像看着一颗种子慢慢发芽长大。
在测量数据的过程中,我们可真是一丝不苟啊!每一个数值都像是宝贝一样,生怕记错了。
我和小伙伴还互相提醒:“嘿,你可看准了啊,别出差错!”这感觉就像是在完成一项超级重要的任务。
经过一番努力,终于得出了结果!哇,那种满足感简直爆棚!就好像我们征服了一座小山一样。
这次实验让我深刻地体会到了科学的魅力,它就像一个神秘的宝藏,等着我们去挖掘。
总之,这次实验真的是太棒了!你们也快去试试吧,绝对会让你们大开眼界的!。
杨氏模量实验-实验说明
用拉伸法测金属丝杨氏模量杨氏模量是表征固体材料弹性形变能力的一个重要物理量,是选定机械构件材料的依据之一、是工程技术中常用的参数。
本实验采用静态拉伸法,按光杠杆放大原理装置来测量金属丝的加载之形变,光杠杆法的原理已被广泛应用在测量技术中,如冲击电流计和光点检流计用光杠杆法的装置测量小角度的变化。
实验中的仪器结构、实验方法、数据处理、误差分析等内容较广,能使学生得到全面的训练。
【实验目的】1.掌握拉伸法测定钢丝杨氏模量的原理和方法。
1.掌握用光杠杆法测量长度微小变化量的原理和方法。
2.学习光杠杆和望远镜直横尺的调节与使用。
3.学会用逐差法处理实验数据。
【实验仪器及用具】YMC-1、2杨氏模量测定仪、YMC-1望远镜直横尺、光杠杆、砝码、钢卷尺、千分尺、游标卡尺【实验原理】在外力作用下,固体所发生的形状变化,称为形变。
它可分为弹性形变和范性形变两类。
外力撤除后物体能完全恢复原状的形变,称为弹性形变。
如果加在物体上的外力过大,以致外力撤除后,物体不能完全恢复原状,而留下剩余形变,就称之为范性形变。
在本实验中,只研究弹性形变。
为此,应当控制外力的大小,以保证此外力去除后物体能恢复原状。
最简单的形变是棒状物体(或金属丝)受外力后的伸长与缩短。
设一物体长为L ,截面积为S 。
沿长度方向施力F 后,物体的伸长(缩短)为ΔL 。
比值F/S 是单位面积上的作用力,称为胁强,它决定了物体的形变;比值ΔL/L 是物体的相对伸长,称为胁变,它表示物体形变的大小。
按照胡克定律,在物体的弹性限度内胁强与胁变成正比,比例系数Y 称为杨氏模量。
实验证明,杨氏模量与外力F 、物体的长度L 和截面积S 的大小无关,而只决定于棒(或金属丝)的材料。
它是描写物体形变程度的物理量。
根据式(1),测出等号右边各量后,便可算出杨氏模量。
其中F 、L 和S 可用一般的方法测得,唯有伸长量ΔL 之值甚小,用一般工具不易测准确。
因此,我们采用光杠杆法来测定伸长量ΔL 。
用拉伸法测钢丝杨氏模量——实验报告
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达;【实验仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ∆,则在金属丝的弹性限度内,有:FS E LL=∆ 我们把E 称为杨氏弹性模量。
如上图:⎪⎪⎭⎪⎪⎬⎫=∆≈=∆ααα2D n tg x L n D x L ∆⋅=∆⇒2 (02n n n -=∆)n x d FLD Ln Dx d FL L S F E ∆⋅=∆=∆=228241ππ 真实测量时放大倍数为4倍,即E=2E【实验内容】<一> 仪器调整1、杨氏弹性模量测定仪底座调节水平;2、平面镜镜面放置与测定仪平面垂直;3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上;4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像;5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝;6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。
<二>测量1、 记下无挂物时刻度尺的读数0n ;2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ;3、依次取下100g 的砝码,8次,计下n 0‘,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ;5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
杨氏模量的测量(用拉伸法)
1.本实验应注意哪些问题?
2.怎样调节光杠杆及望远镜等组成的系统,使在望远镜中能看到清晰的像?
ΔL=(d2-d1)h/2D(2-8a-3)
将F=mg代入上式,得出用伸长法测金属的杨氏模量E的公式为
(2-8a-4)
实验内容
1.杨氏模量测定仪的调整
(1)调节杨氏模量测定仪底脚螺丝,使立柱处于垂直状态;
(2)将钢丝上端夹住,下端穿过钢丝夹子和砝码相连;
(3)将光杠杆放在平台上,调节平台的上下位置,尽量使三足在同一个水平面上。
(3)用钢卷尺测量钢丝长度L;
(4)用钢卷尺测量标尺到平面镜之间的距离D;
(5)用螺旋测微器测量钢丝直径d,变换位置测五次(注意不能用悬挂砝码的钢丝),求平均值;
(6)将光杠杆在纸上压出三个足印,用卡尺测量出h。
数据处理
自拟表格记录有关测量数据。钢丝直径测量五次求平均,并写出d的标准式。光杠杆的后脚到两个前脚连线的距离为h,钢丝长度L,标尺到平面镜的距离D都取单次测量分别写出标准式。计算钢丝的杨氏模量E,并用标准式表示。
实验目的
1.掌握用光杠杆测量微小长度的原理和方法,测量金属丝的杨氏模量。
2.训练正确调整测量系统的能力。
3.学习一种处理实验数的方法——逐差法。
实验仪器
杨氏模量测定仪,螺旋测微器,游标卡尺,钢卷尺,光杠杆及望远镜直横尺。
实验原理
胡克定律指出,在弹性限度内,弹性体的应力和应变成正比。设有一根长为L,横截面积为S的钢丝,在外力F作用下伸长了 ,则
3.测量
(1)将砝码托盘挂在下端,再放上一个砝码成为本底砝码,拉直钢丝,然后记下此时望远镜中所对应的读数;
(2)顺次增加砝码1kg,直至将砝码全部加完为止,然后再依次减少1kg直至将砝码全部取完为止,分别记录下读数。注意加减砝码要轻放。由对应同一砝码值的两个读数求平均,然后再分组对数据应用逐差法进行处理;