汽车动力转向系统
简述电动式电控动力转向系统的组成与工作原理

简述电动式电控动力转向系统的组成与工作原理一、引言电动式电控动力转向系统是一种新型的转向系统,它采用了电机作为动力源,通过电控器对电机进行控制,实现车辆的转向。
与传统的液压式转向系统相比,它具有响应速度快、能耗低、噪音小等优点,因此在现代汽车中得到了广泛应用。
本文将详细介绍电动式电控动力转向系统的组成和工作原理。
二、组成1. 电机电机是整个系统的核心部件,它提供了转向所需的动力。
目前市场上常见的电机有直流无刷电机和交流异步电机两种。
直流无刷电机具有高效率、高功率密度和长寿命等优点,在小型汽车中得到了广泛应用;交流异步电机则具有低成本和可靠性好等优点,在大型汽车中得到了广泛应用。
2. 传感器传感器主要负责检测车辆当前的行驶状态,并将这些信息反馈给控制器。
目前市场上常见的传感器包括角度传感器、扭矩传感器和速度传感器等。
3. 控制器控制器是整个系统的大脑,它根据传感器反馈的信息对电机进行控制,实现车辆的转向。
控制器通常由微处理器、电源电路、驱动电路和通讯接口等组成。
4. 电源电源为整个系统提供所需的电能。
目前市场上常见的电源有蓄电池和超级电容器两种。
蓄电池具有存储能量大、成本低等优点,在小型汽车中得到了广泛应用;超级电容器则具有充放电速度快、寿命长等优点,在大型汽车中得到了广泛应用。
三、工作原理1. 转向力矩计算在行驶中,车辆需要受到一定的转向力矩才能完成转弯操作。
转向力矩大小与车速、转弯半径和路面摩擦系数等因素有关。
为了保证车辆安全稳定地行驶,系统需要根据当前行驶状态计算出所需的转向力矩。
2. 传感器检测系统通过角度传感器检测方向盘旋转角度,并通过扭矩传感器检测方向盘所施加的扭矩大小,同时通过速度传感器检测车速大小。
3. 控制器控制控制器根据传感器反馈的信息计算出所需的转向力矩,并将这个信息转换成电机控制信号。
电机根据控制信号输出相应的扭矩,实现车辆的转向。
4. 能量回收在车辆行驶过程中,由于转向力矩大小不同,系统需要不断地调整电机输出扭矩大小。
汽车转向系统动力学(一.二)

前后侧偏柔度
D i D ai D bi D ci D di D ei D fe D gi
评价指标
瞬态响应的品质参数
固有频率ω0
0
mu ( ak 1 bk 2 ) muI
z
L k1k 2 u L u k1k 2 mI
z
2
1 Ku
2
- 汽车转向系统动力学
28
4-2 汽车操纵稳定性工程分析方法
阻尼比ζ
m a k1 b k 2 I z k1 k 2
- 汽车转向系统动力学
22
4-2 汽车操纵稳定性工程分析方法
Dai侧向力引起的轮胎弹性侧偏角 (º /g)
侧倾外倾引起的侧偏角,(º /g)
k
D bi
k
g
侧倾外倾系数
g 一个g时的外倾角
- 汽车转向系统动力学
23
4-2 汽车操纵稳定性工程分析方法
2
2 1 arctg mua 0 / Lk 2
反应时间τ 峰值反应时间ε
0 1
2
1 arctg
2
0 1
2
- 汽车转向系统动力学
19
4-2 汽车操纵稳定性工程分析方法
频率响应特性
- 汽车转向系统动力学
汽车转向电动机工作原理及转向系统概述

汽车转向电动机工作原理及转向系统概述汽车上配置的转向系统;大致可以分为三类:1一种是机械式液压动力转向系统;2一种是电子液压助力转向系统;3另外一种电动助力转向系统..一、电动助力转向系统EPS1、英文全称是Electronic Power Steering;简称EPS;它利用电动机产生的动力协助驾车者进行动力转向..EPS的构成;不同的车尽管结构部件不一样;但大体是雷同..一般是由转矩转向传感器、电子控制单元、电动机、减速器、机械转向器、以及畜电池电源所构成..2、主要工作原理:汽车在转向时;转矩转向传感器会“感觉”到转向盘的力矩和拟转动的方向;这些信号会通过数据总线发给电子控制单元;电控单元会根据传动力矩、拟转的方向等数据信号;向电动机控制器发出动作指令;从而电动机就会根据具体的需要输出相应大小的转动力矩;从而产生了助力转向..如果不转向;则本套系统就不工作;处于standby休眠状态等待调用..由于电动电动助力转向的工作特性;你会感觉到开这样的车;方向感更好;高速时更稳;俗话说方向不发飘..又由于它不转向时不工作;所以;也多少程度上节省了能源..一般高档轿车使用这样的助力转向系统的比较多..由于电动助力转向系统只需电力不用液压;与机械式液压动力转向系统相比较省略了许多元件..没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等;零件数目少;布置方便;重量轻..而且无“寄生损失”和液体泄漏损失..因此电动助力转向系统在各种行驶条件下均可节能80%左右;提高了汽车的运行性能..因此在近年得到迅速的推广;也是今后助力转向系统的发展方向..有一些汽车冠以电动助力转向;其实不是真正意义上的纯电动的助力转向;它还需要液压系统;只不过由电动机供油..传统的液压动力转向系统的油泵由发动机驱动..为保证汽车原地转向或者低速转向时的轻便性;油泵的排量是以发动机怠速时的流量来确定的..而汽车行驶中大部分时间处于高于怠速的速度和直线行驶状态;只能将油泵输出的油液大部分经控制阀回流到储油罐;造成很大的“寄生损失”..为了减少此类损失采用了电动机驱动油泵;当汽车直线行驶时电动机低速运转;汽车转向时电动机高速运转;通过控制电动机的转速调节油泵的流量和压力;减少“寄生损失”..二、机械式液压动力转向系统1、机械式的液压动力转向系统一般由液压泵、油管、压力流量控制阀体、V型传动皮带、储油罐等部件构成..2、无论车是否转向;这套系统都要工作;而且在大转向车速较低时;需要液压泵输出更大的功率以获得比较大的助力..所以;也在一定程度上浪费了资源..可以回忆一下:开这样的车;尤其时低速转弯的时候;觉得方向比较沉;发动机也比较费力气..又由于液压泵的压力很大;也比较容易损害助力系统.. 还有;机械式液压助力转向系统由液压泵及管路和油缸组成;为保持压力;不论是否需要转向助力;系统总要处于工作状态;能耗较高;这也是耗资源的一个原因所在.. 一般经济型轿车使用机械液压助力系统的比较多..三、电子液压助力转向系统1、主要构件:储油罐、助力转向控制单元、电动泵、转向机、助力转向传感器等;其中助力转向控制单元和电动泵是一个整体结构..2、工作原理:电子液压转向助力系统克服了传统的液压转向助力系统的缺点..它所采用的液压泵不再靠发动机皮带直接驱动;而是采用一个电动泵;它所有的工作的状态都是由电子控制单元根据车辆的行驶速度、转向角度等信号计算出的最理想状态..简单地说;在低速大转向时;电子控制单元驱动电子液压泵以高速运转输出较大功率;使驾驶员打方向省力;汽车在高速行驶时;液压控制单元驱动电子液压泵以较低的速度运转;在不至于影响高速打转向的需要同时;节省一部分发动机功率..。
汽车转向系统PPT演示课件

三、转向传动机构
功用
将转向器输出的力和运动传到两侧转向节,使转向轮偏 转,且偏转角按一定关系变化,保证车轮与地面的相对 滑动尽可能小
与非独立悬架配用的转向传动机构
前桥为转向桥 一般布置在前桥后
前桥为转向驱动桥
转向直拉杆横置
19
循环球式转向器
采用两级传动:螺杆螺母传动与齿条齿扇传动
特点:1) 正传动效率高达90%~95%,转向省力; 2) 寿命长,工作平稳;逆效率也很高,容易打手。 20
循环球式转向器
为了减少转向螺杆、螺母之间的摩擦,二者 的螺纹并不直接接触,其间装有多个钢球, 以实现滚动摩擦。
转向螺杆和螺母上都加工出断面轮廓为两段 或三段不同心圆弧组成的近似半圆的螺旋槽。 二者的螺旋槽能配合形成近似圆形断面的螺 旋管状通道。
目前应用广泛的是齿轮齿条 式和循环球式。
16
1.齿轮齿条式转向器
传动件:齿轮、齿条 特点:
结构简单,紧凑,质量轻,制造容易,成本低; 转向灵敏,正、逆效率高;
17
齿轮齿条式转向器结构实例
18
2.循环球式转向器
循环球式转向器是目前国内外应用最广泛的 结构型式之一。
一般有两级传动副,第一级是螺杆螺母传动 副,第二级是齿条齿扇传动副。
21
特点:正传动效率高(最高90%~95%),故操纵轻便, 使用寿命长。
22
循环球式转向器
转向螺杆转动时,通过钢球将力传给转向螺母,螺母 即沿轴向移动。同时,在螺杆及螺母与钢球间的摩擦 力偶作用下,所有钢球便在螺旋管状通道内滚动,形 成“球流”。在转向器工作时,两列钢球只是在各自 的封闭流道内循环,不会脱出。
并保持适当的“路感”。 (3)当汽车发生碰撞时,转向装置应能减轻或避免
汽车转向系统.

1—轮圈
2—轮辐
3—轮毂
2.转向轴、转向柱管及其吸能装置
转向轴是连接转向盘和转向器的传动件, 转向柱管固定在车身上,转向轴从转向 柱管中穿过,支承在柱管内的轴承和衬 套上。
轿车除要求装有吸能式转向盘外, 还要求转向柱管必须装备能够缓和冲击 的吸能装置。转向轴和转向柱管吸能装 置的基本工作原理是:当转向轴受到巨 大冲击而产生轴向位移时,通过转向柱 管或支架产生塑性变形、转向轴产生错 位等方式,吸收冲击能量。
1.液压助力转向系统 1)常压式 其特点是无论转向盘处于中立位置还是转向 位置,也无论转向盘保持静止还是运动状态,系 统工作管路中总是保持高压。
2)常流式液压 助力转向系统
其特点是 转向油泵始终 处于工作状态, 但液压助力系 统不工作时, 基本处于空转 状态。多数汽 车都采用常流 式液压助力转 向系统。
2.液压助力转向系统的转向控制阀 1)滑阀式转向控制阀
阀体沿轴向移动来控制油液流量的转向控制阀, 称为滑阀式转向控制阀,简称滑阀。
2)转阀式转向控制阀
阀体绕其轴线转动来控制油液流量的转向控制阀, 称为转阀式转向控制阀,简称转阀。
3.常流式液压助力转向系统的结构布置方案
机械转向器和转向动力缸设计成一体,并与转向控制阀组 装在一起,这种三合一的部件称为整体式动力转向器。另一 种方案是只将转向控制阀同机械转向器组合成一个部件,该 部件称为半整体式动力转向器,转向动力缸则做成独立部件。 第三种方案是将机械转向器作为独立部件,而将转向控制阀 和转向动力缸组合成一个部件,称为转向加力器。
4、转向盘自由行程:
转向盘在空转阶段中的角行程。
自由行程过大:转向不灵敏。 自由行程过小:路面冲击大,驾驶员过度紧张。
转向操纵机构
动力转向名词解释

动力转向名词解释动力转向是汽车行业中最重要的部分之一,它是由一系列复杂的组件组成的系统,其目的是将供给汽车底盘的动力转换成前后左右等方向上的运动。
它可以把车辆从一个轨道转换到另一个轨道,让汽车在转弯时增加操纵性能。
一台汽车的动力转向系统由三个组成部分组成:方向盘、转向架和转向机构。
方向盘是汽车中最常见的动力转向部件,其作用是把驾驶员的操纵力通过改变方向盘的方向来控制车辆的转向。
方向盘是由一个可以转动的中心柄件和几个助力转向器构成的,中心柄件用来改变方向盘的方向,而助力转向器则把操纵力转变为机械力。
此外,方向盘还安装有一个方向盘锁,当车辆停止或慢行时可以锁定方向盘,以免方向盘不小心被转动。
转向架是动力转向的重要组成部分,它的作用是通过接收方向盘扭力,把驾驶员操纵力转换为转向机构可以识别的力,然后转动车轮。
转向架一般由转向杆、转向器盖和转向器构成,它们之间通过轴承、支架和密封件相结合。
转向机构是汽车动力转向的最后一环,也是最重要的组成部分之一。
它的作用是把转向架发出的力量转换成车轮轴的旋转,从而让车辆改变运行方向。
转向机构除了车轮、轮毂等部件外,还包括转向节、转向销、拉杆和前连杆等组成部件。
变速箱是由齿轮、小齿轮、机械加力器、变速器架、变速器箱等组成的机械装置,它的作用是把发动机的动力传输到车轮上,从而使车辆可以达到不同的速度。
变速箱在动力转向中起着很重要的作用,它可以使车辆在穿梭于拥挤的街道时有更好的动力输出,也有助于减少车辆的抖动。
汽车行业的发展对动力转向系统技术的要求越来越高,现代汽车的动力转向系统不仅要具备良好的性能,还要求其在操纵性能、耐久性、安全性、降低能耗等方面也有良好的表现。
为此,汽车行业经常会开发出新型动力转向系统,例如电动转向系统、气动转向系统等,以满足各种汽车的需求。
总之,动力转向是汽车行业中最重要的部分之一,它由方向盘、转向架和转向机构以及变速箱等组件组成,它的作用是将发动机的动力转换成能够改变车辆运行方向的力量。
陕汽德龙X3000动力转向系统维修
陕汽德龙X3000动力转向系统维修第一节动力转向系统结构原理一、转向系统的组成陕汽重卡X3000汽车采用整体式液压常流动力转向系统。
其转向机采用循环球螺母式,因此又称之为“循环球螺母整体式动力转向系统”。
如图1-1,该车转向系统由两部分组成:转向机械部分和转向助力部分。
转向机械部分由方向盘、转向机、转向拐臂、横拉杆、直拉杆和转向节等组成。
转向助力系统由四部分组成:动力源(包括助力油泵、安全阀、流量控制阀)、操纵装置(包括安置在转向机内的方向控制阀、定心装置)、执行机构(安置在转向机内的油缸活塞以及外部辅助动力油缸)和辅助装置(包括储油罐、滤清器和管线)。
图1-1 新M3000转向系统的组成二、转向助力泵转向助力泵为转向助力提供动力源。
陕汽重卡汽车一般配套德国ZF7672、ZF7673和ZF7674三种型号转子叶片泵。
其性能参数见表1-1。
国产化后部分采用国产泵,转向助力泵安装在柴油机正时齿轮室上,由凸轮轴正时齿轮带动助力泵驱动齿轮旋转。
图1-2 助力泵的结构1转子叶片泵的结构如图1-2,它主要是由泵壳1、转轴15、叶片13和转子14以及转子外圈16组成。
为了确保转子油泵的输出排量基本稳定(不随转速变化而变化),以及限定输出压力的最大值,在泵的输出端还安装有流量控制阀3和安全阀4。
转子泵安装在发动机正时齿轮壳上,由凸轮轴齿轮带动泵驱动齿轮旋转。
1.泵壳2.弹簧3.流量控制阀4.安全阀5.端盖卡簧6.端盖7.分油盘8.定位销9.滚针轴承 10.轴承 11.轴承卡簧 12.油封 13.转子叶片 14.转子 15.转子轴 16.转子外圈 A.进油口(低压) B.出油口(高压)图1-2 转子叶片泵结构2当柴油机工作时,叶片泵旋转,泵体内安装于转子槽内的叶片,在离心力和油压作用下,紧贴泵体内曲面运动。
叶片与叶片之间形成密封工作腔。
密封工作腔容积逐渐缩小的区域形成压油腔,密封腔容积逐渐增大的区域形成吸油腔。
泵每旋转一周,完成吸油压油动作两次,由于吸油腔与压油腔是对称分布的,作用轴上的液压经向力平衡。
动力转向器功能简介及工作原理0教学资料
动力转向器工作原理
齿轮齿条动转所需流量的计算公式 理论流量计算公式: Q0 = 60×1.5r/s×i×△S/106 L / min i:线角传动比,表示方向盘转一圈齿条移动的距离 △S:有效缸径: △S=1/4×π×(D12-D22) D1 : 缸筒直径(mm) D2 : 齿条直径(mm) Q1=(1.5~2) Q0 + Q2 经验公式 Q1 : 实际需要的流量 L/min Q2 : 转向器允许的内泄漏值。一般规定≤15% Q1
动力转向器工作原理
转向器工作状态图
动力转向器工作原理
动力转向器工作原理
动力转向器工作原理
动力转向器工作原理
左转向工作原理
如下图所示,方向盘通过转向管柱和阀芯连 在一起,阀芯和螺杆通过扭杆连接在一起,螺杆和 螺母以钢球为传动介质,以螺纹的方式进行连接, 螺母和摇臂轴以齿轮齿条啮合的方式进行连接,摇 臂轴通过转向垂臂、拉杆、转向臂等和车轮连接。
动力转向系统的分类
常流式动力转向器按照控制阀形式可以分 为滑阀式和转阀式动力转向器;
按照动力缸、转阀和转向器的相互位置可 以分为整体式和分置式;
根据传动方式可以分为循环球式和齿轮齿 条式。
动力转向系统的分类
我们主要介绍整体式循环球动力转向器和齿 轮齿条转向器。它集机械转向器、动力缸、转向 控制阀于一体,和转向助力泵、转向油罐、横直 拉杆、球头、油管等共同组成汽车的转向系统, 是汽车上的两大保安件之一。转向助力泵负责提 供动力源,而转向器则是转向系统的终端执行机 构。
汽车动力转向
3.转向油泵结构
双作用叶片泵
双作用叶片泵 有两个吸油区 和两个压油区, 并且各自的中 心角是对称的, 所以作用在转 子上的油压作 用力互相平衡。
1.进油口 2.叶片 3.定子 4.出 油口 5.转子
第二节 液压式电控动力转向系统
分类: • 流量控制式EPS • 反力控制式 • 阀灵敏度控制式EPS
三、横摆角速度比例控制
• 1.系统组成 • ⑴前轮转向操纵机构 • ⑵后轮转向操纵机构 • 2.控制状态 • ⑴大转向角控制(机械控制) • ⑵小转向角控制(电子式控制) • 3.控制逻辑 • ⑴车体侧滑角的零控制 • ⑵受侧向风干扰时的控制 • ⑶ABS工作时的控制
皮层扩散抑制(CSD)学说 定义:
扭矩 传感器
车速 传感器
控制装置
电动机
转向助力
二、电动式电控动力转向系统的控制
• 1.控制电路 • 2.故障诊断与安全保护
第四节 四轮转向控制系统(4WS)
一、4WS的转向特性 1.4WS低速时的转向特性 2.4WS高速时的转向特性 二、转向角比例控制—使转动方向的偏离足够小 1.系统组成 ⑴转向枢轴 ⑵4WS转换器 2.控制逻辑 ⑴转向角控制 ⑵2WS选择控制 ⑶安全性控制
有先兆偏头痛的临床表现
3:头痛后期
– 疲劳、倦怠、烦躁、注意力不集中、 不愉快感等症状,1~2天。
并发症
• 1:慢性偏头痛 • 2:偏头痛持续状态:持续时间大于72小时 • 3:无梗死的持续先兆 • 4:偏头痛性梗死 • 5:偏头痛诱发的癫痫发作
诊断
偏头痛的发作类型 家族史 神经系 统的检查,通常可以作出临床诊断
电动式电控动力转向系统
电动转向结构
组成:机械转向器、电动机、离合器、控制装 置、转矩传感器和车速传感器.
汽车电动助力转向系统的设计(DOC41页)
汽车电动助力转向系统的设计第1章绪论1.1汽车转向系统简介汽车转向系是用来维持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。
它由转向操纵机构、转向器和转向传动机构组成。
转向系统作为汽车的一个重要组成局部,其性能的好坏将直截了当碍事到汽车的转向特性、稳定性、和行驶平安性。
目前汽车转向技术要紧有七大类:手动转向技术〔MS〕、液压助力转向技术〔HPS〕、电控液压助力转向技术〔ECHPS〕、电动助力转向技术〔EPS〕、四轮转向技术〔4WS〕、主动前轮转向技术〔AFS〕和线控转向技术〔SBW〕。
转向系统市场上以HPS、ECHPS、EPS应用为主。
电动助力转向具有节约燃料、有利于环境、可变力转向、易实现产品模块化等优点,是一项紧扣当今汽车开展主题的新技术,他是目前国内转向技术的研究热点。
转向系的设计要求(1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。
不满足这项要求会加速轮胎磨损,并落低汽车的行驶稳定性。
(2)汽车转型行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。
(3)汽车在任何行驶状态下,转向轮都不得产生共振,转向盘没有摆动。
(4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。
(5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。
(6)操纵轻便。
(7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。
(8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。
(9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻损害的防伤装置。
(10)进行运动校核,保证转向轮与转向盘转动方向一致。
1.2EPS的特点及开展现状EPS与其他系统比立关于电动助力转向机构(EPS),电动机仅在汽车转向时才工作并消耗蓄电池能量;而关于常流式液压动力转向机构,因液压泵处于长期工作状态和内泄漏等缘故要消耗较多的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 36 页 1.绪论 1.1转向系统概述 汽车转向系统是指汽车上用来改变或恢复其行驶方向的专设机构称为汽车转向系统。汽车的转向系统是用来改变汽车行驶方向和保持汽车直线行驶的机构。
1.1.1基本组成 转向操纵机构 主要由转向盘、转向轴、转向管柱等组成。它的作用是将驾驶员转动转向盘的操纵力传给转向器。 转向器 将转向盘的转动变为转向摇臂的摆动或齿条轴的直线往复运动,并对转向操纵力进行放大的机构。转向器一般固定在汽车车架或车身上,转向操纵力通过转向器后一般还会改变传动方向。 转向传动机构 将转向器输出的力和运动传给车轮(转向节),并使左右车轮按一定关系进行偏转的机构。
1.1.2类型 按转向能源的不同,转向系统可分为机械转向系统和动力转向系统两大类。 机械转向系统:由转向器和转向传动机构组成。转向传动机构是由转向臂(转向垂臂),直拉杆,直拉杆臂,左右梯形臂,横拉杆,若干球头关节组成。 动力转向系统:由机械转向系加转向加力装置构成。
图1.1机械转向系示意图 机械转向系统以驾驶员的体力作为转向能源,其中所有传力件都是机械的。机械转向系统由转向操纵机构、转向器和转向传动机构三大部分组成。 汽车转向时,驾驶员转动转向盘,通过转向轴、万向节和转向传动轴,将转向力矩第 2 页 共 36 页
输入转向器。从转向盘到转向传动轴这一系列部件即属于转向操纵机构。转向器中有1~2级啮合传动副,具有减速增力作用。经转向器减速后的运动和增大后的力矩传到转向摇臂,再通过转向直拉杆传给固定于左转向节上的转向节臂,使左转向节及装于其上的左转向轮绕主销偏转。左、右梯形臂的一端分别固定在左、右转向节上,另一端则与转向横拉杆作球铰链连接。当左转向节偏转时,经梯形臂1、横拉杆和梯形臂2的传递,右转向节及装于其上的右转向轮随之绕主销同向偏转相应的角度。转向摇臂、转向直拉杆、转向节臂、梯形臂和转向横拉杆总称为转向传动机构。梯形臂以及转向横拉杆和前轴构成转向梯形,其作用是在汽车转向时,使内、外转向轮按一定的规律进行偏转。 (1)转向操纵机构 转向操纵机构由方向盘、转向轴、转向管柱等组成,它的作用是将驾驶员转动转向盘的操纵力传给转向器。 (2) 转向器 转向器(也常称为转向机)是完成由旋转运动到直线运动(或近似直线运动)的一组齿轮机构,同时也是转向系中的减速传动装置。 目前较常用的有齿轮齿条式、循环球曲柄指销式、蜗杆曲柄指销式、循环球-齿条齿扇式、蜗杆滚轮式等。 (3)转向传动机构 转向传动机构的功用是将转向器输出的力和运动传到转向桥两侧的转向节,使两侧转向轮偏转,且使二转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。主要由转向直拉杆、转向节臂、向横拉杆、左右梯形臂等机件构成。前轴的两端和转向节由主销铰接在一起,转向节上连有左右梯形臂,两臂铰接在转向横拉杆上。 1)与非独立悬架配用的转向传动机构 与非独立悬架配用的转向传动机构主要包括转向摇臂、转向直拉杆、转向节臂和转向梯形。在前桥仅为转向桥的情况下,由转向横拉杆和左、右梯形臂组成的转向梯形一般布置在前桥之后,当转向轮处于与汽车直线行驶相应的中立位置时,梯形臂与横拉杆在与道路平行的平面(水平面)内的交角>90。 在发动机位置较低或转向桥兼充驱动桥的情况下,为避免运动干涉,往往将转向梯形布置在前桥之前,此时上述交角<90。若转向摇臂不是在汽车纵向平面内前后摆动,而是在与道路平行的平面向左右摇动,则可将转向直拉杆横置,并借球头销直接带动转向横拉杆,从而推使两侧梯形臂转动。 2)与独立悬架配用的转向传动机构 当转向轮独立悬挂时,每个转向轮都需要相对于车架作独立运动,因而转向桥必须是断开式的。与此相应,转向传动机构中的转向梯形也必须是断开式的。 3)转向直拉杆 第 3 页 共 36 页
转向直拉杆的作用是将转向摇臂传来的力和运动传给转向梯形臂(或转向节臂)。它所受的力既有拉力、也有压力,因此直拉杆都是采用优质特种钢材制造的,以保证工作可靠。在转向轮偏转或因悬架弹性变形而相对于车架跳动时,转向直拉杆与转向摇臂及转向节臂的相对运动都是空间运动,为了不发生运动干涉,上述三者间的连接都采用球销。
图1.2 转向直拉杆 1.螺母 2.球头销 3.橡胶防尘垫 4.螺塞 5.球头座 6.压缩弹簧 7.弹簧座 8.油嘴 9.直拉杆体 10.转向摇臂球头销 4)转向减振器 随着车速的提高,现代汽车的转向轮有时会产生摆振(转向轮绕主销轴线往复摆动,甚至引起整车车身的振动),这不仅影响汽车的稳定性,而且还影响汽车的舒适性、加剧前轮轮胎的磨损。在转向传动机构中设置转向减振器是克服转向轮摆振的有效措施。转向减振器的一端与车身(或前桥)铰接,另一端与转向直拉杆(或转向器)铰接。
1.连接环衬套 2.连接环橡胶套 3.油缸4.压缩阀总成 5.活塞及活塞杆总成 6.导向座 7.油封 8.挡圈 9.轴套及连接环总成 10.橡胶储液缸 图1.3转向减振器 第 4 页 共 36 页
1.1.3动力转向器 动力转向系是兼用驾驶员体力和发动机动力作为转向动力源的转向系。动力转向系是在机械转向系的基础上加设一套转向加力器而构成的。下图为一种液压式动力转向系示意图。其中,转向油罐、转向油泵、转向控制阀和转向动力缸为构成转向加力器的各部件。
图1.4动力转向系统示意图 采用动力转向系的汽车,在正常情况下转向时,驾驶员操纵机械转向系一方面提供转向所需的一小部分能量,另一方面则同时带动转向加力器工作,由发动机通过转向加力器提供转向所需的大部分能量。在转向加力器失效时,一般还能由驾驶员独立承担汽车转向任务。
1.2动力转向在汽车上的应用 1.2.1动力转向系统的使用操作 1.严禁机车在发动机熄火后滑行;道路不平直时不要高速行驶;机车转弯时要先降低车速(但发动机的转速不得低于800r/min),必要时要事先换入低速挡以提高发动机的转速。另外,当发动机由于某些原因而难以启动时,不要随意采用牵引方式启动。如在不得以情况下必须采用牵引启动时,应在平直的道路上进行,挂上低速挡并踏下离合器踏板。当机车需要转向时,应松开离合器踏板,使动力转向系产生作用,以保证机车能转向。 第 5 页 共 36 页
2.机车在行驶过程中,驾驶员应随时注意转向助力作用的变化,以防发生意外事故。因为具有动力转向系的车辆在行驶中,如因动力转向系的技术状况不良,发动机转速过低或驱动皮带打滑而使转向油泵转速不够,都会使油液的流量压力降低,转向助力作用大为减弱,这时机车如需要急转弯,则可能会因转向失灵而引发行车事故。特别是机车在快速行驶时转弯,如动力转向系统因液压油管破裂、转向油泵损坏或驱动皮带折断而突然不起助力作用,机车势必会因无法转向而发生车祸,造成不必要的损失。 3.机车在急转弯时,当把方向盘转至极限位置后要稍微放松。这是为了使分配阀的滑阀能回至中立位置,以便降低液压系统的油压。否则,液压系统内存在最大油压的时间过长,会导致发动机功率消耗过多,转向油泵机件磨损增大,并使橡胶油管破裂,油缸密封圈及液压泵主动齿轮轴上的油封损坏。而稍微放松方向盘使滑阀回至中立位置后,虽因转向主销内倾的作用,会使转向轮有自动回正的趋势,但只要转向轮稍微回正一点,通过转向传动机构就能使油缸套筒连滑阀体向一端作轴向移动,分配阀使油缸一侧的油压增大,其产生的助力作用又使转向轮转至最大转角位置,从而保证机车仍以最小转向半径进行转向。
1.2.2动力转向系统的维护保养 机车在使用过程中,应对动力转向系进行如下的正确维护保养: 1.检查液压件及油管各接合部位有无漏油现象,如有漏油必须要进行及时修复或更换新件。 2.检查转向油泵、分配阀、油缸的固定连接情况,以免机车在行驶中出现松动而危及行车安全。 3.检查贮油罐油面高度,油量不足时应添加,所用油料应符合规定,不得随意代用。加油时,油液应经过滤清。如果缺油过多,还应进行排气。在排气时,应顶起前桥,启动发动机,并保持转速在1000r/min以下,左右转动方向盘至极限位置(在此位置不能停留过久),如此反复10余次,直至罐内油面平静而无气泡为止。在进行上述操作时,应不断往贮油罐内补充油液,以免空气进入液压系统。 4.定期检查液压系统内油液的质量,如油质不符合要求时,应予更换。更换油液时不但要放尽原用油液,还应对液压系统进行彻底清洗。为此,应顶起前桥,松开油缸上的油管接头,打开分配阀或动力转向器底盘(整体式动力转向系统)上的放油螺塞,启动发动机,怠速运转15s,并同时左右转动方向盘至极限位置,以排尽油液,然后按要求加注新油,再启动发动机,怠速运转10~20s,并左右转动方向盘进行清洗(如贮油罐滤网脏污,应拆下清洗)。清洗后,按上述方法放尽清洗油,加注新油并排出空气。 5.按时润滑油缸的球头销和销座,如球头销、销座和滑套过脏,应进行清洗。 6.定期检查动力转向系统的油液流量和压力。此外,对于转向油泵由三角皮带驱动的动力转向系统,还应定期检查其皮带的张紧度是否符合规定要求,如不符合规定时,应予以调整。 第 6 页 共 36 页
1.2.3转向装置工作情况的检查 1.机车在良好的道路上用Ⅱ档(发动机转速保持在800~1000r/min)行驶,转动方向盘时机车转向应轻便灵活,施于方向盘上的力应不大于50~100N,否则,应查明原因后予以排除。 2.机车在正常行驶条件下转向时,转向轮应随方向盘转动的方向和速度进行偏转,如果出现不灵的现象,应查明原因予以排除。 3.机车行驶在平直的路面上,不转动方向盘时,转向轮应能保证车辆稳定直线行驶,无左右偏摆现象,否则应查明原因予以排除。 4.机车在宽阔的平坦场地上以I档(保持发动机转速在800~1000r/min范围内)行驶时,将方向盘向左打到底(打死后稍放松使分配阀的滑阀回至中立位置),待车辆行驶一圈后,测量车辆右前轮轮迹圆周直径,其半值即为车辆转向半径,应符合该车型的规定。如大于或小于规定值,说明转向轮转角过小或过大,应进行调整。 1.2.4停转方向盘后机车仍转弯 产生这一现象的主要原因是:由阀杆一侧的复位弹簧片折断造成的。当该侧弹簧片折断后,虽然停止转动方向盘,但阀杆和阀套不能复位,转向机继续配油,使转向不能停止。此时,应更换复位弹簧片。若无配件,可按下述方法进行制作:选取1根长度合适的旧钢锯条,在砂轮上磨掉锯齿,放入炉火中加温至紫红色,然后取出弯成弹簧片形状,自然冷却后即可。
1.3设计要求 1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2)转向轮具有自动回正能力。 3)在行驶状态下,转向轮不得产生自振,转向盘没有摆动。 4)转向传动机构和悬架导向装置产生的运动不协调,应使车轮产生的摆动最小。 5)转向灵敏,最小转弯直径小。 6)操纵轻便。 7)转向轮传给转向盘的反冲力要尽可能小。 8)转向器和转向传动机构中应有间隙调整机构。 9)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 10)转向盘转动方向与汽车行驶方向的改变相一致。 正确设计转向梯形机构,可以保证汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。转向轮的自动回正能力决定于转向轮的定位参数和转向器逆效率的大小.合理确定转向轮的定位参数,正确选择转向器的形式,可以保证汽车具有良好的自动回正能力。 转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,