九年级试卷数学真题及答案

合集下载

2023-2024学年重庆市渝北区九年级(上)期末数学试卷及答案解析

2023-2024学年重庆市渝北区九年级(上)期末数学试卷及答案解析

2023-2024学年重庆市渝北区九年级(上)期末数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个选项,其中只有一个选项是正确的,请在答题卡上把你认为是正确的选项对应的方框涂黑.1.(4分)2的相反数是()A.B.C.﹣2D.22.(4分)下列4个汉字中可以看成是轴对称图形的是()A.中B.国C.繁D.华3.(4分)已知反比例函数的图象经过点(2,﹣3),则k的值是()A.B.6C.D.﹣64.(4分)下列调查中,适合普查的是()A.调查全国中学生的视力情况B.调查遭受积石山地震损坏的房屋数量C.调查一批电池的使用寿命D.调查市场上某种饮料的质量情况5.(4分)估计的值在()A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.(4分)如图,已知AB∥CD,∠BAP=33°,∠DCP=21°,则∠P的度数为()A.52°B.53°C.54°D.55°7.(4分)周日上午,小张跑步去公园锻炼身体,到达公园后原地锻炼了一会之后散步回家,下面能反映小张离公园的距离y与时间x的函数关系的大致图象是()A.B.C.D.8.(4分)如图,⊙O是等边△ABC的外接圆,连接AO并延长交⊙O于点D,连接CD,,则△ADC的面积为()A.B.C.D.9.(4分)如图,点M是正方形ABCD边AB上一点,DN⊥CM于N,DN=2CN=2,则BN的长度为()A.2B.C.D.10.(4分)关于x的二次三项式M=2x2+ax+b,关于x的三次三项式N=3x3﹣5x2﹣7=c(x ﹣1)3+d(x﹣1)2+e(x﹣1)+f,下列说法中正确的个数为()①当多项式M•N乘积不含x3时,则5a=3b;②当M能被2x+1整除时,a﹣2b=1;③c﹣d+e=2.A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分请将每小题的答案直接填写在答题卡中对应题号的横线上.11.(4分)()﹣1+()0=.12.(4分)一个多边形的内角和为900°,则这个多边形的边数为.13.(4分)有三张背面完全一样,正面分别写有数字1,0,﹣1的卡片,若将它们背面朝上并洗匀,从中随机抽取一张,记下卡片上的数字后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的数字的乘积为负数的概率是.14.(4分)若a2+2ab=4,b2﹣3ab=﹣2,则2a2+b2+ab=.15.(4分)如图,在菱形ABCD中,AB=4,∠BAD=60°,连接AC,取AC中点O,以点A为圆心,AO长为半径画弧,分别交边AD,AB于点E,F,则图中阴影部分的面积是.16.(4分)若关于x的一元一次不等式组有解且最多4个整数解,且关于y 的分式方程的解为整数,则符合条件的所有整数m的和为.17.(4分)如图,在菱形ABCD中AC交BD于点O,点M为OB的中点,连接AM并延长交BC于点N,若AC=12,BN=,则AN=.18.(4分)对于一个两位数,(0≤b≤a≤9,1≤a+b≤9),记F(m)=a+b,将m的十位数字与个位数字的和、十位数字与个位数字的差分别作为m'的十位数字和个位数字,新形成的两位数m'叫做m的伴生和差数,把m放置于m'十位数字与个位数字之间,就可以得到一个新的四位数M,最小的M为,若M能被7整除,则的最小值为.三、解答题:(本大题8个小题,第19小题8分,第20-26小题每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算.(1)x(x+2)﹣(x+1)(x﹣1);(2).20.(10分)如图,在平行四边形ABCD中,BM⊥AC于点M.(1)用尺规完成以下基本作图:过点D作DN⊥AC于点N,并连接BN,DM.(保留作图痕迹,不写作法,不下结论)(2)求证:BN=DM.(请补全下面证明过程)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴①.∵BM⊥AC,DN⊥AC,∴②.在△ABM 和△CDN 中,,∴△ABM ≌△CDN (AAS ).∴③.又∵BM ⊥AC ,DN ⊥AC ,∴BM ∥DN .∴④.∴BN =DM .21.(10分)宪法是我国的根本法,是治国安邦的总章程,是党和人民意志的集中体现.2023年12月4日是我国第十个国家宪法日,在这一天某学校开展了宪法知识竞答比赛.现从该校七、八年级中各随机抽取20名学生的比赛成绩进行整理分析(成绩用x 表示,满分100分,共分成四组:D 组0≤x <60,C 组60≤x <80,B 组80≤x <100,A 组x =100)下面给出了部分信息:七年级抽取的学生比赛成绩在B 组的数据是:98,88,89,90,95,86;八年级抽取的学生比赛成绩的数据是:50,52,52,59,63,66,78,78,78,87,89,92,96,100,100,100,100,100,100,100.七、八年级抽取的学生比赛成绩的统计表年级平均数众数中位数满分率七年级81.5100a m %八年级82b8835%根据以上信息,解答下列问题:(1)直接写出a ,b ,m 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生对宪法知识掌握更好?请说明理由(写出一条理由即可);(3)该校七年级有400人,八年级有600人参加此次宪法知识竞答比赛,估计该校七、八年级参加此次比赛成绩满分的学生人数有多少人?22.(10分)2023年9月23日,第19届亚运会开幕式在杭州奥体中心体育场盛大开幕,潮起东方惊艳世界.奥体中心体育场的设计也同样令人赞叹,以莲花为原型,由28片大“莲花瓣”和27片小“莲花瓣”组成,宛如一朵绽放的莲花,栩栩如生.建设初期,计划由甲、乙两工程队承包完成其中一个小项目,若乙队单独施工,则恰好在计划工期完成;若甲队单独施工,可提前8天完成;若甲、乙两队先同时施工6天,剩下的由乙队单独施工,也可以提前8天完成.(1)求甲、乙两队单独完成该项目所需的时间;(2)实际施工时,甲队先单独施工若干天,剩下的工程由乙队单独施工完成.甲队每天施工费用为2万元,乙队每天施工费用为1.25万元,为了控制预算,该项目支付给工程队的施工总费用不超过45万元,则甲队至多施工多少天?23.(10分)如图,在矩形ABCD中,AB=3,BC=4,点Q为边BC上的中点.动点M从点A出发,沿折线AD﹣DC以每秒1个单位长度的速度向点C运动,到点C时停止.设为y.(y≠0)运动的时间为t秒,记S△MDQ(1)请直接写出y关于t的函数表达式以及对应的t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合图象,当y≥2时,直接写t的取值范围.(保留一位小数,误差不超过0.2)24.(10分)如图,A,B,C是我国南部的三个岛屿,已知岛屿C在岛屿A的东北方向,岛屿B在岛屿A的正东方向,A,C两岛的距离为km,A,B两岛的距离为68km.(1)求出B,C两岛的距离;(2)在岛屿B产生了台风,风力影响半径为25km(即以台风中心B为圆心,25km为半径的圆形区域都会受到台风影响),台风中心以20km/h的速度由B向A移动,请判断岛屿C是否会受到台风的影响,若不会受到影响,请说明理由;若会受到影响,请求出台风影响岛屿C持续时间有多长?25.(10分)二次函数y=ax2+bx+4经过点A(﹣1,0),点B(4,0),点C,点D分别为二次函数与y轴的交点和顶点,点M为二次函数图象上第一象限内的一个动点.(1)求二次函数的解析式;(2)如图1,连接BC,过点A作BC的平行线交二次函数于点E,连接CM,BM,BE,CE.求四边形CMBE面积的最大值以及此时点M的坐标;(3)如图2,过点M作MN∥y轴,交BC于点N(点M不与点D重合),过点D作DH ∥y轴,交BC于点H,当DM=HN时,直接写出点M的坐标.26.(10分)已知△ABC,AB=AC.(1)如图1,∠BAC=60°,点D是线段BC上一点,将线段AD绕点A逆时针旋转60°到AM,连接DM,CM.若BD=2,CD=1,求△CDM的面积;(2)如图2,若∠BAC=90°,点D在边AB上,将线段AD绕点A顺时针旋转90°得到线段AM,连接MD并延长交BC于点H,连接AH,CD,猜想AH与CD存在的数量关系,并证明你的猜想;(3)如图3,若∠BAC=60°,AB=3,点D是线段BC上的一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AQ,过点C作CE⊥AQ于点E交BA的延长线于点M,过点E分别作EN⊥AB于点N,作EH⊥AB于点H,连接NH,当NH取最大值时,请直接写出△NHE的面积.2023-2024学年重庆市渝北区九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个选项,其中只有一个选项是正确的,请在答题卡上把你认为是正确的选项对应的方框涂黑.1.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D的汉字不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.选项A的汉字能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:A.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴位置.3.【分析】把点(2,﹣3)代入即可求解.【解答】解:∵反比例函数的图象经过点(2,﹣3),∴k=2×(﹣3)=﹣6.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,熟知待定系数法是解题的关键.4.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.调查全国中学生的视力情况,适合抽样调查,故本选项不符合题意;B.调查遭受积石山地震损坏的房屋数量,适合全面调查,故本选项符合题意;C.调查一批电池的使用寿命,适合抽样调查,故本选项不符合题意;D.调查市场上某种饮料的质量情况,适合抽样调查,故本选项不符合题意.故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【分析】先运用二次根式知识进行计算,再进行比较,即可得出答案.【解答】解:=4+,∵1<<2,∴5<4<6,∴的值在5与6之间.故选:C.【点评】此题考查了二次根式和无理数的估算能力,掌握二次根式的混合运算法则和无理数的估算是解题的关键.6.【分析】过点P作PE∥AB,则∠BAP=∠APE,再由AB∥CD可知PE∥CD,故∠DCP =∠EPC,据此可得出结论.【解答】解:过点P作PE∥AB,∵∠BAP=33°,∠DCP=21°,∴∠BAP=∠APE=33°,∵AB∥CD,∴PE∥CD,∴∠DCP=∠EPC=21°,∴∠P=∠APE+∠EPC=33°+21°=54°.故选:C.【点评】本题考查的是平行线的性质,熟知两直线平行,内错角相等是解题的关键.7.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:跑步到公园,在这个阶段,离公园的距离随时间的增大而减小;第二阶段:在公园锻炼了一会,这一阶段公园的距离不随时间的变化而改变,即为0;第三阶段:散步回家,这一阶段,离公园的距离随时间的增大而增大,并且这段的速度小于第一阶段的速度.故选:C.【点评】本题主要考查函数图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.8.【分析】根据圆周角定理、垂径定理的推论得到∠ACD=90°,AD⊥CB,∠CAD=∠CAB,根据余弦的定义求出AD,再根据三角形的面积公式计算,得到答案.【解答】解:∵△ABC为等边三角形,AB=3,∴AC=BC=AB=3,∠CAB=60°,∵AD是⊙O的直径,∴∠ACD=90°,AD⊥CB,∠CAD=∠CAB=30°,∴CE=EB,在Rt△ACE中,∠CAD=30°,AC=3,∴CE=AC=,在Rt△ACD中,∠CAD=30°,AC=3,∴AD==6,=××6=,∴S△ADC故选:C.【点评】本题考查的是三角形的外接圆与外心、等边三角形的性质、垂径定理的推论、圆周角定理,掌握相关的性质定理是解题的关键.9.【分析】过点B作BE⊥CM于E,可证得△DCN≌△CBE(AAS),再证得△BNE是等腰直角三角形,即可求得答案.【解答】解:如图,过点B作BE⊥CM于E,∵DN⊥CM,BE⊥CM,∴∠DNC=∠CEB=90°,∴∠DCN+∠CDN=90°,∵四边形ABCD是正方形,∴DC=CB,∠ABC=∠BCD=90°,∴∠DCN+∠BCE=90°,∴∠CDN=∠BCE,∴△DCN≌△CBE(AAS),∴DN=CE,CN=BE,∵DN=2CN=2,∴CN=BE=1,CE=2,∴EN=CE﹣CN=2﹣1=1,∴EN=BE=1,∵∠BEN=90°,∴△BNE是等腰直角三角形,∴BN=BE=.故选:B.【点评】本题考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质等,添加辅助线构造全等三角形是解题关键.10.【分析】①根据多项式乘以多项式的运算法则展开,再由题意可得5a﹣3b=0;②由题意可知(2x2+ax+b)÷(2x+1)=x+b,则2x2+2bx+x+b=2x2+ax+b,即可求得a﹣2b=1;③由题意可得3x3﹣5x2﹣7=c(x3﹣3x2+3x﹣1)+d(x2﹣2x+1)+e(x﹣1)+f,从而得到c=3,d﹣3c=﹣5,3c﹣2d+e=0,分别求出c、d、e的值即可判定.【解答】解:①M•N=(2x2+ax+b)(3x3﹣5x2﹣7)=6x5﹣10x4﹣14x2+3ax4﹣5ax3﹣7ax+3bx3﹣5bx2﹣7b=6x5﹣(10﹣3a)x4﹣(14+5b)x2﹣(5a﹣3b)x3﹣7ax﹣7b,∵多项式M•N乘积不含x3,∴5a﹣3b=0,故①符合题意;②(2x2+ax+b)÷(2x+1)=x+b,∴2x2+2bx+x+b=2x2+ax+b,∴2b+1=a,即a﹣2b=1;故②符合题意;∵3x3﹣5x2﹣7=c(x﹣1)3+d(x﹣1)2+e(x﹣1)+f,∴3x3﹣5x2﹣7=c(x3﹣3x2+3x﹣1)+d(x2﹣2x+1)+e(x﹣1)+f,∴c=3,d﹣3c=﹣5,3c﹣2d+e=0,解得d=4,e=﹣1,∴c﹣d+e=3﹣4﹣1=﹣2,故③不符合题意;故选:C.【点评】本题考查多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分请将每小题的答案直接填写在答题卡中对应题号的横线上.11.【分析】利用负整数指数幂,零指数幂计算即可.【解答】解:原式=3+1=4,故答案为:4.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.12.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7,∴这个多边形的边数为7.故答案为:7.【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.13.【分析】列表可得出所有等可能的结果数以及抽取的两张卡片上的数字的乘积为负数的结果数,再利用概率公式可得出答案.【解答】解:列表如下:10﹣11(1,1)(1,0)(1,﹣1)0(0,1)(0,0)(0,﹣1)﹣1(﹣1,1)(﹣1,0)(﹣1,﹣1)共有9种等可能的结果,其中抽取的两张卡片上的数字的乘积为负数的结果有:(1,﹣1),(﹣1,1),共2种,∴抽取的两张卡片上的数字的乘积为负数的概率为.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】把原式整理后,再代入化简即可.【解答】解:由b2﹣3ab=﹣2得:b2=﹣2+3ab,由a2+2ab=4得:a2=4﹣2ab.2a2+b2+ab=2a2﹣2+3ab+ab=2(4﹣2ab)﹣2+3ab+ab=8﹣4ab﹣2+3ab+ab=6.故答案为:6.【点评】本题考查了代数式的化简,熟练进行整理化简是解题的关键.15.【分析】阴影部分的面积=菱形ABCD的面积﹣扇形AEF的面积.【解答】解:连接BD,∵∠BAD=60°,四边形ABCD是菱形,∴∠BAC=∠DAC=30°,AC⊥BD,∵AB=4,∴AO=AB•cos∠BAC=2,BO=AB•sin∠BAC=2,AC=4,BD=4,阴影部分的面积=×AC×BD﹣=8﹣2π,故答案为:8﹣2π.【点评】本题考查了菱形、扇形的面积,关键是掌握菱形、扇形的面积公式.16.【分析】求出一元一次不等式组的解集,根据它有解且最多4个整数解,求得m的取值范围;解分式方程,根据其解为整数,求得所有符合条件的m的值,将这些值相加即可.【解答】解:不等式组的解集为﹣4<x<m,∵原不等式组有解且最多4个整数解,∴﹣4<m≤1.分式方程的解为y=,∵y=1是原分式方程的增根,∴m≠﹣1.∴﹣1<m+3≤4,且m+3≠2,∵y=为整数,∴m+3=0或4,当m+3=0时,m=﹣3;当m+3=4时,m=1,﹣3+1=﹣2,故答案为:﹣2.【点评】本题考查分式方程的解和解一元一次不等式组,熟练掌握它们的解法是本题的关键.17.【分析】通过证明△ADM∽△NBM,可得=3,可得AD=3BN=6,AM =3MN,由勾股定理可求DO的长,AM的长,即可求解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=6,BO=DO,∵点M为OB的中点,∴OM=BM,∴DM=3OM=3BM,∵AD∥BC,∴△ADM∽△NBM,∴=3,∴AD=3BN=6,AM=3MN,∴DO===12,∴MO=BM=6,∴AM===6,∴MN=2,∴AN=AM+MN=8,故答案为:8.【点评】本题考查了相似三角形的判定和性质,菱形的性质,勾股定理,证明三角形相似是解题的关键.18.【分析】根据题意用a、b写出四位数M的表达式,根据a、b的范围,可得最小的M,因为M能被7整除,所以可知a和b的取值,即得的最小值.【解答】解:∵两位数m的十位数字是a,个位数字是b,两位数m′的十位数字是(a+b),个位数字是(a﹣b),∴四位数M=1000(a+b)+100a+10b+(a﹣b)=1101a+1009b,∴a=1,b=0时,M最小,M=1101,∵M能被7整除,1≤a+b≤9,∴a=3,b=1时,M=4312,a=5,b=4时,M=9541,a=6,b=2时,M=8624,a=7,b=0时,M=7707,==+最小,即最小,∴a=7,b=0时,=,故答案为:1101,.【点评】本题考查了整式的加减,关键是计算正确.三、解答题:(本大题8个小题,第19小题8分,第20-26小题每小题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)直接利用单项式乘多项式以及平方差公式计算,进而得出答案;(2)直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=x2+2x﹣(x2﹣1)=x2+2x﹣x2+1=2x+1;(2)原式=[+]•=•=.【点评】此题主要考查了分式的混合运算、整式的混合运算,正确掌握相关运算法则是解题关键.20.【分析】(1)利用基本作图,过D点作AC的垂线即可;(2)先根据平行四边形的性质得到AB∥CD,AB=CD.则∠BAM=∠DCN,再证明△ABM≌△CDN得到BM=DN,然后判断四边形BMDN为平行四边形,从而得到BN=DM.【解答】(1)解:如图,DN为所作;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠BAM=∠DCN,∵BM⊥AC,DN⊥AC,∴∠AMB=∠CND,在△ABM和△CDN中,,∴△ABM≌△CDN(AAS),∴BM=DN,又∵BM⊥AC,DN⊥AC,∴BM∥DN.∴四边形BMDN为平行四边形,∴BN=DM.故答案为:∠BAM=∠DCN,∠AMB=∠CND,BM=DN,四边形BMDN为平行四边形.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了全等三角形的判定与性质、平行四边形的判定与性质.21.【分析】(1)根据中位数和众数的定义解答即可求出a、b的值,用“1”分别减去其它三个等级所占百分比可得m的值;(2)根据平均数、中位数和满分率进行判断即可;(3)分别求出七、八年级学生竞赛成绩的满分率即可求解.【解答】解:(1)七年级学生竞赛成绩从小到大排列后,处在中间位置的两个数的平均数为(86+88)÷2=87(分),因此中位数是87分,即a=87;八年级学生竞赛成绩的100出现的次数最多,故众数为100,即b=100;m%=1﹣25%﹣20%﹣=25%,即m=25.(2)八年级学生对宪法知识掌握更好,理由如下:因为八年级学生的平均数、中位数和满分率都高于七年级,所以八年级学生对宪法知识掌握更好;(3)400×25%+600×35%=100+210=310(人),答:估计该校七、八年级参加此次比赛成绩满分的学生人数大约有310人.【点评】本题考查扇形统计图、中位数、众数、平均数以及用样本估计总体,理解中位数、众数的计算方法是正确求解的前提.22.【分析】(1)设甲队单独完成该项目所需的时间为x天,则乙队单独完成该项目所需的时间为(x+8)天,根据若甲、乙两队先同时施工6天,剩下的由乙队单独施工,也可以提前8天完成.列出分式方程,解方程即可;(2)设甲队施工y天,则乙队施工=(32﹣y)天,根据该项目支付给工程队的施工总费用不超过45万元,列出一元一次不等式,解不等式即可.【解答】解:(1)设甲队单独完成该项目所需的时间为x天,则乙队单独完成该项目所需的时间为(x+8)天,由题意得:+=1,解得:x=24,经检验,x=24是原方程的解,且符合题意,∴x+8=24+8=32,答:甲队单独完成该项目所需的时间为24天,乙队单独完成该项目所需的时间为32天;(2)设甲队施工y天,则乙队施工=(32﹣y)天,由题意得:2y+1.25(32﹣y)≤45,解得:y≤15,答:甲队至多施工15天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式.23.【分析】(1)分为:当0<t<4时,y=DM•AB=(4﹣t)=﹣;当4<t≤7时,y==t﹣4;(2)取(0,6),(4,0)及(7,3)作出图象,根据函数图象写增减性;(3)当y=2时,由﹣和t﹣4=2分别求出t的值,进而得出结果.【解答】解:(1)如图1,当0<t<4时,y=DM•AB=(4﹣t)=﹣,如图2,当4<t≤7时,y==t﹣4,综上所述:y=;(2)如图3,在4<t≤7范围内,y随着t的增大而增大;(3)当y=2时,由﹣得,t=≈2.7,由t﹣4=2得,t=6,∴当y≥2时,0<t≤2.7或6≤t≤7.【点评】本题考查了求一次函数的解析式,根据解析式画一次函数的图象,一次函数及其图象的性质等知识,解决问题的关键是熟练掌握有关基础知识.24.【分析】(1)过点C作CD⊥AB于点D,在Rt△ACD中,利用勾股定理可求出AD,CD,再在Rt△BCD中,利用勾股定理即可求出BC,从而解决问题;(2)由25>20,可知会受影响.以点C为圆心,25km长为半径画弧与AB交于点E,F,利用勾股定理求出DE,进而得到EF的长,再除以台风移动速度即可求出台风影响岛屿C持续时间.【解答】解:(1)过点C作CD⊥AB于点D,由题意知:∠ACD=45°,∴∠A=∠ACD=45°,∴CD=AD,在Rt△ACD中,AC=km,由勾股定理,得AD2+CD2=AC2,∴2AD2=()2,解得AD=20km(负值已舍),∴CD=20km,在Rt△BCD中,BD=AB﹣AD=68﹣20=48(km),由勾股定理,得BC===52(km),答:B,C两岛的距离为52km;(2)会受影响,以点C为圆心,25km长为半径画弧与AB交于点E,F,则EF=2DE,在Rt△CDE中,由勾股定理,得DE===15(km),∴EF=30km,30÷20=1.5(h),答:台风影响岛屿C持续时间为1.5h.【点评】本题考查勾股定理的应用,理解题意,通过作CD⊥AB构造直角三角形是解题的关键.25.【分析】(1)用待定系数法求函数的解析式即可;(2)求出直线BC的解析式,再由平行线的性质求出直线AE的解析式从而确定E点坐标,再由直线CE的解析式求出直线CE与x轴的交点坐标,从而求出三角形BCE的面积,过点M作MG∥y轴交直线BC于点G,设M(t,﹣t2+3t+4),则G(t,﹣t+4),可=﹣2(t﹣2)2+8,从而求出四边形面积的最大值及点M的坐标;得S△BCM(3)求出D(,),H(,),设M(x,﹣x2+3x+4),则N(x,﹣x+4),则DM =,HN=,再由DM=HN,求出x=(舍)或x=或x=,即可求M点坐标.【解答】解:(1)将点A(﹣1,0),点B(4,0)代入y=ax2+bx+4,∴,解得,∴二次函数的解析式为y=﹣x2+3x+4;(2)当x=0时,y=4,∴C(0,4),∴OC=OB=4,∴直线BC的解析式为y=﹣x+4,∵AE∥BC,∴直线AE的解析式为y=﹣x﹣1,当﹣x﹣1=﹣x2+3x+4时,解得x=﹣1或x=5,∴E(5,﹣6),设CE的直线解析式为y=kx+4,∴5k+4=﹣6,解得k=﹣2,∴直线CE的解析式为y=﹣2x+4,∴直线CE与x轴的交点为(2,0),=(4﹣2)×(4+6)=10,∴S△BCE过点M作MG∥y轴交直线BC于点G,设M(t,﹣t2+3t+4),则G(t,﹣t+4),∴MG=﹣t2+3t+4+t﹣4=﹣t2+4t,=4×(﹣t2+4t)=﹣2(t﹣2)2+8,∴S△BCM+S△BCM=10﹣2(t﹣2)2+8,∴四边形CMBE的面积=S△BCE∵0<t<4,∴当t=2时,四边形CMBE的面积有最大值18,此时M(2,6);(3)∵y=﹣x2+3x+4=﹣(x﹣)2+,∴D(,),∵DH∥y轴,∴H(,),设M(x,﹣x2+3x+4),则N(x,﹣x+4),∴DM=,HN=,∵DM=HN,∴=,解得x=(舍)或x=或x=,∴M(,)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,两点间距离公式,平行线的性质,铅锤法求面积是解题的关键.26.【分析】(1)可证明△BAD≌△CAM,从而得出∠ACM=∠AB=60°,CM=BD=2,进一步得出结果;(2)作AG⊥MH于G,可证明△AGH∽△DAC,进一步得出结果;(3)可证得四边形BCEN内接于以BE为直径的圆,从而得出NH=BE•sin∠ABC=BE,故当BE最大时,NH最大,可证得E在以AC为直径的圆O上运动,连接BO 并延长,交⊙O于点E,此时BE最大,NH最大,NH交BE于X,进一步得出结果.【解答】解:(1)如图1,作ME⊥BC,交BC的延长线于点E,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠B=∠ACB=60°,∵线段AD绕点A逆时针旋转60°到AM,∴∠AD=AM,∠DAM=60°,∴∠BAC=∠DAM,∴∠BAD=∠CAM,∴△BAD≌△CAM(SAS),∴∠ACM=∠AB=60°,CM=BD=2,∴∠MCE=180°﹣∠ACB﹣∠ACM=60°,∴EM=CM=,=;∴S△CDM(2)如图2,CD=AH,理由如下:作AG⊥MH于G,∵∠BAC=90°,线段AD绕点A顺时针旋转90°得到线段AM,∴AD=AM,∠DAM=90°,M、A、C共线,∴∠BDH=∠ADM=∠M=45°,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠DHC=∠BHD=90°,∴∠DHC+∠BAC=180°,∴点A、D、H、C共圆,∴∠AHG=∠ACD,∵∠AGH=∠BAC=90°,∴△AGH∽△DAC,∴,∴CD=AH;(3)如图3,∵EN⊥AB,EH⊥BC,∴∠ENB=∠EHB=90°,∴四边形BCEN内接于以BE为直径的圆,∵∠ABC=60°,∴NH=BE•sin∠ABC=BE,∴当BE最大时,NH最大,∵∠AEC=90°,AC=AB=3,∴E在以AC为直径的圆O上运动,连接BO并延长,交⊙O于点E,此时BE最大,NH最大,NH交BE于X,此时BE=OB+OE=AB+AC=AB=,∴EN=EH=BE=,∴NX=HX=EN=,EX=EN=,=NH•EX=NX•EX=.∴S△NHE【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,确定圆的条件,等腰三角形的判定和性质,解直角三角形等知识,解决问题的关键是将条件转化。

万唯数学试卷九年级【含答案】

万唯数学试卷九年级【含答案】

万唯数学试卷九年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. 2C. 3D. 42. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴的交点为A,与y轴的交点为B,则线段AB的长度为:A. 1B. 2C. 3D. 44. 已知等差数列{an}的前n项和为Sn = 2n² + 3n,则a1的值为:A. 2B. 3C. 4D. 55. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应点的轨迹为:A. 直线B. 圆C. 椭圆D. 双曲线二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。

()2. 任何实数的平方都是非负数。

()3. 若函数f(x) = x³在区间(-∞, +∞)上单调递增,则其导数f'(x)恒大于0。

()4. 若函数y = f(x)的图像关于y轴对称,则f(x)是偶函数。

()5. 若等差数列{an}的前n项和为Sn = n² + n,则其公差为2。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(0) = _____。

2. 若等差数列{an}的通项公式为an = 3n 1,则a5 = _____。

3. 若复数z满足|z 1| = 1,则z在复平面内对应点的轨迹为_____。

4. 若函数y = f(x)的图像关于原点对称,则f(x)是_____函数。

5. 若函数y = f(x)的图像关于x轴对称,则f(x)是_____函数。

四、简答题(每题2分,共10分)1. 简述函数的单调性及其判定方法。

2. 什么是等差数列?如何求等差数列的前n项和?3. 什么是复数的模?如何计算复数的模?4. 什么是函数的奇偶性?如何判断一个函数的奇偶性?5. 什么是函数的周期性?给出一个周期函数的例子。

人教版九年级(上)期末数学试卷(解析版)

人教版九年级(上)期末数学试卷(解析版)

人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。

九年级(下)期中数学试卷含答案

九年级(下)期中数学试卷含答案

九年级(下)期中数学试卷一、选择题:1.使式子有意义的取值为()A.x>0 B.x≠1 C.x≠﹣1 D.x≠±12.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+13.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,104.下列各式,分解因式正确的是()A.a2+b2=(a+b)2 B.xy+xz+x=x(y+z)C.x2+x3=x3 D.a2﹣2ab+b2=(a﹣b)25.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.平均数是58 B.中位数是58 C.极差是40 D.众数是606.若m+n=3,则2m2+4mn+2n2﹣6的值为()A.12 B.6 C. 3 D.07.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.B.C.D.8.(﹣8)2014+(﹣8)2013能被下列数整除的是()A.3 B. 5 C.7 D.99.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有()分数50 60 70 80 90 100人数甲组2 5 10 13 14 6乙组4 4 16 2 12 12A.2种B.3种C.4种D.5种10.关于x的分式方程=1,下列说法正确的是()A.方程的解是x=m+5 B.m>﹣5时,方程的解是正数C.m<﹣5时,方程的解为负数D.无法确定二、填空题:11.若分式有意义,则实数x的取值范围是.12.若x2+4x+4=(x+2)(x+n),则n=.13.一段山路400m,一人上山每分钟走50m,下山时每分钟走80m,则他在这段时间内平均速度为每分钟走m.14.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)=.15.化简+的结果为.16.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12S22.(填“>”、“<”、“=”)17.若关于x的分式方程的解为正数,那么字母a的取值范围是.18.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为.三、解答题:19.(2006•北京)已知2x﹣3=0,求代数式x(x2﹣x)+x2(5﹣x)﹣9的值.20.(2015春•莱城区校级期中)把下列各式分解因式:(1)2a2﹣2ab(2)2x2﹣18(3)﹣3ma3+6ma2﹣3ma.21.(2015春•莱城区校级期中)解方程:(1)﹣1=.(2)+=2.22.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.23.(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(2005•泰州)春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?25.(2013•贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?参考答案与试题解析一、选择题:1.使式子有意义的取值为()A.x>0 B.x≠1 C.x≠﹣1 D.x≠±1考点:分式有意义的条件.分析:要使分式有意义,分式的分母不能为0.解答:解:∵|x|﹣1≠0,即|x|≠1,∴x≠±1.故选D.点评:解此类问题,只要令分式中分母不等于0,求得字母的值即可.2.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1考点:因式分解的意义.分析:根据多项式特点和公式的结构特征,对各选项分析判断后利用排除法求解.解答:解:A、m2+n不能分解因式,故本选项错误;B、m2﹣m+1不能分解因式,故本选项错误;C、m2﹣n不能分解因式,故本选项错误;D、m2﹣2m+1是完全平方式,故本选项正确.故选D.点评:本题主要考查了因式分解的意义,熟练掌握公式的结构特点是解题的关键.3.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,10考点:中位数;加权平均数.分析:根据中位数和平均数的定义结合选项选出正确答案即可.解答:解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.故选D.点评:本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.4.下列各式,分解因式正确的是()A.a2+b2=(a+b)2 B.xy+xz+x=x(y+z)C.x2+x3=x3 D.a2﹣2ab+b2=(a﹣b)2考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用提取公因式法以及公式法分解因式得出即可.解答:解:A、a2+b2无法分解因式,故此选项错误;B、xy+xz+x=x(y+z+1),故此选项错误;C、x2+x3=x2(1+x),故此选项错误;D、a2﹣2ab+b2=(a﹣b)2,正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用完全平方公式是解题关键.5.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.平均数是58 B.中位数是58 C.极差是40 D.众数是60考点:极差;算术平均数;中位数;众数.分析:分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可.解答:解:A.=(52+60+62+54+58+62)÷6=58;故此选项正确;B.∵6个数据按大小排列后为:52,54,58,60,62,62;∴中位数为:(60+58)÷2=59;故此选项错误;C.极差是62﹣52=10,故此选项错误;D.62出现了2次,最多,∴众数为62,故此选项错误;故选:A.点评:此题主要考查了平均数、众数、中位数及极差的知识,解题时分别计算出众数、中位数、平均数及极差后找到正确的选项即可.6.若m+n=3,则2m2+4mn+2n2﹣6的值为()A.12 B.6 C. 3 D.0考点:完全平方公式.分析:根据完全平方公式的逆用,先整理出完全平方公式的形式,再代入数据计算即可.解答:解:原式=2(m2+2mn+n2)﹣6,=2(m+n)2﹣6,=2×9﹣6,=12.故选A.点评:本题利用了完全平方公式求解:(a±b)2=a2±2ab+b2,要注意把m+n看成一个整体.7.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:压轴题.分析:设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+40)天.根据甲、乙两队合作,可比规定时间提前14天完成任务,列方程为+=.解答:解:设规定时间为x天,则甲队单独一天完成这项工程的,乙队单独一天完成这项工程的,甲、乙两队合作一天完成这项工程的.则+=.故选B.点评:考查了由实际问题抽象出分式方程.在本题中,等量关系:甲单独做一天的工作量+乙单独做一天的工作量=甲、乙合做一天的工作量.8.(﹣8)2014+(﹣8)2013能被下列数整除的是()A.3 B. 5 C.7 D.9考点:因式分解-提公因式法.分析:直接提取公因式(﹣8)2013,进而得出答案.解答:解:(﹣8)2014+(﹣8)2013=(﹣8)2013×(﹣8+1)=﹣7×(﹣8)2013,则(﹣8)2014+(﹣8)2013能被7整除.故选:C.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有()分数50 60 70 80 90 100人数甲组2 5 10 13 14 6乙组4 4 16 2 12 12A.2种B.3种C.4种D.5种考点:中位数;算术平均数;众数;方差.专题:图表型.分析:根据中位数、众数、方差、平均数的概念来解答.解答:解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S甲2=172<S乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好.故①②③⑤正确.故选:C.点评:本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.样本方差描述了一组数据围绕平均数波动的大小.10.关于x的分式方程=1,下列说法正确的是()A.方程的解是x=m+5 B.m>﹣5时,方程的解是正数C.m<﹣5时,方程的解为负数D.无法确定考点:分式方程的解.专题:计算题.分析:先按照一般步骤解方程,用含有m的代数式表示x,然后根据x的取值讨论m的范围,即可作出判断.解答:解:方程两边都乘以x﹣5,去分母得:m=x﹣5,解得:x=m+5,∴当x﹣5≠0,把x=m+5代入得:m+5﹣5≠0,即m≠0,方程有解,故选项A错误;当x>0且x≠5,即m+5>0,解得:m>﹣5,则当m>﹣5且m≠0时,方程的解为正数,故选项B错误;当x<0,即m+5<0,解得:m<﹣5,则m<﹣5时,方程的解为负数,故选项C正确;显然选项D错误.故选:C.点评:本题在判断方程的解是正数时,容易忽视m≠0的条件.二、填空题:11.若分式有意义,则实数x的取值范围是x≠.考点:分式有意义的条件.分析:根据分母为零,分式无意义;分母不为零,分式有意义.解答:解:由分式有意义,得5x﹣8≠0.解得x≠,故答案为:x≠.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.12.若x2+4x+4=(x+2)(x+n),则n=2.考点:因式分解的意义.专题:计算题.分析:根据因式分解与整式的乘法是互逆运算,把等式右边展开后根据对应项系数相等列式求解即可.解答:解:∵(x+2)(x+n)=x2+(n+2)x+2n,∴n+2=4,2n=4,解得n=2.点评:本题主要利用因式分解与整式的乘法是互逆运算.13.一段山路400m,一人上山每分钟走50m,下山时每分钟走80m,则他在这段时间内平均速度为每分钟走m.考点:有理数的混合运算.专题:应用题.分析:根据平均速度等于总路程除以总时间,求出即可.解答:解:根据题意得:=(m).则他在这段时间内平均速度为每分钟走m.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)=(y+1)(y﹣1)(x+1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用平方差公式及完全平方公式分解即可.解答:解:原式=(y2﹣1)(x2+2x+1)=(y+1)(y﹣1)(x+1)2.故答案为:(y+1)(y﹣1)(x+1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.化简+的结果为x.考点:分式的加减法.分析:先把两分式化为同分母的分式,再把分母不变,分子相加减即可.解答:解:原式=﹣==x.故答案为:x.点评:本题考查的是分式的加减法,即把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.16.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12<S22.(填“>”、“<”、“=”)考点:方差.分析:先从图片中读出小明和小兵的测试数据,分别求出方差后比较大小.也可从图看出来小明的都在8到10之间相对小兵的波动更小.解答:解:小明数据的平均数1=(9+8+10+9+9)=9,方差s12=[(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2+(9﹣9)2]=0.4,小兵数据的平均数2=(7+10+10+8+10)=9,方差s22=[(7﹣9)2+(10﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2]=1.6,∴S12<S22.故答案为:<.点评:本题考查了方差的意义.方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2.考点:分式方程的解.专题:计算题.分析:将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.点评:此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.18.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为210.考点:规律型:图形的变化类.专题:压轴题.分析:第一个阴影部分的面积等于第二个图形的面积减去第一个图形的面积,第二个阴影部分的面积等于第四个图形的面积减去第三个图形的面积,由此类推,最后一个阴影部分的面积等于最后一个图形的面积减去倒数第二个图形的面积.解答:解:图中阴影部分的面积为:(22﹣1)+(42﹣32)+…+(202﹣192)=(2+1)(2﹣1)+(4+3)(4﹣3)+…+(20+19)(20﹣19)=1+2+3+4+…+19+20=210;故答案为:210.点评:此题考查了图形的变化类,关键是找出每一个阴影部分的面积等于两个正方形面积的差,这样可以将阴影部分的面积看做边长为偶数的正方形的面积减去边长为奇数的正方形的面积.三、解答题:19.(2006•北京)已知2x﹣3=0,求代数式x(x2﹣x)+x2(5﹣x)﹣9的值.考点:因式分解的应用.专题:整体思想.分析:对所求的代数式先进行整理,再利用整体代入法代入求解.解答:解:x(x2﹣x)+x2(5﹣x)﹣9,=x(x2﹣x)+x2(5﹣x)﹣9,=x3﹣x2+5x2﹣x3﹣9,=4x2﹣9,=(2x+3)(2x﹣3).当2x﹣3=0时,原式=(2x+3)(2x﹣3)=0.点评:本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解.20.(2015春•莱城区校级期中)把下列各式分解因式:(1)2a2﹣2ab(2)2x2﹣18(3)﹣3ma3+6ma2﹣3ma.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取2a,即可得到结果;(2)原式提取2,再利用平方差公式分解即可;(3)原式提取﹣3ma,再利用完全平方公式分解即可.解答:解:(1)原式=2a(a﹣b);(2)原式=2(x2﹣9)=2(x+3)(x﹣3);(3)原式=﹣3ma(a2﹣2a+1)=﹣3ma(a﹣1)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(2015春•莱城区校级期中)解方程:(1)﹣1=.(2)+=2.考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:x2+2x﹣x2+4=8,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x﹣5=4x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=(﹣)÷=×=,当x=1时,原式==3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.考点:方差;加权平均数;中位数;极差;统计量的选择.专题:压轴题.分析:(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班.解答:解:(1)一班的方差=×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:班级平均数方差中位数极差一班168 3.2 168 6二班168 3.8 168 6(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取.点评:本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.24.(2005•泰州)春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.25.(2013•贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?考点:分式方程的应用;二元一次方程的应用.分析:(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.解答:解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.点评:此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。

(完整)九年级下册数学期末试卷附答案

(完整)九年级下册数学期末试卷附答案

九年级下册数学期末试卷附答案【篇一】一、选择题(每小题3分,共30分)1.如图所示的三个矩形中,其中相似图形是(B)A.甲与乙B.乙与丙C.甲与丙D.以上都不对2.若函数y=m+2x的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是(A)A.m<-2B.m<0C.m>-2D.m>03.点M(-sin60°,cos60°)关于x轴对称的点的坐标是(B)A.(32,12)B.(-32,-12)C.(-32,12)D.(-12,-32)4.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为(C)A.30tanα米B.30sinα米C.30tanα米D.30cosα米5.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是(C)6.如图,点A,E,F,C在同一条直线上,AD∥BC,BE的延长线交AD于点G,且BG∥DF,则下列结论错误的是(C)A.AGAD=AEAFB.AGAD=EGDFC.AEAC=AGADD.ADBC=DFBE7.如图,反比例函数y1=k1x和正比例函数y2=k2x的图象交于A(-1,-3),B(1,3)两点,若k1x>k2x,则x的取值范围是(C)A.-1<x<0B.-1<x<1C.x<-1或0<x<1D.-1<x<0或x>18.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC 上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的面积为(B)A.40cm2B.20cm2C.25cm2D.10cm29.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax +b与反比例函数y=cx的大致图象是(C)10.若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA∶O1A1=k(k为不等于0的常数),那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③ABA1B1=k;④扇形AOB与扇形A1O1B1的面积之比为k2.其中成立的个数为(D)A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.小明在操场上练习双杠,他发现双杠两横杠在地面上的影子的关系是平行.12.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5,sinA=45.13.在平面直角坐标系中,△ABC顶点A的坐标为(3,2),若以原点O为位似中心,画△ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比等于12,则点A′的坐标为(6,4)或(-6,-4).14.在Rt△ABC中,CA=CB,AB=92,点D在BC边上,连接AD,若tan∠CAD=13,则BD的长为6.15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为8π.16.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为13.17.如图,双曲线y=kx(k>0)与⊙O在第一象限内交于P,Q两点,分别过P,Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为4.18.在平面直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=35,反比例函数y=kx(x>0)的图象经过AO的中点C,且与AB交于点D,则点D的坐标为(8,32).提示:AB=OAsin∠AOB=10×35=6,OB=OA2-AB2=102-62=8,AO的中点C的坐标为(4,3),把C(4,3)代入y=kx(x>0),得y =12x,当x=8,y=32,∴点D的坐标为(8,32).三、解答题(共66分)19.(6分)计算:(-1)2019-(12)-3+(cos68°)0+|33-8sin60°|.解:原式=-1-8+1+|33-8×32|=-8+3.20.(8分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E.求证:△ABD∽△CBE.证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC.∵CE⊥AB,∴∠ADB=∠CEB=90°.∵∠B=∠B,∴△ABD∽△CBE.21.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求函数y=mx和y=kx+b的解析式;(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=mx的图象上一点P,使得S△POC=9.解:(1)把点A(4,2)代入反比例函数y=mx可得m=8,∴反比例函数的解析式为y=8x.∵OB=6,∴B(0,-6).把点A(4,2),B(0,-6)代入一次函数y=kx+b,得2=4k+b,-6=b,解得k=2,b=-6.∴一次函数的解析式为y=2x-6.(2)在y=2x-6中,令y=0,则x=3,即C(3,0),∴CO=3.设P(a,8a),则由S△POC=9,可得12×3×8a=9.解得a=43.∴P(43,6).22.(12分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格实行了4天的试销,试销情况如表所示:第1天第2天第3天第4天售价x(元/双)150200250300销售量y(双)40302420(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?解:(1)由表中数据,得xy=6000,∴y=6000x.∴y是x的反比例函数,所求函数关系式为y=6000x.(2)由题意,得(x-120)y=3000,把y=6000x代入,得(x-120)6000x=3000.解得x=240.经检验,x=240是原方程的根.答:若商场计划每天的销售利润为3000元,则其单价应定为240元.23.(14分)如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732).解:由题意,得AH=10米,BC=10米.在Rt△ABC中,∠CAB=45°,∴AB=BC=10米.在Rt△DBC中,∠CDB=30°,∴DB=BCtan∠CDB=103米.∴DH=AH-AD=AH-(DB-AB)=10-(103-10)=20-103≈2.7(米).∵2.7米<3米,∴该建筑物需要拆除.24.(14分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=13时,求⊙O的半径.解:(1)证明:连接OM,则OM=OB.∴∠OBM=∠OMB.∵BM平分∠ABC,∴∠OBM=∠GBM.∴∠OMB=∠GBM.∴OM∥BC.∴∠AMO=∠AEB.在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC.∴∠AEB=90°.∴∠AMO=90°.∴OM⊥AE.又∵OM是⊙O的半径,∴AE与⊙O相切.(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C.∵BC=4,cosC=13,∴BE=2,cos∠ABC=13.在△ABE中,∠AEB=90°,∴AB=BEcos∠ABC=6.设⊙O的半径为r,则AO=6-r,∵OM∥BC,∴△AOM∽△ABE.∴OMBE=AOAB.∴r2=6-r6.解得r=32.∴⊙O的半径为32.【篇二】一、选择题(每小题3分,共30分)1.反比例函数y=2x的图象位于平面直角坐标系的(A)A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.(2016永州)如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为(B)3.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则(D)A.y1<y2B.y1=y2C.y1>y2D.y1=-y24.(2016福州)如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是AB︵上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是(C)A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα),第4题图),第5题图),第6题图)5.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,能够添加一个条件.下列添加的条件中错误的是(C)A.∠ACD=∠D ABB.AD=DEC.ADAB=CDBDD.AD2=BDCD6.如图是测量小玻璃管口径的量具ABC,AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是(A)A.8cmB.10cmC.20cmD.60cm7.如图,一次函数y1=k1x+b的图象和反比例函数y2=k2x的图象交于A(1,2),B(-2,-1)两点,若y1<y2,则x的取值范围是(D)A.x<1B.x<-2C.-2<x<0或x>1D.x<-2或0<x<1,第7题图),第9题图),第10题图)8.已知两点A(5,6),B(7,2),先将线段AB向左平移1个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的12得到线段CD,则点A的对应点C的坐标为(A)A.(2,3)B.(3,1)C.(2,1)D.(3,3)9.如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是(D)A.103海里B.(102-10)海里C.10海里D.(103-10)海里10.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为(C)A.22B.32C.1D.62二、填空题(每小题3分,共24分)11.△ABC中,∠A,∠B都是锐角,若sinA=32,cosB=12,则∠C=__60°__.12.已知点A(-1,y1),B(-2,y2)和C(3,y3)都在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系为__y3<y1<y2__.(用“<”连接)13.直线y=ax(a>0)与双曲线y=3x交于A(x1,y1),B(x2,y2)两点,则4x1y2-3x2y1=__-3__.14.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是__210__cm.,第14题图),第15题图),第16题图)15.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,则AB∶DE=__2∶3__.16.如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是__7__个.17.如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD 上一点,且BE=BC,CE=CD,则DE=__3.6__cm.,第17题图),第18题图)18.如图,A,B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为__83__.三、解答题(共66分)19.(6分)计算:1sin60°-cos60°-(sin30°)-2+(2018-tan45°)0.解:原式=3-220.(8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个立体图形的表面积.解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的表面积是4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200(mm2)21.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(2,3),B(-3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出OP的长.解:(1)y=6x,y=x+1(2)对于一次函数y=x+1,令x=0求出y=1,即该函数与y轴的交点为C(0,1),∴OC=1,根据题意得S△ABP=12PC×2+12PC×3=5,解得PC=2,则OP=OC+PC=1+2=3或OP=PC-OC=2-1=122.(10分)如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据2≈1.4,3≈1.7)解:在直角△ABD中,BD=ABtanβ=123tan60°=413(米),则DF=BD-OE=413-10(米),CF=DF+CD=413-10+40=413+30(米),则在直角△CEF中,EF=CFtanα=413+30≈41×1.7+30=99.7≈100(米),则点E离地面的高度EF是100米23.(10分)如图,在△AB C中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.(1)求BDcos∠HBD的值;(2)若∠CBD=∠A,求AB的长.解:(1)∵DH∥AB,∴∠BHD=∠ABC=90°,∴△ABC∽△DHC,∴ACCD=BCCH=3,∴CH=1,BH=BC+CH=4,在Rt△BHD中,cos∠HBD=BHBD,∴BDcos∠HBD=BH=4(2)∵∠CBD=∠A,∠ABC=∠BHD,∴△ABC∽△BHD,∴BCHD=ABBH,∵△ABC∽△DHC,∴ABDH=ACCD=3,∴AB=3DH,∴3DH=3DH4,解得DH=2,∴AB=3DH=3×2=6,即AB的长是624.(12分)如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,过点A作⊙O的切线交DC的延长线于点E,且∠DCB=∠DAC.(1)求证:CD是⊙O的切线;(2)若AD=6,tan∠DCB=23,求AE的长.解:(1)连接OC,OE,∵AB为直径,∴∠ACB=90°,即∠BCO+∠ACO=90°,又∵∠DCB=∠CAD,∠CAD=∠ACO,∴∠ACO=∠DCB,∴∠DCB+∠BCO=90°,即∠DCO=90°,∴CD是⊙O的切线(2)∵EA 为⊙O的切线,∴EC=EA,EA⊥AD,OE⊥AC,∴∠BAC+∠CA E=90°,∠CAE+∠OEA=90°,∴∠BAC=∠OEA,∴∠DCB=∠OEA.∵tan∠DCB =23,∴tan∠OEA=OAAE=23,易证Rt△DCO∽Rt△DAE,∴CDDA=OCAE=ODDE=23,∴CD=23×6=4,在Rt△DAE中,设AE=x,∴(x+4)2=x2+62,解得x=52,即AE的长为5225.(12分)如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存有这样的直线l,使得△ODF是等腰三角形?若存有,请求出点P的坐标;若不存有,请说明理由.解:(1)y=-12x2+x+4(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由抛物线的对称性得点B的坐标为(-2,0),∴AB=6,BQ=m+2,∵QE∥AC,∴BEBC=BQBA,又∵EG∥y轴,∴△BEG∽△BCO,∴EGCO=BEBC=BQBA,即EG4=m+26,∴EG=2m+43,∴S△CQE=S△CBQ-S△EBQ=12BQCO-12BQEG=12(m+2)(4-2m+43)=-13m2+23m+83=-13(m-1)2+3,又∵-2≤m≤4,∴当m=1时,S△CQE有值3,此时Q(1,0)(3)存有.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2),令-12x2+x+4=2,得x1=1+5,x2=1-5,此时点P的坐标为P(1+5,2)或P(1-5,2);(ⅱ)若FO=FD,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(1,3),令-12x2+x+4=3,得x1=1+3,x2=1-3,此时点P的坐标为P(1+3,3)或P(1-3,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=42,∴点O到AC的距离为22,而OF=OD=2<22,与OF≥22矛盾,所以AC上不存有点使得OF=OD=2,此时,不存有这样的直线l,使得△ODF是等腰三角形.综上所述,存有这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为P(1+5,2)或P(1-5,2)或P(1+3,3)或P(1-3,3)【篇三】一、选择题(每题3分,共30分)1.下列立体图形中,主视图是三角形的是()2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.35B.45C.34D.以上都不对3.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(-3,2).若反比例函数y=kx(x>0)的图象经过点A,则k的值为()A.-6B.-3C.3D.6(第3题)(第4题)(第5题)4.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.85.如图,在ABCD中,若E为DC的中点,AC与BE交于点F,则△EFC与△BFA的面积比为()A.12B.12C.14D.186.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cmB.12cmC.18cmD.24cm(第6题)(第7题)(第9题)7.如图,反比例函数y1=k1x和正比例函数y2=k2x的图象交于A(-1,-3),B(1,3)两点,若k1x>k2x,则x的取值范围是()A.-1<x<0B.-1<x<1C.x<-1或0<x<1D.-1<x<0或x>18.如果点A(-1,y1),B(2,y2),C(3,y3)都在反比例函数y=3x的图象上,那么()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1< p>9.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4kmB.(2+2)kmC.22kmD.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()(第10题)二、填空题(每题3分,共30分)11.写出一个反比例函数y=kx(k≠0),使它的图象在每个象限内,y的值随x值的增大而减小,这个函数的解析式为____________.12.在△ABC中,∠B=45°,cosA=12,则∠C的度数是________.13.在下列函数①y=2x+1;②y=x2+2x;③y=3x;④y=-3x中,与众不同的一个是________(填序号),你的理由是____________________________________.14.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B=90°,斜坡AC的坡度为11,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为________.(第15题)(第16题)(第17题)(第18题)16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD =1,DB=2,则△ADE的面积与△ABC的面积的比是________.18.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的A,B两点,与x轴交于C点.已知A(-2,m),B(n,-2),tan∠BOC=25,则此一次函数的解析式为________________.19.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB的面积是________.(第19题)(第20题)20.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中准确的是________(把所有准确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分)21.计算:(5-π)0-6tan30°+12-2+|1-3|.22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠A OH=43,点B的坐标为(m,-2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.23.如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)(第23题)24.如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图②,连接OD交AC于点G,若CGGA=34,求sinE的值.25.如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=33.(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)(第25题)26.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为14,求边AB的长.(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.答案一、1.A2.A3.D4.C5.C6.C7.C8.B9.B10.C二、11.y=3x(答案不)12.75°13.③;只有③的自变量取值范围不是全体实数点拨:这是开放题,答案灵活,能给出合适的理由即可.14.2415.42m16.6或7或817.1918.y=-x+319.820.①③④点拨:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10.在Rt△ABF中,∵AB=6,BF=10,∴AF=102-62=8,∴DF=AD-AF=10-8=2.设EF=x,则CE=x,DE=CD-CE=6-x.在Rt△DEF中,∵DE2+DF2=EF2,∴(6-x)2+22=x2,解得x=103,∴DE=83.∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠EBG=∠2+∠3=12∠ABC=45°,∴①准确;HF=BF-BH=10-6=4,设AG =y,则GH=y,GF=8-y.在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8-y)2,解得y=3,∴AG=GH=3,GF=5.∵∠A=∠D,ABDE=94,AGDF=32,∴ABDE≠AGDF,∴△ABG与△DEF不相似,∴②错误;∵S△ABG=12ABAG=12×6×3=9,S△FGH=12GHHF=12×3×4=6,∴S△ABG=32S△FGH,∴③准确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,∴④准确.三、21.解:原式=1-6×33+4+3-1=4-3.22.解:(1)由OH=3,AH⊥y轴,tan∠AOH=43,得AH=4.∴A点坐标为(-4,3).由勾股定理,得AO=OH2+AH2=5,∴△AHO的周长为AO+AH+OH=5+4+3=12.(2)将A点坐标代入y=kx(k≠0),得k=-4×3=-12,∴反比例函数的解析式为y=-12x.当y=-2时,-2=-12x,解得x=6,∴B点坐标为(6,-2).将A、B两点坐标代入y=ax+b,得-4a+b=3,6a+b=-2,解得a=-12,b=1.∴一次函数的解析式为y=-12x+1.23.解:过点A作AE⊥CC′于点E,交BB′于点F,过B点作BD⊥CC′于点D,则△AFB,△BDC和△AEC都是直角三角形,四边形AA′B′F,四边形BB′C′D和四边形BFED都是矩形,∴BF=BB′-FB′=BB′-AA′=310-110=200(米),CD=CC′-DC′=CC′-BB′=710-310=400(米),∵BF∶AF=1∶2,CD∶BD=1∶1,∴AF=2BF=400(米),BD=CD=400(米),又∵FE=BD=400(米),DE=BF=200(米),∴AE=AF+FE=800(米),CE=CD+DE=600(米),∴在Rt△AEC中,AC=AE2+CE2=8002+6002=1000(米).答:钢缆AC的长度为1000米.24.(1)证明:连接OC,如图①.∵OC切半圆O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.(2)解:在Rt△OCE中,∵OC=OB=12OE,∴∠E=30°.∴在Rt△OCF中,CF=OCsin60°=2×32=3.(3)解:连接OC,如图②.∵CO∥AD,∴△CGO∽△AGD.∴CGGA=COAD=34.不妨设CO=AO=3k,则AD=4k.又△COE∽△DAE,∴COAD=EOAE=34=EO3k+E O.∴EO=9k.在Rt△COE中,sinE=COEO=3k9k=13.(第24题)25.解:(1)在Rt△OBA中,∠AOB=30°,OB=33,∴AB=OBtan30°=3.∴点A的坐标为(3,33).设反比例函数的解析式为y=kx(k≠0),∴33=k3,∴k=93,则这个反比例函数的解析式为y=93x.(2)在Rt△OBA中,∠AOB=30°,AB=3,sin∠AOB=ABOA,即sin30°=3OA,∴OA=6.由题意得:∠AOC=60°,S扇形AOA′=60π62360=6π.在Rt△OCD中,∠DOC=45°,OC=OB=33,∴OD=OCcos45°=33×22=362.∴S△ODC=12OD2=123622=274.∴S阴影=S扇形AOA′-S△ODC=6π-274.26.(1)①证明:如图①,∵四边形ABCD是矩形,∴∠C=∠D=∠B=90°,∴∠1+∠3=90°.由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°.∴∠3=∠2.又∵∠C=∠D,∴△OCP∽△PDA.②解:∵△OCP与△PDA的面积比为14,且△OCP∽△PDA,∴OPPA=CPDA=12.∴CP=12AD=4.设OP=x,则易得CO=8-x.在Rt△PCO中,∠C=90°,由勾股定理得x2=(8-x)2+42.解得x=5.∴AB=AP=2OP=10.(第26题)(2)解:作MQ∥AN,交PB于点Q,如图②.∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ.又BN=PM,∴BN=QM.∵MQ∥AN,∴∠QMF=∠BNF,∠MQF=∠FBN,∴△MFQ≌△NFB.∴QF=FB.∴QF=12QB.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∴EF=EQ+QF=12PQ+12QB=12PB.由(1)中的结论可得PC=4,BC=8,∠C=90°.∴PB=82+42=45,∴EF=12PB=25.∴在(1)的条件下,点M,N在移动的过程中,线段EF的长度不变,它的长度恒为25.。

九年级数学试卷题及答案

九年级数学试卷题及答案

(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是素数?()A.21B.29C.35D.39答案:B3.若一个三角形的两边长分别是8cm和10cm,则第三边的长度可能是()A.3cmB.5cmC.12cmD.17cm答案:C二、判断题(每题1分,共20分)4.任何两个奇数之和都是偶数。

()答案:正确5.方程x^25x+6=0的解是x=2和x=3。

()答案:正确6.一个等边三角形的三个角都是60度。

()答案:正确三、填空题(每空1分,共10分)7.若3x7=2x+5,则x=________。

答案:128.一个长方体的长、宽、高分别是4cm、3cm和2cm,其体积是________cm^3。

答案:249.若sin(θ)=1/2,且θ是锐角,则θ的度数是________度。

答案:30四、简答题(每题10分,共10分)答案:算术平均数是一组数的总和除以数的个数。

这组数的平均数是(2+4+6+8+10)/5=30/5=6。

五、综合题(1和2两题7分,3和4两题8分,共30分)11.已知直角三角形的两条直角边长分别是3cm和4cm,求斜边的长度。

答案:根据勾股定理,斜边长度为√(3^2+4^2)=√(9+16)=√25=5cm。

12.解方程组:2x+3y=8,xy=1。

答案:从第二个方程得x=y+1。

将x=y+1代入第一个方程得2(y+1)+3y=8,解得y=2,进而得x=3。

所以方程组的解是x=3,y=2。

13.画出一个边长为5cm的正方形,并计算其对角线的长度。

答案:对角线长度为√(5^2+5^2)=√(25+25)=√50=5√2cm。

14.已知圆的半径是4cm,求这个圆的面积。

答案:圆的面积公式是A=πr^2,所以面积是π(4^2)=16πcm^2。

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。

2. 一个正方形的边长是8厘米,它的面积是______平方厘米。

3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。

5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。

6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。

7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。

8. 一个正方形的边长是7厘米,它的周长是______厘米。

9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。

10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。

2023-2024学年湖南省长沙市长郡教育集团九年级(上)期末数学试卷及答案解析

2023-2024学年湖南省长沙市长郡教育集团九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项)1.(3分)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A.B.C.D.2.(3分)2024的相反数是()A.2024B.﹣2024C.D.3.(3分)元旦假期哈尔滨旅游总收入达59.14亿元,南泥北搓成了新时尚.将数据59.14亿用科学记数法表示为()A.5.914×108B.5.914×109C.5.914×1010D.59.14×1084.(3分)下列计算正确的是()A.(﹣2x3)2=4x6B.x2+x3=x5C.x8÷x2=x4D.(a+b)2=a2+b25.(3分)古语有言“逸一时,误一世”,其意是教导我们青少年要珍惜时光,切勿浪费时间,浪费青春,其数字谐音为1,1,4,5,1,4,有关这一组数,下列说法错误的是()A.中位数为4.5B.平均数为C.众数是1D.极差是46.(3分)下列命题正确的是()A.方程x2﹣x﹣1=0没有实数根B.有两边及一角对应相等的两个三角形全等C.平分弦的直径垂直于弦D.“对角线互相平分”是矩形、菱形、正方形都具有的性质7.(3分)如图,△ABC和△ABD内接于⊙O,∠ABC=80°,∠D=50°,则∠BAC的度数为()A.40°B.45°C.50°D.60°8.(3分)在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=(k≠0)的图象大致是()A.B.C.D.9.(3分)如图,将△ABC绕点A按逆时针方向旋转α,得到△AB′C′.若点B′恰好在线段BC的延长线上,且∠AB′C′=40°,则旋转角α的度数为()A.60°B.70°C.100°D.110°10.(3分)如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E(0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是()A.3B.C.D.5二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)因式分解:3x2﹣9x=.12.(3分)若式子在实数范围内有意义,则x的取值范围是.13.(3分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=65°,则∠2=.14.(3分)一个多边形的内角和是其外角和的4倍,则这个多边形的边数是.15.(3分)在一个不透明的口袋中装有红球和白球共12个,这些球除颜色外都相同,将口袋中的球搅匀后,从中随机摸出1个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸球200次,发现有50次摸到红球,则口袋中红球约有个.16.(3分)若a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则a2+2b﹣ab的值是.三、解答题(本大题共有9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:|﹣|+()﹣1+(π+1)0﹣tan60°.18.(6分)解不等式组:19.(6分)育才中学九年级的一位同学,想利用刚刚学过的三角函数知识测量新教学楼的高度,如图,她在A处测得新教学楼房顶B点的仰角为45°,走7米到C处再测得B 点的仰角为55°,已知O、A、C在同一条直线上.(1)求∠ABC的度数;(2)求新教学楼OB的高度.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,结果精确到0.1m).20.(8分)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于_____度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.21.(8分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,OC交AB于点P,交⊙O 于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=,求图中阴影部分的面积.22.(9分)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?23.(9分)如图,在▱ABCD中,点E在AB上,AE=AB,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.(1)求的值.(2)若AB:AC=:2,①求证:∠AEF=∠ACB.②求证:DF2=DG•DA.24.(10分)我们不妨约定,如果点(x,y)满足2x+y=2024,那么称这个点(x,y)为“郡系点”.如果一个函数的图象经过一个“郡系点”,那么称这个函数为“郡系函数”.(1)对下面的结论进行判断,请在正确结论的后面的括号中打“√”,错误结论后面的括号中打“×”.①点(1,2022)为“郡系点”();②已知y=(m为常数,且m≠0),它的图象经过的“郡系点”的坐标为(﹣1,n),则m=2025,n=2026().(2)已知点A(1,c)和B(2,c+2),那么线段AB上是否存在“郡系点”?如果存在,请表示出来;如果不存在,请说明理由.(3)已知关于x的二次函数y=ax2+(b﹣2024)x+a﹣2(a,b均为正整数)为“郡系函数”,其图象满足下面两个条件:(Ⅰ)图象经过四个象限;(Ⅱ)M,N是图象上的两个“郡系点”,且MN=90,试求该二次函数的解析式和它的“郡系点”M,N的坐标.25.(10分)已知抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),与y轴交于点A.(1)求抛物线的解析式;(2)如图1,连接AB,BC,点D在线段AB上(与点A,B不重合),点F是OA的中点,连接FD,过点D作DE⊥FD交BC于点E,连接EF,当△DEF面积是△ADF面积的3倍时,求点D的坐标;(3)如图2,点P是抛物线上对称轴右侧的点,H(m,0)是x轴正半轴上的动点,若线段OB上存在点G(与点O,B不重合),使得∠GBP=∠HGP=∠BOH,求m的取值范围.2023-2024学年湖南省长沙市长郡教育集团九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项)1.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点评】本题主要考查了轴对称图形的概念,熟知:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.这条直线是它的对称轴.2.【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【解答】解:2024的相反数是﹣2024,故选:B.【点评】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.3.【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:59.14亿=5914000000=5.914×109.故选:B.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;完全平方公式:(a±b)2=a2±2ab+b2;对各选项分析判断后利用排除法求解.【解答】解:A、(﹣2x3)2=4x6,故A正确;B、x2、x3不是同类项不能合并,故B错误;C、x8÷x2=x6,故C错误;D、(a+b)2=a2+2ab+b2,故D错误.故选:A.【点评】本题考查积的乘方、合并同类项、同底数幂的除法、完全平方公式,熟练掌握运算性质和法则是解题的关键.5.【分析】A.根据中位数定义,将这一组数重新排序后得到1,1,1,4,4,5,则中位数应该为2.5,而不是4.5,故A错误;B.根据平均数定义,平均数为,故B正确;C.根据众数定义,众数为1,故C均正确;D.根据极差定义,极差为5﹣1=4,故D均正确.【解答】解:将这一组数按照由小到大重新排序1,1,1,4,4,5,∴中位数应该,故A错误;平均数为,故B正确;众数为1,极差为5﹣1=4,故C,D均正确;故选:A.【点评】本题考查了统计量定义及求法,涉及中位数、平均数、众数、极差的定义及求法,掌握相关统计量的定义及求法是解决问题的关键.6.【分析】分别根据一元二次方程的根与Δ的关系,全等三角形的判定定理,垂径定理及矩形、菱形、正方形的性质对各选项进行逐一判断即可.【解答】解:A、∵Δ=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程x2﹣x﹣1=0有两个不相等的实数根,原说法错误,不符合题意;B、有两边及夹角对应相等的两个三角形全等,原说法错误,不符合题意;C、平分弦(非直径)的直径垂直于弦,原说法错误,不符合题意;D、“对角线互相平分”是矩形、菱形、正方形都具有的性质,正确,符合题意.故选:D.【点评】本题考查的是命题与定理,熟知一元二次方程的根与Δ的关系,全等三角形的判定定理,垂径定理及矩形、菱形、正方形的性质是解题的关键.7.【分析】根据圆周角定理求出∠ACB=∠D=50°,根据三角形内角和定理即可得出答案.【解答】解:∵∠D=50°,∴∠ACB=∠D=50°,∵∠ABC=80°,∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣50°﹣80°=50°,故选:C.【点评】本题考查了圆周角定理,三角形的外接圆与外心,熟练掌握圆周角定理是解题的关键.8.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.【点评】本题主要考查了反比例函数和一次函数的图象与性质,熟练掌握k>0,图象经过第一、三象限,k<0,图象经过第二、四象限是解题的关键.9.【分析】旋转得全等,即角等和边等,得出等腰三角形,直接代值求解即可.【解答】解:∵△ABC绕点A按逆时针方向旋转α,得到△AB′C′,∴△ABC≌△AB′C′,∠BAB′=α,∴AB=AB′,∠AB′B=∠ABB′,∵∠AB′C′=40°,∴∠AB′B=∠ABB′=40°,∴∠BAB′=α=180°﹣40°﹣40°=100°,故选:C.【点评】此题考查了旋转的性质,全等三角形的性质,以及等腰三角形的性质和判定,解题关键是推出等腰三角形.10.【分析】解方程x2﹣8x+15=0得A(3,0),利用抛物线的性质得到C点为AB的中点,再根据圆周角定理得到点P在以DE为直径的圆上,圆心Q点的坐标为(﹣4,0),接着计算出AQ=5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF的最大值为7,连接AP,利用三角形的中位线性质得到CM=AP,从而得到CM的最大值.【解答】解:解方程x2﹣8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(﹣4,0),AQ==5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=AP,∴CM的最大值为.故选:C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和圆周角定理.二、填空题(本大题共有6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.【分析】直接提取公因式3x,进而分解因式得出答案.【解答】解:原式=3x(x﹣3).故答案为:3x(x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】根据二次根式的被开方数大于等于0,分式的分母不为0,进行求解即可.【解答】解:由题意,得:x+1≥0且x﹣2≠0,∴x≥﹣1且x≠2;∴x的取值范围是x≥﹣1且x≠2;故答案为:x≥﹣1且x≠2.【点评】本题考查代数式有意义.熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,是解题的关键.13.【分析】由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG,从而得到∠GEF,根据平角的定义即可求得∠1,再由平行线的性质求得∠2.【解答】解:∵AD∥BC,∠EFG=65°,∴∠DEF=∠EFG=65°(两直线平行,内错角相等),∠1+∠2=180°(两直线平行,同旁内角互补),由折叠的性质可得:∠GEF=∠DEF=65°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣65°﹣65°=50°,∴∠2=180°﹣∠1=130°.故答案为:130°.【点评】此题主要考查折叠的性质,平行线的性质和平角的定义,根据折叠的方法找准对应角是解决问题的关键.14.【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得:(n﹣2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n﹣2)×180°=360°×4.15.【分析】利用频率估计随机摸出1个球是红球的概率为,根据概率公式即可求出答案.【解答】解:由题意可得,口袋中红球的个数约为:12×=3(个).故答案为:3.【点评】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出相应的红球个数.16.【分析】利用一元二次方程的解,可得出a2﹣2a=1,利用根与系数的关系,可得出a+b =2,ab=﹣1,再将其代入a2+2b﹣ab=(a2﹣2a)+2(a+b)﹣ab中,即可求出结论.【解答】解:∵a是一元二次方程x2﹣2x﹣1=0的实数根,∴a2﹣2a﹣1=0,∴a2﹣2a=1.∵a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,∴a+b=2,ab=﹣1,∴a2+2b﹣ab=(a2﹣2a)+2(a+b)﹣ab=1+2×2﹣(﹣1)=6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,利用一元二次方程的解及根与系数的关系,找出a2﹣2a=1,a+b=2,ab=﹣1是解题的关键.三、解答题(本大题共有9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.【分析】先根据绝对值、负整数指数幂、零指数幂和特殊角的三角函数值对原式进行化简,然后再合并即可.【解答】解:|﹣|+()﹣1+(π+1)0﹣tan60°==3.【点评】本题主要考查了实数的运算,能够灵活使用各种运算法则是解题的关键.18.【分析】分别解出两不等式的解集,再求其公共解.【解答】解:,解不等式①得:x<1,解不等式②得:x>﹣4,所以不等式组的解集为:﹣4<x<1.【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)根据三角形的外角性质计算,得到答案;(2)根据等腰直角三角形的性质得到OA=OB,根据正切的定义列出方程,解方程求出OB.【解答】解:(1)∵∠BCO是△ABC的外角,∴∠ABC=∠BCO﹣∠A=55°﹣45°=10°;(2)在Rt△AOB中,∠A=45°,则OA=OB,∵AC=7米,∴OC=(OB﹣7)米,在Rt△COB中,∠BCO=55°,∵tan∠BCO=,∴=1.43,解得:OB≈23.3,答:新教学楼OB的高度约为23.3米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义是解题的关键.20.【分析】(1)由喜欢E的人数除以所占百分比得出调查的学生人数,即可解决问题;(2)由该校共有学生人数乘以最喜欢阅读政史类书籍的学生人数所占的比例即可;(3)画树状图,共有9种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,再由概率公式求解即可.【解答】解:(1)调查的学生人数为:4÷8%=50(人),∴m=50×36%=18,∴n=50﹣18﹣10﹣12﹣4=6,文学类书籍对应扇形圆心角=360°×=72°,故答案为:18,6,72;(2)2000×=480(人),答:估计最喜欢阅读政史类书籍的学生人数约为480人;(3)画树状图如下:共有9种等可能的结果,其中甲乙两位同学选择相同类别书籍的结果有2种,即BB、CC,∴甲乙两位同学选择相同类别书籍的概率为.【点评】此题考查的是用树状图法求概率以及条形统计图和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)连接OB,根据等腰三角形的性质得出∠A=∠OBA,∠CPB=∠CBP,求出∠AOC=∠OBC=90°,再根据切线的判定得出即可;(2)根据含30°角的直角三角形的性质求出AP,求出AO,求出∠COB=30°,根据含30°角的直角三角形的性质求出OC=2BC,求出BC,再求出答案即可.【解答】解:(1)直线BC与⊙O的位置关系是相切,理由是:连接OB,∵CP=CB,OA=OB,∴∠A=∠OBA,∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∴∠A+∠APO=∠CBP+∠OBA,∵OC⊥OA,∴∠AOP=90°,∴∠CBP+∠OBA=∠A+∠APO=180°﹣90°=90°,即∠OBC=90°,∴OB⊥BC,∵OB过O,∴直线BC与⊙O的位置关系是相切;(2)∵∠AOP=90°,∠A=30°,OP=,∴AP=2OP=2,AO===3,即OB=3,∵∠A=∠OBA=30°,∴∠AOB=180°﹣∠A﹣∠OBA=120°,∵∠AOC=90°,∴∠COB=∠AOB﹣∠AOC=120°﹣90°=30°,∴OC=2BC,由勾股定理得:OC2=CB2+OB2,即BC2=(2BC)2+32,解得:BC=,﹣S扇形OBD=3×﹣=﹣π.∴阴影部分的面积S=S△OBC【点评】本题考查了圆周角定理,等腰三角形的性质,含30°角的直角三角形的性质,勾股定理,切线的判定,扇形的面积计算和三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.22.【分析】(1)根据“用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同”列方程求解;(2)先根据“购买B型机器人模型不超过A型机器人模型的3倍”求出取值范围,再根据一次函数的性质求解.【解答】解:(1)设A型编程机器人模型单价是x元,B型编程机器人模型单价是(x ﹣200)元.根据题意:,解这个方程,得:x=500,经检验,x=500是原方程的根,∴x﹣200=300,答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元;(2)设购买A型编程机器人模型m台,购买B型编程机器人模型(40﹣m)台,购买A型和B型编程机器人模型共花费w元,由题意得:40﹣m≤3m,解得:m≥10,w=500×0.8•m+300×0.8(40﹣m),即:w=160m+9600,∵160>0∴w随m的减小而减小.当m=10时,w取得最小值11200,∴40﹣m=30答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.【点评】本题考查了分式方程的应、一元一次不等式的应用及一次函数的应用,找到相等关系是解题的关键.23.【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,证明△AFE∽△CFD,根据相似三角形的性质得到即可;(2)①设AC=2a,根据题意用a表示出AE、AF,证明△FAE∽△BAC,根据相似三角形的对应角相等证明即可;②证明△GDF∽△FDA,根据相似三角形的性质列式计算即可证明结论.【解答】(1)解:在▱ABCD中,AB∥CD,AB=CD,又∵∠DFC=∠AFE,∴△AFE∽△CFD,∴;(2)①证明:∵,可设AC=2a,则,由(1)知:,∴,∴,,∴,又∵∠BAC=∠FAE,∴△FAE∽△BAC,∴∠AEF=∠ACB;②证明:∵FG∥AB,∴∠GFD=∠AED=∠ACB,又∵AD∥BC,∴∠ACB=∠FAD,∴∠FAD=∠GFD,又∵∠GDF=∠FDA,∴△GDF∽△FDA,∴,∴DF2=DG•DA.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理的和性质定理是解题的关键.24.【分析】(1)①由题意可知郡系点”在直线y=﹣2x+2024上,判断所给的点是否在该直线上即可;②先求出点的坐标,再将点的坐标代入反比例函数的解析式求m即可;(2)先求直线AB的解析式为y=2x+c﹣2,当2x+c﹣2=﹣2x+2024时,x=,再由1≤x≤2,2018≤c≤2022,可知线段AB上存在“郡系点”且点为(,c+1011);(3)根据a的取值和二次函数的图象特点确定a=1,当x2+(b﹣2024)x﹣1=﹣2x+2024时,x1+x2=2022﹣b,x1•x2=﹣2025,从而得到90=,解得b=0(舍)或b=2022,即可确定二次函数的解析式为y=x2﹣2x﹣1,再求点M、N 的坐标即可.【解答】解:(1)∵2x+y=2024,∴y=﹣2x+2024,∴郡系点”在直线y=﹣2x+2024上,①∵﹣2×1=2022,∴点(1,2022)在直线y=﹣2x+2024上,∴点(1,2022)为“郡系点”,故答案为:√;②∵“郡系点”的坐标为(﹣1,n),∴n=2+2024=2026,∴点为(1,2026),∴m=2026,故答案为:×,√;(2)线段AB上存在“郡系点”,理由如下:设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=2x+c﹣2,当2x+c﹣2=﹣2x+2024时,x=,∵1≤x≤2,2018≤c≤2022,∴线段AB上存在“郡系点”为(,c+1011);(3)∵a是正整数,∴a>0,当a≥2时,a﹣2≥0,即抛物线与y轴的交点在x轴上方或经过原点,此时二次函数的图象不能经过四个象限,∴0<a<2,∴a=1,∴函数的解析式为y=x2+(b﹣2024)x﹣1,当x2+(b﹣2024)x﹣1=﹣2x+2024时,x1+x2=2022﹣b,x1•x2=﹣2025,∵MN=90,∴90=,解得b=0(舍)或b=2022,∴二次函数的解析式为y=x2﹣2x﹣1,当x2﹣2x﹣1=﹣2x+2024时,解得x=±45,∴M(45,2114),N(﹣45,2114)或M(﹣45,2114),N(45,2114).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,弄清定义是解题的关键.25.【分析】(1)运用待定系数法将点B、点C坐标代入解析式可求解;(2)用待定系数法求得直线BC的解析式为y=﹣x+12,可证△BGE是等腰直角三角形,设D(t,8),通过证明△AFD∽△GDE,相似三角形的性质得出m﹣t=4,则DG=AF,可证△AFD≌△GDE,由面积关系列出方程可求解;(3)通过证明△OGH∽△BPG,可得,由待定系数法可求BS的解析式,联立方程组可求点P坐标,由勾股定理可求BP的长,由二次函数的性质可求解.【解答】解:(1)∵抛物线y=ax2+bx+8过点B(4,8)和点C(8,4),∴,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)∵抛物线y=﹣x2+x+8与y轴交于点A,当x=0时,y=8,∴A(0,8),则OA=8,∵B(4,8),∴AB∥x轴,AB=4,∵点F是OA的中点,∴F(0,4),∴AB=AF=4,设直线BC的解析式为y=kx+b,∵B(4,8),C(8,4),∴,解得:,∴直线BC的解析式为y=﹣x+12,设E(m,﹣m+12)(4<m<8),如图1,过点E作EG⊥AB交AB的延长线于G,则∠G=90°,∴G(m,8),∴GE=8﹣(﹣m+12)=m﹣4,BG=m﹣4,∴BG=GE,∴△BGE是等腰直角三角形,设D(t,8),则AD=t,DG=m﹣t,∵DE⊥FD,∴∠FDE=90°,∵∠FAD=∠G=∠FDE=90°,∴∠AFD=90°﹣∠ADF=∠GDE,∴△AFD∽△GDE,∴=,即=,∴t(m﹣t)=4(m﹣4),即(t﹣4)m=(t﹣4)(t+4),∵m>4,∴m=t+4,即m﹣t=4,∴DG=AF,∴△AFD≌△GDE(ASA),∴DF=DE,又∵DE⊥DF,∴△DEF是等腰直角三角形,=DF2,∴S△DEF=AD•AF,∵S△ADF当△DEF面积是△ADF面积的3倍时,即DF2=3×AD•AF,∴DF2=12AD,在Rt△ADF中,DF2=AD2+AF2=t2+42,∴AD2+AF2=12AD,∴t2+42=12t,解得:t=6﹣2或t=2+6(舍去),∴D(6﹣2,8);(3)∵∠GBP=∠HGP=∠BOH,又∠OGH+∠HGP=∠GBP+∠BPG,∴∠OGH=∠BPG,∴△OGH∽△BPG,∴=,设BP交x轴于点S,过点B作BT⊥x轴于点T,如图2,∵∠GBP=∠BOH,∴SB=SO,∵OT=4,BT=8,∴OB==4,设BS=k,则TS=k﹣4,在Rt△TBS中,SB2=ST2+BT2,∴k2=(k﹣4)2+82,解得:k=10,∴S(10,0),设直线BS的解析式为y=ex+f,则,解得:,∴直线BS的解析式为y=﹣x+,联立,解得:或,∴P(,﹣),∴PB==,∵=,设OG=n,则BG=OB﹣OG=4﹣n,∴=,整理得:m=﹣=﹣n2+n=﹣(n﹣2)2+,∵点G在线段OB上(与点O,B不重合),∴0<OG<4,∴0<n<4,∴当n=2时,m取得的最大值为,∴0<m≤.【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,一次函数与二次函数的综合运用,面积问题,相似三角形的判定和性质,二次函数的性质等,熟练掌握二次函数的性质是解题关键。

九年级(上)期末数学试卷(含答案)

九年级(上)期末数学试卷一.相信你的选择(每小题3分,共30分)1.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B. C.D.2.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个3.下面三视图表示的可能是宜昌四种特产:西瓜、蜜橘、梨、土豆中的()A.西瓜B.蜜橘C.土豆 D.梨4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)6.二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=()A.1 B.﹣1 C.﹣2 D.07.如图,为了测量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是()A.200m B.m C.m D.100m8.(3)(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米10.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米二.试试你的身手(每小题3分,共30分)11.在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=.12.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有桶.13.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C 的北偏东30°方向上,则AB=km.14.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.15.如图所示的两个三角形是位似图形,它们的位似中心是点.16.复习课上,张老师念了这样一道题目:已知二次函数y=ax2+bx+c的图象如图所示,“三位同学”分别说出了它的一些结论.“可心”说:①a+b+c<0;②a﹣b+c>1;“童谣”说:③abc>0;④4a﹣2b+c<0;“思宇”说:⑤c﹣a>1.请你根据图找出其中正确结论的序号是.17.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.18.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图象上(如图所示),则6楼房子的价格为元/平方米.19.如图,大楼高30m,远处有一塔BC,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°.则塔高BC为m.20.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)三.挑战你的能力(共40分)21.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.22.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子;(2)求标杆EF的影长.23.如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=,BC=;(2)判断△ABC与△DEF是否相似?并证明你的结论.24.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.25.北京的6月绿树成荫花成海,周末小明约了几个同到户外活动.当他们来到一座小亭子时,一位同学提议测量一下小亭子的高度,大家很高兴.于是设计出了这样一个测量方案:小明在小亭子和一棵小树的正中间点A的位置,观测小亭子顶端B的仰角∠BAC=60°,观测小树尖D的仰角∠DAE=45°.已知小树高DE=2米.请你也参与到这个活动中来,帮他们求出小亭子高BC的长.(结果精确到0.1.,)26.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?参考答案与试题解析一.相信你的选择(每小题3分,共30分)1.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B. C.D.【考点】平行投影.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子平行,且较高的树的影子长度大于较低的树的影子,正确;B、影子的方向不相同,错误;C、影子的方向不相同,错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.【点评】本题考查了平行投影特点.2.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】常规题型.【分析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.【解答】解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x<3时,y随x的增大而减小,正确;综上所述,说法正确的有④共1个.故选A.【点评】本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.下面三视图表示的可能是宜昌四种特产:西瓜、蜜橘、梨、土豆中的()A.西瓜B.蜜橘C.土豆 D.梨【考点】由三视图判断几何体.【专题】图表型.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是蜜橘.故选B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.本题着重应从柱体这个概念去思考.4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.【专题】压轴题.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)【考点】位似变换;坐标与图形性质.【专题】压轴题.【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,位似变换是以原点为位似中心,相似比为1:2.【解答】解:根据题意图形易得,两个图形的位似比是1:2,∴对应点是(﹣2a,﹣2b).故选A.【点评】本题主要考查位似变换中对应点的坐标的变化规律.6.二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=()A.1 B.﹣1 C.﹣2 D.0【考点】抛物线与x轴的交点.【专题】数形结合.【分析】先把x1=3代入关于x的一元二次方程﹣x2+2x+k=0,求出k的值,再根据根与系数的关系即可求出另一个解x2的值.【解答】解:∵把x1=3代入关于x的一元二次方程﹣x2+2x+k=0得,﹣9+6+k=0,解得k=3,∴原方程可化为:﹣x2+2x+3=0,∴x1+x2=3+x2=﹣=2,解得x2=﹣1.故选B.【点评】本题考查的是抛物线与x轴的交点,解答此类题目的关键是熟知抛物线与x轴的交点与一元二次方程根的关系.7.如图,为了测量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是()A.200m B.m C.m D.100m【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】根据P在N的北偏西30°的方向,可求得∠P=∠N,再根据三角函数即可求得PM的值.【解答】解:由已知得,∠P=∠N=30°.在直角△PMN中,PM==200.故选A.【点评】本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.8.如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.【解答】解:由已知,得∠A=30°,∠B=45°,CD=100,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=,∴AD===100在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=100米,∴AB=AD+DB=100+100=100(+1)米.故选D.【点评】本题考查了解直角三角形的应用,解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米【考点】二次函数的应用.【专题】应用题;压轴题;数形结合.【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【解答】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选A.【点评】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.10.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【考点】相似三角形的应用.【专题】应用题.【分析】由已知得△ABP∽△CDP,则根据相似形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故选:B【点评】本题综合考查了平面镜反射和相似形的知识,是一道较为简单的题,考查相似三角形在测量中的应用.二.试试你的身手(每小题3分,共30分)11.在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=75°.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.【分析】首先根据绝对值与偶次幂具有非负性可知c osA﹣=0,sinB﹣=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.【解答】解:∵|cosA﹣|+(sinB﹣)2=0,∴cosA﹣=0,sinB﹣=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°,故答案为:75°.【点评】此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.12.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有6桶.【考点】由三视图判断几何体.【分析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.【解答】解:三摞方便面是桶数之和为:3+1+2=6.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.13.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C 的北偏东30°方向上,则AB=3km.【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】过C作CE⊥BD于E,根据题意及三角函数可求得CE的长,从而得到AB的长.【解答】解:过C作CE⊥BD于E,则CE=AB.直角△CED中,∠ECD=30°,CD=6,则CE=CD•cos30°=3=AB.∴AB=3(km).【点评】此题的关键是添加辅助线构造直角三角形,再运用三角函数定义求解.14.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为9米.【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵DE∥AB,DF∥AC,∴△DEF∽△ABC,∴=,即=,∴AC=6×1.5=9米.故答案为:9.【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.如图所示的两个三角形是位似图形,它们的位似中心是点P.【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故答案为:P.【点评】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.16.复习课上,张老师念了这样一道题目:已知二次函数y=ax2+bx+c的图象如图所示,“三位同学”分别说出了它的一些结论.“可心”说:①a+b+c<0;②a﹣b+c>1;“童谣”说:③abc>0;④4a﹣2b+c<0;“思宇”说:⑤c﹣a>1.请你根据图找出其中正确结论的序号是①②③⑤.【考点】二次函数图象与系数的关系.【分析】由二次函数的图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,再结合图象判断各结论.【解答】解:由图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,①x=1时,a+b+c<0,正确;②x=﹣1时,a﹣b+c>1,正确;③abc>0,正确;④4a﹣2b+c<0,错误,x=﹣2时,4a﹣2b+c>0;⑤x=﹣1时,a﹣b+c>1,又﹣=﹣1,b=2a,c﹣a>1,正确,综上可知其中正确结论的序号是①②③⑤,故答案为:①②③⑤.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点.抛物线与y轴交于(0,c).17.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为22.5米.【考点】相似三角形的应用.【分析】根据题意,河两岸平行,故可根据平行线分线段成比例来解决问题,列出方程,求解即可.【解答】解:如图,设河宽为h,∵AB∥CD由平行线分线段成比例定理得:=,解得:h=22.5,∴河宽为22.5米.故答案为:22.5.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.18.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图象上(如图所示),则6楼房子的价格为2080元/平方米.【考点】二次函数的应用.【专题】操作型;函数思想.【分析】从图象中找出顶点坐标、对称轴,利用对称性即可解答.【解答】解:由图象可知(4,2200)是抛物线的顶点,∵x=4是对称轴,∴点(2,2080)关于直线x=4的对称点是(6,2080).∴6楼房子的价格为2080元.【点评】要求熟悉二次函数的对称性,并准确的找到所求的点与那个已知点是对称点,此题的关键是能找到顶点是(4,2200).19.如图,大楼高30m,远处有一塔BC,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°.则塔高BC为45m.【考点】解直角三角形的应用-仰角俯角问题.【分析】用AC表示出BE,BC长,根据BC﹣BE=30得方程求AC,进而求得BC长.【解答】解:根据题意得:BC==AC,∵BE=DEtan30°=ACtan30°=AC.∴大楼高AD=BC﹣BE=(﹣)AC=30.解得:AC=15.∴BC=AC=45.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.20.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)【考点】二次函数的应用.【专题】压轴题.【分析】由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E的横坐标即为EF的长.【解答】解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).【点评】以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.三.挑战你的能力(共40分)21.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.【考点】锐角三角函数的定义;勾股定理.【专题】压轴题;新定义.【分析】(1)根据直角三角形的性质用AC表示出A B及AC的值,再根据锐角三角函数的定义进行解答即可;(2)由于tanA=,所以可设BC=3,AC=4,则AB=5,再根据锐角三角函数的定义进行解答即可.【解答】解:(1)∵Rt△ABC中,α=30°,∴BC=AB,∴AC===AB,∴ctan30°==.故答案为:;(2)∵tanA=,∴设BC=3,AC=4,∴ctanA==.【点评】本题考查的是锐角三角函数的定义及直角三角形的性质,熟知锐角三角函数的定义是解答此题的关键.22.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子;(2)求标杆EF的影长.【考点】相似三角形的应用.【专题】计算题;作图题.【分析】解此题要借助于相似三角形的性质,相似三角形的对应边成比例,还要注意数形结合思想与方程思想的应用.【解答】解:(1)如右图.(2)过O作OH⊥MG于点H,设DH=xm,由AB∥CD∥OH得,即,解得x=1.2.设FG=ym,同理得,即,解得y=0.4.所以EF的影长为0.4m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了方程的思想.23.如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=2;(2)判断△ABC与△DEF是否相似?并证明你的结论.【考点】相似三角形的判定;勾股定理.【专题】压轴题;网格型.【分析】(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【解答】(1)解:∠ABC=90°+45°=135°,BC===2;故答案为:135°;2.(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°,∴∠ABC=∠DEF.∵AB=2,BC=2,FE=2,DE=∴==,==.∴△ABC∽△DEF.【点评】此题主要考查学生对勾股定理和相似三角形的判定的理解和掌握,解答此题的关键是认真观察图形,得出两个三角形角和角,边和边的关系.24.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.【考点】待定系数法求二次函数解析式;二次函数图象上点的坐标特征.【分析】(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.【解答】解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).【点评】本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.25.北京的6月绿树成荫花成海,周末小明约了几个同到户外活动.当他们来到一座小亭子时,一位同学提议测量一下小亭子的高度,大家很高兴.于是设计出了这样一个测量方案:小明在小亭子和一棵小树的正中间点A的位置,观测小亭子顶端B的仰角∠BAC=60°,观测小树尖D的仰角∠DAE=45°.已知小树高DE=2米.请你也参与到这个活动中来,帮他们求出小亭子高BC的长.(结果精确到0.1.,)【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】在Rt△ADE中,由小树的高度以及∠DAE的大小,可求解AE的长,即AC的长,进而再在Rt△ABC中,由边角关系∠BAC=60°特殊角,即可求解亭子高度BC的长.【解答】解:根据题意得:∠C=∠E=90°.在Rt△ADE中,∠DAE=45°,∠E=90°,∴∠D=∠DAE=45°.∵DE=2,∴AE=DE=2.∵A为CE的中点,∴AC=AE=2.(2分)在Rt△ACB中,∠BAC=60°,∠C=90°,∴.∴BC=.∴BC≈2×1.73≈3.5.答:小亭子高约为3.5米.【点评】本题主要考查了解直角三角形的问题,又涉及仰角、俯角的实际应用,其中重点还是直角三角形的求解问题.26.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?【考点】二次函数的应用.【专题】销售问题.【分析】(1)销售利润=每件商品的利润×(180﹣10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可;(3)让(1)中的y=1920求得合适的x的解即可.【解答】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;(3)1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,∴30+2=32(元)∴售价为32元时,利润为1920元.【点评】考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.。

(word完整版)九年级数学总复习试卷及参考答案

九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级试卷数学真题及答案
《九年级试卷数学真题及答案》
数学作为一门重要的学科,对学生的思维能力、逻辑推理能力和数学运算能力提出了很高的要求。

九年级的数学试卷更是对学生综合能力的一次全面检测。

下面我们就来看一下九年级数学试卷的真题及答案。

一、选择题
1. 已知函数y=2x+3,求当x=5时,y的值。

A. 13
B. 15
C. 17
D. 19
答案:B
2. 若a:b=3:4,b:c=2:5,求a:b:c的值。

A. 6:8:20
B. 3:4:10
C. 9:12:30
D. 12:16:40
答案:A
3. 一个长方体的长、宽、高分别为3cm、4cm、5cm,它的体积是多少?
A. 60cm³
B. 70cm³
C. 80cm³
D. 90cm³
答案:C
二、填空题
1. 一条铁丝长12m,要分成3段,第一段长3m,第二段长4m,第三段长多少米?
答案:5m
2. 若a:b=2:3,b:c=4:5,求a:b:c的值。

答案:8:12:15
3. 一个三角形的底边长为6cm,高为8cm,它的面积是多少平方厘米?
答案:24cm²
通过以上的试题及答案,我们可以看出,九年级数学试卷涉及到了代数、几何、比例等多个知识点,要求学生在解题过程中既要掌握基本的数学运算技巧,又
要具备较强的逻辑思维能力。

因此,学生在备考九年级数学考试时,除了要熟
练掌握各种数学知识点,还要多做题、多总结,提高解题的能力和速度。

总的来说,九年级数学试卷的真题及答案为我们提供了一个很好的学习范本,
希望同学们能够认真对待数学学习,努力提高自己的数学水平,取得优异的成绩。

相关文档
最新文档