铁路在弯道处的内外轨道高低是不同的
6.4生活的圆周运动(课件)-2023学年高一物理同步备课(人教版2019必修第二册)

课堂小结
铁路的弯道
1.讨论向心力的来源 2.外轨高于内轨时重力与支持力的合力是使火车转弯的向心力 3.讨论:为什么转弯处的半径和火车运行速度有条件限制?
生 活
汽车过拱形桥和凹形桥
1.思考:汽车过拱形桥时,对桥面的压力 与重力谁大?
2.圆周运动中的超重、失重情况.
中
r
拉力 支持力
问题1:最高点的最小速度是多少?
最小速度v=0,此时mg=N
问题2:在最高点时,何时杆表现为拉力?何 时杆表现为支持力?试求其临界速度。
临界速度: N T 0,v0 gr 当v>v0,杆对球有向下的拉力; 当v<v0,杆对球有向上的支持力。
知 识 点 五 : 竖直面内圆周运动的临界问题
考点一:火车转弯
【变式训练1】如图甲所示,途中火车要进入某半径为R的弯道,火车
在轨道上的的截面图如图乙所示。已知两轨间宽度为L,弯道内外轨
高度差是h,重力加速度为g。若火车转弯时轮缘与铁轨间恰好无作
用,则此时火车的速度为(
A. gRh
L2 h2
B.gR L2 h2
h
C. gRh L2 h2
D. gR L2 h2 h
面对它的支持力就会变小,汽车速度多大时,
支持力会变成零FN=0?
由 mg
0
v2 m
R
得v
gR 7.9km / s 此时司机处于完
全失重状态。
知 识 点 三 : 航天器中的失重现象
1、航天器在发射升空(加速上升) 时,航天员处在超重还是失重状态?
FN-m mg
2、航天器在轨道正常运行(绕地球做匀速圆周 运动)时,航天员处在超重还是失重状态?
2022版《优化方案》高一物理人教版必修二配套文档:第五章第七节 生活中的圆周运动 Word版含答案

第七节 生活中的圆周运动[学习目标] 1.会分析具体圆周运动问题中向心力的来源,能解决生活中的圆周运动问题. 2.了解航天器中的失重现象及缘由. 3.了解离心运动及物体做离心运动的条件,知道离心运动的应用及危害.[同学用书P 30]一、铁路的弯道(阅读教材P 26~P 27)1.运动特点火车转弯时做圆周运动,因而具有向心加速度,由于质量巨大,所以需要很大的向心力. 2.向心力来源(1)若转弯处内外轨一样高,则由外轨对轮缘的弹力供应向心力.(2)若在修筑铁路时,依据弯道的半径和规定的速度,适当选择内、外轨的高度差,则转弯时所需的向心力几乎完全由重力和支持力的合力供应.拓展延长►———————————————————(解疑难) 对火车转弯时速度与向心力的争辩1.当火车以规定速度v 0转弯时,重力G 和支持力F N 的合力F 等于向心力,这时轮缘与内外轨均无侧压力.2.当火车转弯速度v >v 0时,重力G 和支持力F N 的合力F 小于向心力,外轨向内挤压轮缘,供应侧压力,与F 共同充当向心力.3.当火车转弯速度v <v 0时,重力G 和支持力F N 的合力F 大于向心力,内轨向外挤压轮缘,产生的侧压力与合力共同充当向心力.1.(1)车辆在水平路面上转弯时,所受重力与支持力的合力供应向心力.( )(2)车辆在水平路面上转弯时,所受摩擦力供应向心力.( ) (3)车辆在“内低外高”的路面上转弯时,受到的合力可能为零.( )(4)车辆按规定车速通过“内低外高”的弯道时,向心力是由重力和支持力的合力供应的.( ) 提示:(1)× (2)√ (3)× (4)√二、拱形桥(阅读教材P 27~P 28) 1.汽车过凸形桥汽车在凸形桥最高点时,如图甲所示,向心力F n =mg -F N =mv 2R ,汽车对桥的压力F N ′=F N =mg -mv 2R,故汽车在凸形桥上运动时,对桥的压力小于汽车的重力.2.汽车过凹形桥汽车在凹形桥最低点时,如图乙所示,向心力F n =F N -mg =mv 2R ,汽车对桥的压力F N ′=F N =mg +mv 2R,故汽车在凹形桥上运动时,对桥的压力大于汽车的重力.拓展延长►———————————————————(解疑难)1.汽车通过拱形桥最高点时,F N =mg -m v 2R.(1)当v =gR 时,F N =0.(2)当0≤v <gR 时,0<F N ≤mg .(3)当v >gR 时,汽车将脱离桥面做平抛运动,发生危急.2.汽车通过凹形桥最低点时,F N =mg +m v 2R>mg ,故凹形桥易被压垮,因而实际中拱形桥多于凹形桥.2.(1)汽车在水平路面上匀速行驶时,对地面的压力等于车重,加速行驶时大于车重.( )(2)汽车在拱形桥上行驶,速度小时对桥面的压力大于车重,速度大时压力小于车重.( ) (3)汽车通过凹形桥底部时,对桥面的压力肯定大于车重.( ) 提示:(1)× (2)× (3)√三、航天器中的失重现象(阅读教材P 28)人造卫星、宇宙飞船、航天飞机等航天器进入轨道后可近似认为绕地球做匀速圆周运动,此时重力供应了航天器做圆周运动的向心力.航天器中的人和物随航天器一起做圆周运动,其向心力也是由重力供应的,此时重力全部用来供应向心力,不对其他物体产生压力,即里面的人和物处于完全失重状态. 拓展延长►———————————————————(解疑难)1.物体在航天器中处于完全失重状态,并不是说物体不受重力,只是重力全部用来供应物体做圆周运动所需的向心力,使得物体所受支持力为0.2.任何关闭了发动机,又不受阻力的飞行器的内部,都是一个完全失重的环境. 3.失重状态下,一切涉及重力的现象均不再发生,如无法使用水银气压计、天公平.留意:航天器中的物体所受重力小于在地面所受重力的现象,不是失重现象.3.宇宙飞船绕地球做匀速圆周运动,下列说法中正确的有( )A .在飞船内可以用天平测量物体的质量B .在飞船内可以用水银气压计测舱内的气压C .在飞船内可以用弹簧测力计测拉力D .在飞船内将重物挂于弹簧测力计上,弹簧测力计示数为0,但重物仍受地球的引力提示:选CD.飞船内的物体处于完全失重状态,此时放在天平上的物体对天平的压力为0,因此不能用天平测量物体的质量,A 错误;同理,水银也不会产生压力,故水银气压计也不能使用,B 错误;弹簧测力计测拉力遵从胡克定律,拉力的大小与弹簧伸长量成正比,C 正确;飞船内的重物处于完全失重状态,并不是不受重力,而是重力全部用于供应物体做圆周运动所需的向心力,D 正确.四、离心运动(阅读教材P 28~P 29)1.定义:在向心力突然消逝或合力不足以供应所需的向心力时,物体沿切线飞出或做渐渐远离圆心的运动.2.离心运动的应用和防止(1)应用:离心干燥器;洗衣机的脱水桶;离心制管技术.(2)防止:汽车在大路转弯处必需限速行驶;转动的砂轮、飞轮的转速不能太高.拓展延长►———————————————————(解疑难) 离心运动的动力学分析F 合表示对物体供应的合外力,mω2r 或m v 2r表示物体做圆周运动所需要的向心力.(1)若F 合=mω2r 或F 合=mv 2r ,物体做匀速圆周运动,即“供应”满足“需要”.(2)若F 合>mω2r 或F 合>mv2r ,物体做半径变小的近心运动,即“供应”大于“需要”.(3)若F 合<mω2r 或F 合<mv 2r,则外力不足以将物体拉回到原圆周轨道上,物体渐渐远离圆心而做离心运动,即“需要”大于“供应”或“供应不足”.(4)若F 合=0,则物体沿切线方向飞出.留意:(1)离心运动并非受所谓“离心力”作用,而是物体惯性的表现.(2)离心运动并不是物体沿半径方向飞出,而是运动半径越来越大或沿切线方向飞出. (3)离心运动的性质由其受力和此时的速度共同打算.4.关于离心运动,下列说法中正确的是( )A .物体突然受到离心力的作用,将做离心运动B .做匀速圆周运动的物体,当供应向心力的合外力突然变大时将做离心运动C .做匀速圆周运动的物体,只要供应向心力的合外力的数值发生变化,就将做离心运动D .做匀速圆周运动的物体,当供应向心力的合外力突然消逝或变小时将做离心运动提示:选D.物体做什么运动取决于物体所受合外力与物体所需向心力的关系,只有当供应的合外力小于所需要的向心力时,物体才做离心运动,所以做离心运动的物体并没有受到所谓的离心力的作用,离心力没有施力物体,所以离心力不存在.由以上分析可知D 正确.火车转弯问题的解题策略[同学用书P 32]1.对火车转弯问题肯定要搞清合力的方向.指向圆心方向的合外力供应物体做圆周运动的向心力,方向指向水平面内的圆心.2.弯道两轨在同一水平面上时,向心力由外轨对轮缘的挤压力供应.3.当外轨高于内轨时,向心力由火车的重力和铁轨的支持力以及内、外轨对轮缘的挤压力的合力供应,这还与火车的速度大小有关.——————————(自选例题,启迪思维)(2021·德州高一检测)火车以半径r =900 m 转弯,火车质量为8×105 kg ,轨道宽为l =1.4 m ,外轨比内轨高h =14 cm ,为了使铁轨不受轮缘的挤压,火车的速度应为多大?(g 取10 m/s 2)[思路探究] (1)火车转弯所需向心力由________力和____________力的合力供应,沿________方向. (2)当α很小时,可近似认为sin α和tan α________. [解析]若火车在转弯时不受挤压,即由重力和支持力的合力供应向心力,火车转弯平面是水平面.火车受力如图所示,由牛顿其次定律得F =mg tan α=m v 2r①由于α很小,可以近似认为tan α=sin α=hl②解①②式得v =30 m/s. [答案] 30 m/s (2021·高考新课标全国卷Ⅱ)大路急转弯处通常是交通事故多发地带.如图,某大路急转弯处是一圆弧,当汽车行驶的速率为v c 时,汽车恰好没有向大路内外两侧滑动的趋势.则在该弯道处( )A .路面外侧高内侧低B .车速只要低于v c ,车辆便会向内侧滑动C .车速虽然高于v c ,但只要不超出某一最高限度,车辆便不会向外侧滑动D .当路面结冰时,与未结冰时相比,v c 的值变小[解析] 汽车以速率v c 转弯,需要指向内侧的向心力,汽车恰好没有向大路内外两侧滑动的趋势,说明此处大路内侧较低外侧较高,选项A 正确.车速只要低于v c ,车辆便有向内侧滑动的趋势,但不肯定向内侧滑动,选项B 错误.车速虽然高于v c ,由于车轮与地面有摩擦力,但只要不超出某一最高限度,车辆便不会向外侧滑动,选项C 正确.依据题述,汽车以速率v c 转弯,需要指向内侧的向心力,汽车恰好没有向大路内外两侧滑动的趋势,没有受到摩擦力,所以当路面结冰时,与未结冰时相比,转弯时v c 的值不变,选项D 错误.[答案] AC (2021·嘉兴高一检测)铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( )A .内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ[思路点拨] 求解该题应把握以下两点:(1)火车转弯的向心力由重力和支持力的合力供应. (2)v <v 0内侧轮缘受挤压;v >v 0外侧轮缘受挤压.[解析]由牛顿其次定律F 合=m v 2R ,解得F 合=mg tan θ,此时火车受重力和铁路轨道的支持力作用,如图所示,F N cos θ=mg ,则F N =mgcos θ,内、外轨道对火车均无侧压力,故C 正确,A 、B 、D 错误.[答案] C[名师点评] (1)火车以规定速度通过弯道时,是由重力与支持力的合力供应向心力,其合力沿水平方向指向圆心;(2)车辆在水平路面上转弯时,摩擦力供应向心力.凹凸桥问题的求解[同学用书P 33]1.运动学特点:汽车过凹凸桥时的运动可看做圆周运动. 2.运动学分析(1)向心力来源:汽车过凹凸桥的最高点或最低点时,在竖直方向受重力和支持力,其合力供应向心力. (2)汽车过凹凸桥压力的分析与争辩若汽车质量为m ,桥面圆弧半径为R ,汽车在最高点或最低点速率为v ,则汽车对桥面的压力大小状况争辩如下:汽车过凸形桥 汽车过凹形桥受力分析指向圆心为正方向G -F N =m v 2RF N =G -m v 2RF N -G =m v 2RF N =G +m v 2R牛顿第三定律F 压=F N =G -m v 2RF 压=F N =G +m v 2R争辩v 增大,F 压减小; 当v 增大到gR 时,F 压=0v 增大,F 压增大——————————(自选例题,启迪思维)如图所示,质量m =2.0×104 kg 的汽车以不变的速领先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为60 m .假如桥面承受的压力不得超过3.0×105 N ,则:(1)汽车允许的最大速率是多少?(2)若以所求速度行驶,汽车对桥面的最小压力是多少?(g 取10 m/s 2)[思路点拨] 首先推断汽车在何位置对路面的压力最大、最小,然后利用向心力公式求解. [解析] (1)汽车在凹形桥底部时,由牛顿其次定律得F N -mg =m v 2r ,代入数据解得v =10 3 m/s.(2)汽车在凸形桥顶部时,由牛顿其次定律得mg -F N ′=mv 2r ,代入数据得F N ′=105 N.由牛顿第三定律知汽车对桥面的最小压力是105 N.[答案] (1)10 3 m/s (2)105 N如图所示,汽车在酷热的夏天沿凹凸不平的曲面匀速率行驶,其中最简洁发生爆胎的点是( )A .a 点B .b 点C .c 点D .d 点[解析] 由于匀速圆周运动的向心力和向心加速度公式也适用于变速圆周运动,故在a 、c 两点F N =G -m v 2r <G ,不简洁发生爆胎;在b 、d 两点F N =G +m v 2r >G ,由题图知b 点所在曲线半径大,即r b >r d ,又v b =v d ,故F N b <F N d ,所以在d 点车胎受到的压力最大,所以d 点最简洁发生爆胎. [答案] D城市中为了解决交通问题,修建了很多立交桥.如图所示,桥面是半径为R 的圆弧形的立交桥AB 横跨在水平路面上,一辆质量为m 的小汽车,在A 端冲上该立交桥,小汽车到达桥顶时的速度大小为v 1,若小汽车上桥过程中保持速率不变,则( )A .小汽车通过桥顶时处于失重状态B .小汽车通过桥顶时处于超重状态C .小汽车在上桥过程中受到桥面的支持力大小为F N =mg -m v 21RD .小汽车到达桥顶时的速度必需大于gR[解析] 由圆周运动学问知,小汽车通过桥顶时,其加速度方向向下,由牛顿其次定律得mg -F N =m v 21R,解得F N =mg -m v 21R <mg ,故其处于失重状态,A 正确B 错误;F N =mg -m v 21R只在小汽车通过桥顶时成立,而其上桥过程中的受力状况较为简单,C 错误;由mg -F N =m v 21R 解得v 1=gR -F N R m≤gR ,D 错误.[答案] A[名师点评] (1)汽车过凸桥顶部时对桥面的压力小于汽车重力,过凹桥底部时对桥面的压力大于汽车重力.(2)过凸桥顶时汽车的速度不能超过gR ,否则可能消灭飞车现象;过凹桥底时汽车的速度也不宜过大,否则可能消灭爆胎现象.[同学用书P 34]物理模型——竖直平面内圆周运动的绳、杆模型轻绳模型轻杆模型常见类型特点不能支持物体既能支持物体,又能拉物体 过最高点的临界条件由mg =m v 2r得v 临=gr由小球能运动即可,得v 临=0 争辩分析(1)过最高点时,v ≥gr ,F N+mg =m v 2r,绳、轨道对球产生弹力F N(2)不能过最高点时v <gr ,在到达最高点前小球已经脱离了圆轨道(1)当v =0时,F N =mg ,F N 为支持力,沿半径背离圆心 (2)当0<v <gr 时,-F N +mg=m v 2r,F N 背离圆心且随v 的增大而减小(3)当v =gr 时,F N =0(4)当v >gr 时,F N +mg =m v 2r,F N 指向圆心并随v 的增大而增大[范例] 绳系着装有水的水桶,在竖直平面内做圆周运动,水的质量m =0.5 kg ,绳长l =60 cm ,求: (1)在最高点时水不流出的最小速率;(2)水在最高点速率v =3 m/s 时,水对桶底的压力.[思路点拨] (1)水不流出的条件是水对桶底的压力F N ≥0,最小速率应满足mg =mv 2/l . (2)速率大于最小速率时,向心力是由重力和桶底对水的压力的合力供应. [解析] (1)设在最高点时的临界速度为v ,则有mg =m v 2l,得v =gl =9.8×0.6 m/s =2.42 m/s.(2)设桶底对水的压力为F N ,则有mg +F N =mv 2l得F N =m v 2l -mg =0.5×⎝⎛⎭⎫320.6-9.8 N =2.6 N 由牛顿第三定律,水对桶底的压力F N ′=F N =2.6 N ,方向竖直向上.[答案] (1)2.42 m/s (2)2.6 N ,方向竖直向上[名师点评] 解答竖直平面内圆周运动问题时,首先要分清是绳模型还是杆模型.其次明确两种模型到达最高点的临界条件.另外,对于杆约束物体运动到最高点时的弹力方向可先假设,然后依据计算结果的正负来确定.长度为0.5 m 的轻杆OA 绕O 点在竖直平面内做圆周运动,A 端连着一个质量m =2 kg 的小球.求在下述的两种状况下,通过最高点时小球对杆的作用力的大小和方向:(1)杆做匀速圆周运动的转速为2.0 r/s ; (2)杆做匀速圆周运动的转速为0.5 r/s. 解析:小球在最高点的受力如图所示. (1)杆的转速为2.0 r/s 时, ω=2πn =4π rad/s 由牛顿其次定律得 F +mg =mω2L故小球所受杆的作用力F =mω2L -mg =2×(42×π2×0.5-10) N ≈138 N 即杆对小球供应了138 N 的拉力由牛顿第三定律知,小球对杆的拉力大小为138 N ,方向竖直向上. (2)杆的转速为0.5 r/s 时,ω′=2πn ′=π rad/s 同理可得小球所受杆的作用力F ′=mω′2L -mg =2×(π2×0.5-10) N ≈-10 N.力F ′为负值表示它的方向与受力分析中所假设的方向相反,由牛顿第三定律知,小球对杆的压力大小为10 N ,方向竖直向下.答案:(1)138 N ,方向竖直向上 (2)10 N ,方向竖直向下[同学用书P 34][随堂达标]1.在下面所介绍的各种状况中,哪种状况将消灭超重现象( )①荡秋千经过最低点的小孩 ②汽车过拱形桥 ③汽车过凹形桥 ④在绕地球做匀速圆周运动的飞船中的仪器A .①②B .①③C .①④D .③④ 解析:选B.物体在竖直平面内做圆周运动,受重力和拉力(或支持力)的作用,物体运动至最高点时向心加速度向下,则mg -F N =m v 2R ,有F N <mg ,物体处于失重状态,若mg =m v 2R,则F N =0,物体处于完全失重状态.物体运动至最低点时,向心加速度向上,则F N -mg =m v2R ,有F N >mg ,物体处于超重状态.由以上分析知①③将消灭超重现象.2.下列关于离心现象的说法正确的是( )A .当物体所受的离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都突然消逝时,它将做背离圆心的圆周运动C .做匀速圆周运动的物体,当它所受的一切力都突然消逝时,它将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都突然消逝时,它将做曲线运动解析:选C.向心力是依据效果命名的,做匀速圆周运动的物体所需要的向心力是它所受的某个力或几个力的合力供应的.因此,它并不受向心力和离心力的作用.它之所以产生离心现象是由于F 合=F 向<mω2r ,故选项A 错误.物体在做匀速圆周运动时,若它所受到的力都突然消逝,依据牛顿第肯定律,从这时起将沿切线方向做匀速直线运动,故选项C 正确,选项B 、D 错误.3.(2021·绵阳高一检测)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力供应向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力供应向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析:选AC.火车拐弯时按铁路的设计速度行驶时,向心力由火车的重力和轨道的支持力的合力供应,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.4.用细绳拴着质量为m 的小球,在竖直平面内做半径为R 的圆周运动,如图所示.则下列说法正确的是( ) A .小球通过最高点时,绳子张力可以为0 B .小球通过最高点时的最小速度为0 C .小球刚好通过最高点时的速度是gRD .小球通过最高点时,绳子对小球的作用力可以与球所受重力方向相反解析:选AC.设小球通过最高点时的速度为v ,由合力供应向心力及牛顿其次定律得mg +F T =m v 2R .当F T=0时,v =gR ,故选项A 正确.当v <gR 时,F T <0,而绳子只能产生拉力,不能产生与重力方向相反的支持力,故选项B 、D 错误.当v >gR 时,F T >0,小球能沿圆弧通过最高点.可见,v ≥gR 是小球能沿圆弧通过最高点的条件,故选项C 正确.5.(选做题)(2021·天津南开中学高一检测)某人为了测定一个凹形桥的半径,在乘汽车通过凹形桥最低点时,他留意到车上的速度计示数为72 km/h ,悬挂1 kg 钩码的弹簧测力计的示数为11.8 N ,则桥的半径为多大?(g 取9.8 m/s 2)解析:v =72 km/h =20 m/s对钩码由向心力公式得F -mg =m v 2R所以R =mv 2F -mg =1×20211.8-9.8m =200 m.答案:200 m [课时作业] 一、选择题 1.(2021·高考上海卷)秋千的吊绳有些磨损.在摇摆过程中,吊绳最简洁断裂的时候是秋千( ) A .在下摆过程中 B .在上摆过程中 C .摆到最高点时 D .摆到最低点时解析:选D.当秋千摆到最低点时速度最大,由F -mg =m v 2l 知,吊绳中拉力F 最大,吊绳最简洁断裂,选项D 正确.2.(2021·湛江高一检测)汽车驶向一凸形桥,为了在通过桥顶时,减小汽车对桥的压力,司机应( ) A .以尽可能小的速度通过桥顶 B .适当增大速度通过桥顶 C .以任何速度匀速通过桥顶D .使通过桥顶的向心加速度尽可能小解析:选B.汽车通过凸形桥顶时,汽车过桥所需的向心力由重力和桥对车的支持力共同供应,由牛顿其次定律,有mg -F N =m v 2R ,由牛顿第三定律知,汽车对桥顶的压力与F N 等大反向,当v =gR 时,F N =0,车对桥的压力为零,可见在汽车不飞离桥面的前提下,适当增大汽车的速度,可以减小汽车对桥的压力,B 正确.3.(多选)如图所示,小物块位于放于地面的半径为R 的半球的顶端,若给小物块一水平的初速度v 时小物块对半球刚好无压力,则下列说法正确的是( )A .小物块马上离开球面做平抛运动B .小物块落地时水平位移为2RC .小物块沿球面运动D .小物块落地时速度的方向与地面成45°角解析:选AB.小物块在最高点时对半球刚好无压力,表明从最高点开头小物块即离开球面做平抛运动,A 对,C 错;由mg =m v 2R 知,小物块在最高点的速度大小v =gR ,又由于R =12gt 2,v y =gt ,x =vt ,故x =2R ,B 对;tan θ=v yv=2,θ>45°,D 错.4.如图所示,天车下吊着两个质量都是m 的工件A 和B ,整体一起向左匀速运动.系A 的吊绳较短,系B 的吊绳较长,若天车运动到P 处突然停止,则两吊绳所受拉力F A 、F B 的大小关系是( )A .F A >FB >mg B .F A <F B <mgC .F A =F B =mgD .F A =F B >mg解析:选A.当天车突然停止时,A 、B 工件均绕悬点做圆周运动.由F -mg =m v 2r ,得拉力F =mg +m v 2r ,故知A 项正确.5.无缝钢管的制作原理如图所示,竖直平面内,管状模型置于两个支承轮上,支承轮转动时通过摩擦力带动管状模型转动,铁水注入管状模型后,由于离心作用,铁水紧紧地掩盖在模型的内壁上,冷却后就得到无缝钢管.已知管状模型内壁半径为R ,则下列说法正确的是( )A .铁水是由于受到离心力的作用才掩盖在模型内壁上的B .模型各个方向上受到的铁水的作用力相同C .若最上部的铁水恰好不离开模型内壁,此时仅重力供应向心力D.管状模型转动的角速度ω最大为g R解析:选C.铁水是由于离心作用掩盖在模型内壁上的,模型对它的弹力和重力的合力供应向心力,选项A错误;模型最下部受到的铁水的作用力最大,最上方受到的作用力最小,选项B错误;最上部的铁水假如恰好不离开模型内壁,则重力供应向心力,由mg=mRω2,可得ω=gR,故管状模型转动的角速度ω至少为gR,选项C正确,D错误.6.(多选)宇航员在绕地球匀速运行的空间站做试验.如图,光滑的半圆形管道和底部粗糙的水平AB管道相连接,整个装置安置在竖直平面上,宇航员让一小球(直径比管道直径小)以肯定的速度从A端射入,小球通过AB段并越过半圆形管道最高点C后飞出,则()A.小球从C点飞出后将做平抛运动B.小球在AB管道运动时不受摩擦力作用C.小球在半圆管道运动时受力平衡D.小球在半圆管道运动时对管道有压力解析:选BD.空间站中处于完全失重状态,所以小球处于完全失重状态,故小球从C点飞出后不会落回“地”面,故A错误;小球在AB管道运动时,与管道没有弹力作用,所以不受摩擦力作用,故B正确;小球在半圆管道运动时,所受合外力供应向心力,受力不平衡,故C错误;小球在半圆管道运动时受到管道的压力供应向心力,所以小球在半圆管道运动时对管道有压力,故D正确.7.乘坐如图所示游乐园的过山车时,质量为m的人随车在竖直平面内沿圆周轨道运动,下列说法正确的是()A.车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人肯定会掉下去B.人在最高点时对座位仍可能产生压力,但压力肯定小于mgC.人在最高点和最低点时的向心加速度大小相等D.人在最低点时对座位的压力大于mg解析:选D.过山车上人经最高点及最低点,受力如图,在最高点,由mg+F N=m v21R 可得:F N=m⎝⎛⎭⎫v21R-g①在最低点,由F N′-mg=m v22R 可得:F N′=m⎝⎛⎭⎫v22R+g②由支持力(等于压力)表达式分析知:当v1较大时,最高点无保险带也不会掉下,且还可能会对轨道有压力,大小因v1而定,所以A、B均错误.上、下两处向心力大小不等,向心加速度大小也不等(变速率),所以C错误;又由②式知最低点F N′>mg,所以D正确.8.(2021·鹤岗高一检测)如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下.两小环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()A.(2m+M)g B.Mg-2mv2RC.2m⎝⎛⎭⎫g+v2g+Mg D.2m⎝⎛⎭⎫v2R-g+Mg解析:选C.设在最低点时大环对小环的支持力为F N,由牛顿其次定律F N-mg=mv2R,解得F N=mg+mv2R.依据牛顿第三定律得每个小环对大环的压力F′N=mg+mv2R.由大环受力平衡得,此时大环对轻杆的拉力F T =2m⎝⎛⎭⎫g+v2R+Mg,C正确.9.在高速大路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看成是做半径为R的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A.gRhL B.gRhdC.gRLh D.gRdh解析:选B.对汽车受力分析,如图所示,则有mv2R=mg cot θ=mg hd,故v=gRhd,B正确.10.(2022·高考安徽卷)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是()A. 5 rad/sB. 3 rad/s。
【单元练】2021年高中物理必修2第六章【圆周运动】经典练习(提高培优)

一、选择题1.如图所示,质量为m的小球在竖直平面内的固定光滑圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v,当小球以3v的速度经过最高点时,对轨道的压力大小是(重力加速度为g)()A.mg B.2mg C.4mg D.8mg D解析:D当小球以速度v经内轨道最高点时不脱离轨道,小球仅受重力,重力充当向心力,有2v=mg mr当小球以速度3v经内轨道最高点时,小球受重力G和向下的支持力N,合外力充当向心力,有2(3)vmg N m+=r又由牛顿第三定律得到,小球对轨道的压力与轨道对小球的支持力相等,N′=N;由以上三式得到N mg=8ABC错误,D正确.故选D。
2.如图所示,水平桌面上放了一个小型的模拟摩天轮模型,将一个小物块置于该模型上某个吊篮内,随模型一起在竖直平面内沿顺时针匀速转动,二者在转动过程中保持相对静止()A.物块在d处受到吊篮的作用力一定指向圆心B.整个运动过程中桌面对模拟摩天轮模型的摩擦力始终为零C.物块在a处可能处于完全失重状态D .物块在b 处的摩擦力可能为零C 解析:CAD .物体在b 、d 处受到重力、支持力、指向圆心的摩擦力,则吊篮对物体的作用不指向圆心,故AD 错误;B .在d 处对摩天轮受力分析,有重力、地面的支持力、物体对吊篮水平向左的摩擦力,摩天轮要保持平衡,则需要受到地面的摩擦力,故B 错误;C . a 处对物体受力分析,由重力和支持力的合力提供向心力,有2+=vG F m R支2v F F G m R==-压支则当gR v =时0F =压故C 正确。
故选C 。
3.如图所示,铁路在弯道处的内外轨道高低是不同的,已知内外轨组成的轨道平面与水平面的夹角为θ,弯道处的圆弧半径为R ,若质量为m 的火车以速度v 通过某弯道时,内外轨道均不受侧压力作用,下面分析正确的是( )A .sin v gR θ=B .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内C .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外D .无论火车以何种速度行驶,对内侧轨道都有压力C 解析:CAD .火车以某一速度v 通过某弯道时,内外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力,由图可以得出tan F mg θ=合(θ为轨道平面与水平面的夹角)合力等于向心力,由牛顿第二定律得2tan v mg m Rθ=解得tan v gR θ=⋅故AD 错误;B .当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压。
高中物理 专题5.7 生活中的圆周运动(讲)(基础版)(含解析)

5.7 生活中的圆周运动※知识点一、火车转弯问题1.火车车轮的特点火车的车轮有凸出的轮缘,火车在铁轨上运行时,车轮与铁轨有水平与竖直两个接触面,这种结构特点,主要是避免火车运行时脱轨,如图所示。
2.火车弯道的特点弯道处外轨高于内轨,火车在行驶过程中,重心高度不变,即火车的重心轨迹在同一水平面内,火车的向心加速度和向心力均沿水平面指向圆心。
3.火车转弯的向心力来源火车速度合适时,火车只受重力和支持力作用,火车转弯时所需的向心力完全由支持力和重力的合力来提供。
如图所示。
4.轨道轮缘压力与火车速度的关系(1)当火车行驶速率v等于规定速度v0时,内、外轨道对轮缘都没有侧压力。
(2)当火车行驶速度v大于规定速度v0时,火车有离心运动趋势,故外轨道对轮缘有侧压力。
(3)当火车行驶速度v小于规定速度v0时,火车有向心运动趋势,故内轨道对轮缘有侧压力。
★特别提醒:汽车、摩托车赛道拐弯处,高速公路转弯处设计成外高内低,也是尽量使车受到的重力和支持力的合力提供向心力,以减小车轮与路面之间的横向摩擦力。
★思考与讨论1、火车转弯时的运动是圆周运动,分析火车的运动回答下列问题:(1)如果轨道是水平的,火车转弯时受到哪些力的作用?需要的向心力由谁来提供?(2)靠这种方式迫使火车转弯有哪些危害?如何改进?提示:(1)火车受重力、支持力和外轨对火车的弹力,弹力提供火车转弯所需的向心力.(2)由于火车质量很大,转弯时需要的向心力很大,容易造成对外轨的损坏,同时造成火车脱轨.可以把弯道处建成外高内低的斜面,由重力和支撑力的合力提供合心力.2、如图为火车在转弯时的受力分析图,试根据图讨论以下问题:(1)设斜面倾角为θ,转弯半径为R,当火车的速度为多大时铁轨和轮缘间没有弹力,向心力完全由重力与支持力的合力提供?(2)当火车行驶速度v>v0=gR tan θ时,轮缘受哪个轨道的压力?当火车行驶速度v<v0=gR tan θ时呢?【典型例题】【例题1】铁路转弯处的圆弧半径是300m ,轨距是1.435m ,规定火车通过这里的速度是72km/h ,内外轨的高度差应该是多大,才能使铁轨不受轮缘的挤压?保持内外轨的这个高度差,如果车的速度大于或小于72km/h ,会分别发生什么现象?说明理由。
陕西师范大学锦园中学高中物理必修二第六章《圆周运动》检测卷(有答案解析)

一、选择题1.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面与水平面的夹角为15,盘面上离转轴距离为1m r =处有一质量1kg m =的小物体,小物体与圆盘始终保持相对静止,且小物体在最低点时受到的摩擦力大小为6.6N 。
若重力加速度g 取l0m/s 2,sin150.26=,则下列说法正确的是( )A .小物体做匀速圆周运动线速度的大小为2m/sB .小物体受到合力的大小始终为4NC .小物体在最高点受到摩擦力大小为0.4N ,方向沿盘面指向转轴D .小物体在最高点受到摩擦力大小为1.4N ,方向沿盘面背离转轴2.市面上有一种自动计数的智能呼拉圈深受女士喜爱。
如图甲,腰带外侧带有轨道,将带有滑轮的短杆穿过轨道,短杆的另一端悬挂一根带有配重的细绳,其模型简化如图乙所示。
已知配重质量0.5kg ,绳长为0.4m ,悬挂点到腰带中心的距离为0.2m 。
水平固定好腰带,通过人体微小扭动,使配重做水平匀速圆周运动,计数器显示在1min 内显数圈数为120,此时绳子与竖直方向夹角为θ。
配重运动过程中腰带可看做不动,g =10m/s 2,sin37°=0.6,下列说法正确的是( )A .匀速转动时,配重受到的合力恒定不变B .若增大转速,腰受到腰带的弹力变大C .配重的角速度是120rad /sD .θ为37°3.甲(质量为80kg )、乙(质量为40kg )两名溜冰运动员,面对面拉着轻弹簧做圆周运动的溜冰表演,如图所示,此时两人相距0.9m 且弹簧秤的示数为6N ,下列说法正确的是( )A.甲的线速度为0.4m/sB.乙的角速度为2rad/s3C.两人的运动半径均为0.45mD.甲的运动半径为0.3m4.下面说法正确的是()A.平抛运动属于匀变速运动B.匀速圆周运动属于匀变速运动C.圆周运动的向心力就是做圆周运动物体受到的合外力D.如果物体同时参与两个直线运动,其运动轨迹一定是直线运动5.如图是自行车传动结构的示意图,其中I是半径为r1的大齿轮,Ⅱ是半径为r2的小齿轮,Ⅲ是半径为r3的后轮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ(如图),弯道处的圆弧半径为
R,若质量为m的火车转弯时速度小于
Rgtgθ
,则( )
A.内轨对内侧车轮轮缘有挤压
B.这时铁轨对火车的支持力大于
mg
cosθ
C.外轨对外侧车轮轮缘有挤压
D.这时铁轨对火车的支持力小于
mg
cosθ
考点:
决定向心力大小的因素;向心力.
分析:
火车在弯道处拐弯时火车的重力和轨道对火车的支持力的合力做为转弯需要的向心力,当合力恰好
等于需要的向心力时,火车对内外轨道都没有力的作用,速度增加,就要对外轨挤压,速度减小就要对内
轨挤压.
解答:
解:火车的重力和轨道对火车的支持力的合力恰好等于需要的向心力时,此时火车的速度正好是
Rgtgθ
,当火车火车转弯的速度小于
Rgtgθ
时,需要的向心力减小,而重力与支持力的合力不变,所以合力大于了需要的向心力,内轨就要对火车产
生一个向外的力来抵消多余的力,所以此时内轨对内侧车轮轮缘有挤压,A正确,C错误.
由于内轨对火车的作用力沿着轨道平面向上,可以把这个力分解为水平和竖直向上两个分力,由于竖直向
上的分力的作用,使支持力变小,所以D正确,B错误.
故选A、D.
点评:
火车转弯主要是分析清楚向心力的来源,再根据速度的变化,可以知道对内轨还是对外轨由作用力.