逆矩阵地求法及逆矩阵地指导应用

逆矩阵地求法及逆矩阵地指导应用
逆矩阵地求法及逆矩阵地指导应用

逆矩阵的几种求法及逆矩阵的应用

摘要:在现代数学中,矩阵是一个非常有效而且应用广泛的工具,而逆矩阵则是矩阵理论中一个非常重要的概念。关于逆矩阵的求法及逆矩阵的应用的探讨具有非常重要的意义。目前,对于逆矩阵的求法及其应用领域的研究已比较成熟。本文将对逆矩阵的定义、性质、判定方法及求法进行总结,并初步探讨矩阵的逆在编码、解码等方面的应用。

关键词:矩阵逆矩阵逆矩阵的求法逆矩阵的应用

The methods for identifying inverse matrix and application of inverse matrix Abstract: In modern mathematics,matrix is an effective tool with extensive application,and inverse matrix is a significant concept in matrix theory. The disduss about the way to evaluating inverse matrix and its application is of an important meaning with mature development at present. This paper will summarize the definition and properties of inverse matrix and disscuss the methods evaluating inverse matrix.We will also talk about the application of inverse matrix, especially its application in encoding and decoding. Keywords: Matrix Inverse matrix The way to evaluating inverse matrix Application of inverse matrix

一:引言

在现代数学中,矩阵是一个有效而应用广泛的工具。在矩阵理论中,逆矩阵又一个非常重要的概念。本文将对矩阵可逆性的由来及逆矩阵的定义、性质、判定方法进行探讨,并进一步了解逆矩阵在现代数学中的应用,以激发学生的学习兴趣,让学生进一步了解逆矩阵的应用,从而提高教育教学质量。 二:矩阵的逆的定义

对于n n ?矩阵A ,如果存在一个n n ?矩阵B ,使得AB=BA=E (E 为单位矩阵),那么说矩阵A 可逆,并把矩阵B 称为A 的逆矩阵。记A 的逆矩阵为A 1-. 三:可逆矩阵的性质

1、如果矩阵A 、B 均可逆,那么矩阵AB 可逆,其逆矩阵为BA.(推广:如果矩阵A 1 ,A 2 ,…… A n 均可逆,那么矩阵A 1A 2…A n 可逆,其逆阵为A n …A 2A 1)

2、如果A 可逆,那么可逆,且()1-A 1-=A ;

3、如果A 可逆,那么可逆,且()

()

1

1T

T

A A

--=.

4、A ()()'11'=--A .

5、如果A 可逆,数,那么可逆,且()1

11

A A λλ

--=

6、如果矩阵A 的逆存在,那么该逆矩阵唯一。

以上结论见文献[1] 四:矩阵可逆的几种判别方法

设矩阵A 为n 阶方阵,那么A 可逆的充要条件有: 1、存在n 阶方阵B ,使得AB=I ;

2、对PAQ=000I ?? ???

,其中P 为s n ?矩阵,Q 为n ×m 矩阵,r (A )=n ;

3、;

4、A 是非退化矩阵.

5、A 的行向量(列向量)组线性无关;

6、A 可由一系列初等矩阵的乘积表示;

7、A 可经过一系列初等行变换(列变换)化成单位矩阵I ; 8、齐次线性方程组AX=0只有零解. 以上结论见文献[1] [8] 五:逆矩阵的几种求法 (一)定义法

定义:矩阵A 为n 阶方阵,如果存在n 阶方阵B ,使得AB=E,那么称A 可逆,称B 为A 的逆矩阵,记为1

-A .

求矩阵

012114210A ??

?= ?

?-??的逆矩阵. 解 : 因为A ≠0,所以1-A 存在.设

11

1213121

22233132

33x x x A x x x x x x -??

?= ? ???,

由定义知1

-A A=E,所以

012114210?? ? ? ?-??11

121321222331

32

33x x x x x x x x x ?? ? ? ???=??

???

??100010001.

由矩阵乘法得

2131

22322333

112131122232

13233311211222

1323222444222x x x x x x x x x x x x x x x x x

x x x x +++??

?++++++ ? ?---?

?=??

???

??100010001. 由矩阵相等可解得

1121312432x x x ??=?=???=-?;122232121x x x =-??=-??=?;1323331112x x x ??=-?=-???=-?

. 故

121142131122A -??

?- ?=- ?

?

-

- ??? (二)伴随矩阵法

定理:n 阶矩阵A 可逆的充分必要条件是A 非退化.且11

211122221121n n n

n

nn A A A A A A A A A A A -?? ? ?

= ? ???

,其中,A ij 是|A|中元素a ij 的代数余子式.矩阵1121112

22212n n n n

nn A A A A

A A A A A ?? ? ?

? ???

称为矩阵A 的伴随矩阵,记作A*,即有A -1 =

1

|A|

A*. 该定理见文献[1]

注 ⑴此方法适用于计算阶数较低矩阵(一般不超过3阶)的逆,或用于元素的代数余子式易于计算的矩阵求逆。注意A* = (A ji )n ×n 的元素位置以及各元素的符号。特

别地,对于2阶方阵

11

1221

22a a A a a ??= ???

,其伴随矩阵为22122111*a

a A a a -??= ?

-??.

⑵对于分块矩阵A B C D ??

???

,上述求伴随矩阵的规律不适用.

例2:已知1312A -??

= ?-??

,求A

-1

.

解: ∵A = -1 ≠ 0 ∴A 可逆.由已知得

11122122A = 2, A =1,A = 3, A =1

A -1 =

1|A| A* = 23231111--????-= ? ?--????

(三)行(列)初等变化法

设n 阶矩阵A ,作n ×2n 矩阵,对该矩阵作初等行变换,如果把子块A 变为

n

I ,那

么子块

n

I 变为1-A ,即由[A,E]作初等行变换得[E,A-1],所得的1

-A 即为A 的逆矩阵.

注 ⑴对于阶数较高的矩阵(n ≥3),用初等行变换法求逆矩阵,一般比用伴随矩阵法简便.用上述方法求逆矩阵,只允许作初等行变换.

⑵也可以利用1E A E A -????

????→ ? ?????

初等列变换求得A 的逆矩阵.

⑶若矩阵A 可逆,可利用()()11E A B E A ,C A B C A --????????→????→ ? ?????初等行变换

初等列变换

得A -1B 和CA -1.这一方法的优点是不需求出A 的逆矩阵和进行矩阵乘法仅通过初等变换,即求出了A -1B 或CA -1.

例3:用初等行变换求矩阵223A 110121??

?

=- ? ?-??

的逆矩阵.

解:

()2

231001

10010110010A E 1

100102

231000110111210011

21001043120101021100

143011011010

153001164001164--??????

?

? ?

=-→→ ? ? ?

? ? ?---??????

--????

?

?

→→-- ? ? ? ?----????

所以1

143153164A ---?? ?=-- ? ?-??

(四)用Cramer 法则求矩阵的逆

若线性方程组11112211211222221122

n n n n n n nn n n

a x a x a x

b a x a x a x b a x a x a x b +++=??

+++=??

??++

+=?的系数行列式||0ij n D a =≠,则此方程组有

唯一的一组解

1212, , , n

n D D D x x x D D

D =

==

.这里i D 是将D 中的第i 列1,

,i ni a a 换成

1,

,n b b 得到的行列式.

定理1 若以1ε = (1 , 0 , 0 , ……, 0), 2ε = (0 , 1 , 0 , ?, 0), ?,3ε = (0 , 0 ,……, 1) 表示F n (F n 表示数域F 上的n 维行向量空间)上的一组标准基,那么F n 中任一向量α= (a 1 , a 2 , ……, a n )都能且只能表示为: α=a 11ε + a 22ε +……+ a n n ε的形式,这里a i ∈F(i = 1 , 2 , ……, n).

定理2 若称矩阵A 与矩阵B 相乘所得的矩阵为AB ,以A 的第i 行右乘以B ,其乘积即为矩阵AB 的第i 行.

求矩阵的逆可用以下方法:令n 阶可逆矩阵A=(a ij ),A 的行向量分别为

1α ,2α,……,n α, 其中1α=(a 11,a 12,……,a 1n ),(i=1,2,……,n),由定理1得: 1α=Σa ij j ε(i = 1 , 2 , ?, n) ,解方程组(1ε,2ε , ?,n ε为未知量),由于系数行列式 D=|A| ≠0 (因为A 可逆),所以, 由Cramer 法则可得唯一解: j j D D

ε=

= b j11α+ b j22α+ ?

+ b jn n α(j = 1 , 2 , ?, n) .其中D j 是用方程组的常数项α1 ,α2,?,αn 替换行列式D 的第j 列的元素得到的n 阶行列式.由定理2可得: BA = I ( I 为单位矩阵),从而有A -1= B.其中B=(b ij ).

以上定理见文献[1]、 [7] 、[8] 下面举例说明这种方法.

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快 捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩 阵中的位置。比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称 为单位矩阵,记为,即:。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个阶下三角矩阵,而则是一个阶上三角矩阵。今后我们用表示数域上的矩阵构成

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

矩阵的逆的研究及应用

矩阵的逆的研究及应用 摘要 本文主要是对高等代数中的矩阵的逆进行研究,更深一步地了解矩阵的逆在数学领域中的重要地位和各方面的应用。首先总结阐述矩阵的逆的相关定义、定理和性质,并且对其给出相应的证明,然后归纳了矩阵的逆的几种常见求法,最后讲述了矩阵的逆在以下两个方面的应用:解线性方程组和保密通信,而且例举了具体的应用实例。 关键词:矩阵矩阵的逆线性方程组保密通信 Research and application of inverse matrix Summary:This paper mainly research on the inverse of the matrix in higher algebra, deeper understanding of the inverse of the matrix in all aspects of the important position in the field of mathematics and application. First summarized in this paper, the related definitions, theorems and properties of the inverse of the matrix, and the corresponding proofs are given, and then sums up several kinds of common method of inverse of the matrix, and finally tells the inverse of the matrix in the application of the following two aspects: solving system of linear equations and secure communications, and illustrates the concrete application examples. Key Words: matrix , inverse of a matrix ,linear system of equaton, secure

分块矩阵求逆

一、分4块的矩阵求逆 对于分块矩阵A B 求其逆在计量经济学,马尔科夫链等科目中常常遇到,本文综合了 C D,格林等文件,提供一个一般的汇总性文件,方便查阅。 本文采用初等变化法求逆,假设先对矩阵进行了合适的分块并且灰色部分的逆存在: A B | I 0 C D | 0 I 第1行左乘-CA-1并加到第2行有: A B | I 0 0D-CA-1B | -CA-1I 第2行左乘-B(D-CA-1B)-1并加到第1行有: A 0 | I+ B(D-CA-1B)-1 CA-1-B(D-CA-1B)-1 0 D-CA-1B|-CA-1I 第1行左乘A-1,第2行左乘(D-CA-1B)-1后,右边的矩阵为原始矩阵的逆:

注意是左乘,右乘不行,因为右乘副对角线上的矩阵可能没法做矩阵乘法。 二、分9块的矩阵求逆 对于分9块的矩阵A=[A B C;D E F;G H K]求逆,可先把矩阵进行适当划分,使得以下各灰色部分可逆,然后分别左乘矩阵P和右乘矩阵Q,P、Q如下所示,易见P、Q均可逆。 P A Q I 0 0 | A B C | I -A-1B -A-1C -DA-1 I 0 | D E F | 0 I 0 = B(具体见下三行) -GA-10 I | G H K| 0 0 I A 0 0 0 E-DA-1B F-DA-1C [(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)] 0 H-GA-1B K-GA-1C 要求各灰色部分可逆

可见大矩阵B的逆主要是求其右下角的逆,而这是个分四块矩阵,用第一部分方法即可求得。因为PAQ=B,所以A=P-1BQ-1,A-1=QB-1P,经过最终计算,A-1表示如下: 其中: M=(E-DA-1B)-1+(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 N=-(E-DA-1B)-1(F-DA-1C)[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 R=-[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 (H-GA-1B)(E-DA-1B)-1 S=[(K-GA-1C)-(H-GA-1B)(E-DA-1B)-1(F-DA-1C)]-1 此方法原则上还可依此递推至分为n2块矩阵求逆。

广义逆矩阵及其应用

题目广义逆矩阵及其应用学院 专业通信与信息系统学生 学号

目录 第一章前言 (1) 第二章广义逆矩阵 (2) §2.1 广义逆矩阵的定义 (2) §2.2 广义逆矩阵的性质 (3) 第三章广义逆矩阵的计算 (12) §3.1 一般广义逆求解 (12) §3.2 Moore-Penrose 广义逆 (16) 结论 (19)

第一章前言 线性方程组的逆矩阵求解方法只适用于系数矩阵为可逆方阵,但是对于一般线性方程组,其系数矩阵可能不是方阵或是不可逆的方阵,这种利用逆矩阵求解线性方程组的方法将不适用。为解决这种系数矩阵不是可逆矩阵或不是方阵的线性方程组,我们对逆矩阵进行推广,研究广义逆矩阵,利用广义逆矩阵求解线性方程组。 广义逆矩阵在数据分析、多元分析、信号处理、系统理论、现代控制理论、网络理论等许多领域中有着重要的应用,本文针对广义逆矩阵的定义、性质、计算及其在线性方程组中的应用进行研究,利用广义逆矩阵求解线性方程组的通解及极小数解。 逆矩阵的概念只对非奇异矩阵才有意义,但在实际问题中,遇到的矩阵不一定是方阵,即使是方阵也不一定非奇异,这就需要将逆矩阵的概念进行推广。为此,人们提出了下述关于逆矩阵的推广: (1)该矩阵对于奇异矩阵甚至长方矩阵都存在; (2)它具有通常逆矩阵的一些性质; (3)当矩阵非奇异时,它即为原来的逆矩阵。 满足上面三点的矩阵称之为广义逆矩阵。 1903年,瑞典数学家弗雷德霍姆开始了对广义逆矩阵的研究,他讨论了关于积分算子的一种广义逆。1904年,德国数学家希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。美国芝加哥的穆尔(Moore)教授在1920年提出了任意矩阵广义逆的定义,他以抽象的形式发表在美国数学会会刊上。我国数学家曾远荣和美籍匈牙利数学家·诺伊曼及其弟子默里分别在1933年和1936年对希尔伯特空间中线性算子的广义逆也作过讨论和研究。1951年瑞典人布耶尔哈梅尔重新给出了穆尔(Moore)广义逆矩阵的定义,并注意到广义逆矩阵与线性方程组的关系。1955年,英国数学物理学家罗斯(Penrose)以更明确的形式给出了与穆尔(Moore)等价的广义逆矩阵定义,因此通称为Moore-Penrose广义逆矩阵,从此广义逆矩阵的研究进入了一个新阶段。现如今,Moore-Penrose广义逆矩阵在数据分析、多元分析、信号处理、系统理论、现代控制理论、网络理论等许多领域中有着重要的应用,使这一学科得到迅速发展,并成为矩阵论的一个重要分支。 第二章广义逆矩阵

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

矩阵的逆及其应用教学内容

矩阵的逆及其应用

矩阵的逆及其应用 姓名:刘欣 班级:14级数计1班 专业:数学与应用数学 学号:1408020129 一、矩阵的逆的概念 对于n阶矩阵A,如果有一个n阶矩阵B,使得 AB=BA=E,则说矩阵A是可逆的,并把矩阵B称为 A的逆矩阵,A的逆矩阵记作。 二、逆矩阵的性质和定理 ㈠逆矩阵的性质 1、若矩阵A、B均可逆,则矩阵AB可逆,其逆矩阵为 ,当然这一性质可以推广到多个矩阵相乘的逆。 若都是n阶可逆矩阵,则 也可逆,且= . 2、若A可逆,则也可逆,且=A; 3、若A可逆,实数λ≠0,则λA可逆,且 =; 4、若A可逆,则也可逆,且=; 5、=;

6、矩阵的逆是唯一的; 证明:运用反证法,如果A是可逆矩阵,假设B,C都 是A的逆,则有AB=BA=E=AC=CA,B=B E=B(AC)=(BA)C=EC=C(与B≠C 矛盾),所以是唯一的。 ㈡逆矩阵的定理 1、初等变换不改变矩阵的可逆性。 2、n阶矩阵可逆的充分必要条件是A与n阶单位阵等价。 3、n阶矩阵A可逆的充分必要条件是A可以表成一些初等矩阵的乘积。 4、n阶矩阵可逆的充分必要条件是A只经过一系列初等行变换便可化成单位矩阵。 5、n阶矩阵A可逆的充分必要条件是|A|≠0。 三、逆矩阵的计算方法 ㈠定义法 定义:设A是n阶方阵,如果存在n阶方阵B使得AB=E,那么A称为可逆矩阵,B称为A的逆矩阵,记为。 例1、求矩阵A=的逆矩阵。 解:∵|A|≠0 ∴存在

设=,由定义知,∴ 由矩阵乘法得 由矩阵相乘可解得;; 故 ㈡、伴随矩阵法 n阶矩阵A=()可逆的充要条件|A|≠0,而且当 n(n>=2)阶矩阵A有逆矩阵, 注释:①对于阶数较低(一般不超过3阶)或元素的代数余 子式易于计算的矩阵可用此法求其逆矩阵,注意 元素的位置及符号。特别对于2阶方阵A=,其伴随矩阵 ,即伴随矩阵具有“主对角元素互换,次对角元素变号”的规律。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

矩阵的分块求逆及解线性方程组

实验3 矩阵的分块求逆及解线性方程组 一、 问题 化已知矩阵为上三角矩阵,构作范德蒙矩阵,高阶非奇异矩阵的分块求逆,求非齐次线性方程组的通解。 二、 实验目的 学会用Matlab 语言编程,实施矩阵的初等变换将已知矩阵化为上三角矩阵;掌握 用循环语句由已知向量构造范德蒙矩阵;了解高阶非奇异矩阵用不同分块法求逆矩阵的误差分析;能根据由软件求得的非齐次线性方程组增广矩阵的阶梯型的最简形式写出线性方程组的通解。 三、 预备知识 1. 线性代数知识: (1) 向量},,,{21n x x x X =作出的 n 阶范德蒙矩阵为 ??? ?? ??? ??---112112222 1 21111 n n n n n n x x x x x x x x x (2)分块矩阵???? ??=2221 1211A A A A A ,其中11A 为方的可逆子块,求逆矩阵有如下公式: 设??? ? ??=-2221 1211 1 B B B B A ,则2212111121 12111212222,)(B A A B A A A A B ----=-=, 1 11211211111111212221,----=-=A A B A B A A B B (3)常用的矩阵范数为Frobenius 范数;2 1112||||||??? ? ??=∑∑==n i n j ij F a A 2. 本实验所用Matlab 命令提示: (1)输入语句:input('输入提示'); (2)循环语句:for 循环变量=初始值 :步长 :终值 循环语句组 end (3)条件语句: if(条件式1) 条件块语句组1 elseif(条件式2) 条件块语句组2 else 条件块语句组3 end (4)矩阵和向量的范数:norm(A); (5)求矩阵A 的秩:rank (A ); (6)求矩阵A 的阶梯型的行最简形式:rref(A)。

矩阵及逆矩阵的求法

矩阵的可逆性与逆矩阵的求法 目录 摘要 (1) 第1章.矩阵 (2) 1.1矩阵的定义 (2) 1.2矩阵的运算 (2) 第2章.矩阵的可逆性及逆矩阵 (5) 2.1矩阵的基本概念 (5) 2.2矩阵可逆的判断方法 (6) 2.3矩阵可逆性的求法 (10) 第3章.逆矩阵的拓展 (17) 3.1广义逆矩阵的引入 (17) 3.2广义逆矩阵的定义及存在 (17) 第4章.总结 (21) 参考文献 (22) 致谢 (23) 附件:论文英文简介

矩阵的可逆性与逆矩阵的求法 [摘要]:矩阵理论是现代代数学的重要分支理论之一,它也为现代科技及现代经济理论研究提供不可或缺的数学支持。在线性代数研究中引入矩阵的目的之一就是为了研究线性方程组B AX 求解及更一般的矩阵方程求解提供数学工具,其中矩阵的可逆性及逆矩阵的求法是最主要的内容。本文从矩阵的基本概念及运算入手,主要探讨和归纳矩阵可逆性的四种判定方法和求逆矩阵的五种方法,并引进Matlab这一数学软件求逆矩阵的程序,同时关注广义逆矩阵意义及求法。 [关键词]:矩阵可逆性逆矩阵广义逆求法

矩阵可逆性的判断和可逆矩阵的求法是矩阵理论学习的重点与难点,也是研究矩阵性质及运算中必不可少的一部分。本文在分析和归纳判断矩阵的可逆性和逆矩阵的求法,给出了四种判断矩阵可逆的方法,其中有初等矩阵的应用,有行列式的应用,还有向量的线性无关和线性方程组的应用。逆矩阵的求法给出了五种方法:分别是行变换、列变换、伴随矩阵、分块矩阵法以及Matlab 软件的解法,同时也讨论了广义逆矩阵的求法。对矩阵可逆性的判断与逆矩阵的求法将会给矩阵的学习带来很大的帮助。 第1章 矩 阵 1.1矩阵的定义 定义1 由st 个数ij c 排成一个s 行t 列的表 ???? ?? ? ??st s s t t c c c c c c c c c 2 1 2222111211 叫作一个s 行t 列(或t s ?)矩阵,ij c 叫作这个矩阵的元素。 定义2 矩阵的行(列)初等变换指的是对一个矩阵施行的下列变换: )(i 交换矩阵的两行(列); )(ii 用一个不等于零的数乘矩阵的某一行(列),即用一个不等于零的数乘矩阵的某一行(列)的元素; )(iii 用某一数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一元素后加到另一行(列)的对应元素上。 矩阵的初等变换在线性方程组求解,求矩阵的秩及求矩阵的逆矩阵方面都有重要的作用。 1.2矩阵运算 定义1 数域F 的数a 与F 上一个n m ?矩阵)(ij a A =的乘积aA 指的是n m ?矩阵 )(ij aa ,求数与矩阵的乘积的运算叫作数与矩阵的乘法。 定义2 两个n m ?矩阵)(),(ij ij b B a A ==的和B A +指的是n m ?矩阵)(ij ij b a +,求两

逆矩阵的几种求法与解析

逆矩阵的几种求法与解 析 -CAL-FENGHAI.-(YICAI)-Company One1

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A K = 0, 那么E-A 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

分块矩阵及其应用汇总

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

矩阵的逆及其应用

摘要 本文归纳了矩阵可逆的等价条件与可逆矩阵的相关性质,总结了几种可逆矩阵的判定及逆矩阵求解的方法,分类讨论了可逆矩阵在求方阵的幂、解矩阵方程和加密保密通信中的若干应用。 关键字:可逆矩阵;初等变换;分块矩阵;方阵的幂

Abstract In this paper, the definition of the inverse of the matrix, theorems and properties, classification discussed several ways of solving inverse matrix and the inverse matrix in o power and encryption of the application of secret communication. The keyword: invertible matrix;elementary transformation;block matrix; powers of a matrix ;Encrypted secure communications

目录 1 引言 (1) 2 可逆矩阵的定义和性质 (1) 2.1矩阵可逆的定义及等价条件 (1) 2.2可逆矩阵的相关性质 (2) 3 可逆矩阵的判定及逆矩阵的求解 (4) 3.1定义法求矩阵的逆 (4) 3.2用矩阵的秩判定其可逆性 (5) 3.3特征值法判定矩阵的逆 (6) 3.4 伴随矩阵法求矩阵的逆 (6) 3.5初等变换法求矩阵的逆 (7) 3.6可逆分块矩阵的逆矩阵求解 (10) 4 可逆矩阵的若干应用 (13) 4.1求方阵的幂 (13) 4.1.1方阵的幂及其运算律 (13) 4.1.2求方阵的幂 (13) 4.2 解矩阵方程 (15) 4.3构造通信模型 (16) 参考文献 (19)

分块矩阵的若干性质及其应用

分类号密级 U D C 编号 本科毕业论文(设计) 题目分块矩阵的若干性质及其应用 学院数学与经济学院 专业名称应用统计学 年级 学生姓名 2017 年 4 月

文献综述 一、概述 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。 二、正文 通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。 现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要还是在证明和计算方面。 林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。 蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行

逆矩阵的几种求法与解析(很全很经典)

E-A) 1= E + A + 2 K1 + … +A (E- A )(E+A + A 2+…+ A K 1)= E-A K (E-A) (E+A+A 2 + …+A K 1)=E, 逆矩阵的几种求法与解析 矩阵是线性代数的主要内容 ,很多实际问题用矩阵的思想去解既简单又快捷 .逆矩阵又是矩阵理论的很重要的内容 , 逆矩阵的求法自然也就成为线性代数研究的主要内容之一 .本文将给出几种求逆矩阵的方法 . 1. 利用定义求逆矩阵 定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA = E,则称A 为可逆矩阵,而称B为A的逆矩阵.下面举例说明这种方法的应用. 例1 求证:如果方阵A满足A k= 0,那么EA是可逆矩阵,且 证明因为E与A可以交换,所以 因A K= 0 ,于是得 同理可得( E + A + A 2 + … +A K 1 )(E-A)=E , 因此E-A是可逆矩阵,且 (E-A) 1 = E + A + A 2 +…+A K 1 同理可以证明 (E+ A) 也可逆,且

E-A 的逆矩阵. (E+ A) 1 = E -A + A 2+…+ (-1 ) K1A K1 . 由此可知,只要满足A K =0,就可以利用此题求出一类矩阵E A 的逆矩阵. 例2 设 A = 00 20 00 03 ,求 0003 0000 分析 由于A 中有许多元素为零,考虑A K 是否为零矩阵,若为零矩阵,则可以 采用例2的方法求E-A 的逆矩阵. 解 容易验证 00 2 0 0 0 0 6 2 00 0 6 3 0 0 0 0 4 A 2 = ■ A 3= , A 4 =0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 而 (E-A)(E+A+ A 2 + A 3 )=E , 所以 1 1 2 6 1 2 3 0 1 2 6 (E-A) E+A+ A 2 + A . 0 0 1 3 0 0 0 1 2. 初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法 ?如果A 可逆,则A 可通过 初等变换,化为单位矩阵I ,即存在初等矩阵R,P 2 , P S 使 (1) p 1 p 2 p s A=I ,用 A 1 右乘上式两端,得: (2) p 1 p 2 p s I= A 1 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单 位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1. 用矩阵表示( A I ) 为( I A 1 ),就是求逆矩阵的初等行变换法, 它是实际应用中比较简单的一种方法 .需要注意的是,在作初等变换时只允许作行初 等

逆矩阵的几种求法与解析

逆矩阵的几种求法与解析

————————————————————————————————作者:————————————————————————————————日期:

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A K = 0, 那么E-A 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A1-K 证明 因为E 与A 可以交换, 所以 (E - A )(E+A + A 2+…+ A1-K )= E-A K , 因AK = 0 ,于是得 (E-A)(E+A+A 2+…+A1-K )=E, 同理可得(E + A + A2+…+A 1-K )(E -A)=E, 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E + A )也可逆,且 (E+ A )1-= E -A + A 2+…+(-1)1-K A1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010 ,求 E -A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

矩阵的逆及其应用

矩阵的逆及其应用 姓名:刘欣 班级:14级数计1班 专业:数学与应用数学 学号:1408020129 一、矩阵的逆的概念 对于n阶矩阵A,如果有一个n阶矩阵B,使得AB=BA=E,则说矩阵A是可逆的,并把矩阵B称为 A的逆矩阵,A的逆矩阵记作A1。 二、逆矩阵的性质和定理 ㈠逆矩阵的性质 1、若矩阵A、B均可逆,则矩阵AB可逆,其逆矩阵为 , 当然这一性质可以推广到多个矩阵相乘的逆。 若A 1,A 2 ,,A m 都是n阶可逆矩阵,则 A 1A 2 A m 也可逆,且(A 1 A 2 A m ) 1 = (A m) 1 (A 2 ) 1 (A 1 ) 1 . 2、若A可逆,则 也可逆,且( )=A; 3、若A可逆,实数λ≠0,则λA可逆,且(λ )= λ ; 4、若A可逆,则 也可逆,且( )=( ); 5、=; 6、矩阵的逆是唯一的;

证明:运用反证法,如果A是可逆矩阵,假设B,C都 是A的逆,则有AB=BA=E=AC=CA,B=BE =B(AC)=(BA)C=EC=C(与B≠C矛 盾),所以是唯一的。 ㈡逆矩阵的定理 1、初等变换不改变矩阵的可逆性。 2、n阶矩阵可逆的充分必要条件是A与n阶单位阵I n 等价。 3、n阶矩阵A可逆的充分必要条件是A可以表成一些初等矩阵的乘积。 4、n阶矩阵可逆的充分必要条件是A只经过一系列初等行变换便可化成单位矩阵。 5、n阶矩阵A可逆的充分必要条件是|A|≠0。 三、逆矩阵的计算方法 ㈠定义法 定义:设A是n阶方阵,如果存在n阶方阵B使得AB=E,那 么A称为可逆矩阵,B称为A的逆矩阵,记为A1。 例1、求矩阵A=223 110 121 的逆矩阵。 解:∵|A|≠0 ∴A1 存在

相关文档
最新文档