高二数学期末试卷理科及答案
高二数学(理科)期末试卷

高二数学(理科)期末试卷
本文档为高二数学(理科)期末试卷的题目和答案。
试卷题目包
括选择题、填空题、计算题和证明题。
试卷内容涵盖了高二数学课
程的各个知识点。
选择题部分包括了多项选择题和单项选择题,考察了学生对数
学概念和定理的理解和应用能力。
填空题部分要求学生填写正确的数值或表达式,考察了学生对
问题的分析和解决能力。
计算题部分要求学生进行具体的计算操作,涉及到数值运算、
代数运算、几何运算等,考察了学生对运算方法和计算规则的掌握。
证明题部分要求学生运用已学的数学理论和方法进行推导和证明,考察了学生的逻辑思维能力和数学推理能力。
试卷内容难度适中,旨在检测学生对高二数学知识的掌握程度
和应用能力。
根据试卷得分,可以评估学生的数学水平,并作出针
对性的教学调整。
希望本次期末试卷能够促进学生对数学学科的兴趣和研究动力,帮助他们提升数学能力和解决问题的能力。
对于学生来说,认真复课堂内容和做好试卷的备考是取得好成
绩的关键。
希望学生们抓住这次机会,全力以赴,取得优秀的成绩。
祝愿每位学生都能在高二数学(理科)期末试卷中取得好成绩!。
高二数学(理)上学期期末试卷及答案

上学期期末考试高二数学(理科)试卷考试时间:120分钟试题分数:150分卷I一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数〃?、〃,是“方程如=]的曲线是双曲线,,的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是♦♦A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数x2 y23.已知椭圆一+ —— = 1上的一点P到椭圆一个焦点的距离为7,则P到另一焦点距离为25 16A. 2B. 3C. 5D. 74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题〃是“甲降落在指定范围”,g是“乙降落在指定范围”,则命题“至少有一位学员没有降,落在指定范围”可表示为A. (-1/7)v(-ity)B. /?v(-ity)C.(^/?)A(—D. pvq2 25.若双曲线:-二=1的离心率为J5,则其渐近线的斜率为crA. ±2B. ±-C. ±5/2D. ± —2 26 ,曲线),=———一!在点M(三,0)处的切线的斜率为sinx + cosx 2 4A,在 B. 一昱 C. 1 D. -12 2 2 27.已知椭圆£ +奈的焦点与双曲线今旬的焦点恰好是一个正方形的四个顶点,则抛物线少=打2的焦点坐标为A.(4-,0)B. (^- ,0)C. (0,^-)D. (0,^—)8. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜:③四向倾斜.记三种盖法屋顶而积分别为4鸟,A,① ② ③若屋顶斜而与水平而所成的角都是。
,则A. 4=E = AB. 4=4<鸟C.D.9.马云常说“便宜没好货”,他这句话•的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件10.设。
高二期末试卷(附答案)

高二理科数学下学期期末试卷 一.选择题(每题5分) 1.设集合{1,0,1}A,{|0}BxRx,则AB( ) A.{1,0} B.{1} C.{0,1} D.{1} 2.已知Z(1+i)=-3+4i(i为虚数单位),复数Z的共轭复数为( ) A.1722i B. 7722i C.1722i D.7722i 3. 6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A.144 B.120 C.72 D.24 4.设首项为1,公比为23的等比数列{}na的前n项和为nS,则( ) (A)21nnSa (B)32nnSa(C)43nnSa(D)32nnSa 5. 如图,一个空间几何体的正视图和侧视图都 是边长为1的正方形,俯视图是一个圆,那么这 个几何体的侧面积为( C ) A.4 B. 2 C. D. 23 6. 已知两个单位向量a,b的夹角为60,(1)ctatb,若0bc,则t( ) (A) 1 (B) 2 (C) -1 (D) -2 7. (3)执行如图所示的程序框图,输出的S值为 (A)2 (B) -2 (C)4 (D) -4 8.设a、b、c分别是△ABC中∠A、∠B、∠C所对边的边长,则直线sinA·x+ay+c=0与bx-sinB·y+sinC=0的位置关系是( ) A.平行 B.重合 C.垂直 D.相交但不垂直
9.已知x,y满足约束条件 0,04242yxyxyx,则yxz的最大值是( ) A.34 B.38 C.2 D.4
10. 下表是某厂1—4月份用水量(单位:百吨)的一组数据:
月份x 1 2 3 4 用水量y 4.5 4 3 2.5 由散点图可知,用水量与月份之间有较好的线性相关关系,其线性
回归方程为 y^=-0.7x+a,则a等于( ) A.10.5 B.5.15 C.5.2 D.5.25
高二数学期末考试试题高二数学(理科)

秋季期末考试试题高二数学(理科)说明:本试题分选择题和非选择题两部分. 满分150分. 考试时间120分钟 .一、选择题:(本大题共10小题 :每小题5分 :共50分 :在每小题所给的四个选项中 :只有一个是正确的。
请把答案写在答题卡上。
) 1.命题2222:0(,),:0(,)p a b a b R q a b a b R +<∈+≥∈.下列结论正确的是( ) A. ""q p ∨为真 B. ""q p ∧为真 C. ""p ⌝为假 D. ""q ⌝为真 2.设原命题:若a+b ≥2 :则a :b 中至少有一个不小于1.则原命题与其逆命题的真假情况是( ) A .原命题真 :逆命题假B .原命题假 :逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题3.抛物线22y x =- 的焦点坐标是 ( )A .1(0,)8B .1(,0)4-C .1(0,)8- D . 1(0,)4-4.若f (x )=sin α-cos x :则f ′(α)等于( )A 、sin αB 、cos αC 、sin α+cos αD 、2sin α5、方程my x ++16m -2522=-1表示焦点在y 轴上的双曲线 :则m 的取值范围是 ( )A. -16<m<25B.m<-16C.m<-16或m>25D. m>256. 过椭圆2222x y +=的左焦点F 引一条倾斜角为45︒的直线 :则以此直线与椭圆的两个交点及椭圆中心为顶点的三角形面积为 ( )A.21B.23C.32D.27.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、2222(log )ln 2x x x '= C 、2(cos )2sin x x x x '=- D 、 3(3)3log x x e '=8.函数323922yx x x x 有( )A 、极大值5 :极小值-27B 、极大值5 :极小值-11C 、极大值5 :无极小值D 、极小值-27 :无极大值9. 1F 是22195x y +=的左焦点 :P 为随圆上的动点A (1 :1)为定点 :则1PA PF +的最小值为 ( )A 、9B 、6C 、3D 、6+10(3,)3与抛物线22y x =上的点P 之间距离为1d :P 到抛物线准线l 的距离为2d :则当12d d +取最小值时 :P 点坐标为 ( )A. (1 :.(0 :0) C. (2 :2 ) D. 11(,)82-二、填空题(每小题5分 :共20分 :请把答案写在答题卡上。
高二数学期末试卷(理科)及答案(1)汇编

高二数学期末考试卷(理科)一、选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1) B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .33、“a >b >0”是“ab <222b a +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或85、已知空间四边形OABC 中,,,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则=( ) A .213221+- B .212132++-C .c b a 212121-+D .c b a 213232-+6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516 C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )A.5或54 或 C. D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥39、已知),,2(),,1,1(t t t t t =--=,则||-的最小值为 ( )A .55B .555C .553 D .51110、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( )A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21OF OP OQ +=4||=OQ ,则点P 到该椭圆左准线的距离为( ) A.6 B.4 C.3 D.25高二数学期末考试卷(理科)答题卷二、填空题(本大题共4小题,每小题3分,共12分)12、命题:01,2=+-∈∃x x R x 的否定是13、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 .14、若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 . 15、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=. 其中真命题的序号为 _________.三、解答题(本大题共6小题,共55分)16、(本题满分8分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.17、(本题满分8分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,试用向量法求平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值。
高二下学期期末考试数学理科试题答案试题

卜人入州八九几市潮王学校二零二零—二零二壹下期期末统一检测高二数学试题(理科)参考答案及评分意见一.选择题〔50分〕 CDCADCDCBD二.填空题〔25分〕11. 11611x -y -4=0.15.①②④ 三.解答题〔75分〕 16.〔12分〕解令x =1,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1. ①.......................2分令x =-1,那么a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②.......................6分(1)∵a 0=C =1,..............................................8分 ∴a 1+a 2+a 3+…+a 7=-2........................................10分 (2)(①+②)÷2, 得a 0+a 2+a 4+a 6==1093......................................................................12分 17.〔12分〕 解:〔1〕-.3006-100080030010-100020005006-1000200050010-10004000800,2000,4000.(800)0.50.40.2,(2000)0.50.60.50.40.5,(4000)0.50.60.3X X p X p X p X =⨯⨯=⨯=⨯=⨯===⨯===⨯+⨯===⨯=利润产量价格成本考虑产量和价格,利润可以取,,,,即三个X 的分布列如下表:.............................................8分 〔2〕.............................................................12分 18.〔12分〕解:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数, 那么f ′(x )≥0,即3x 2-x +b ≥0,∴b ≥x -3x 2在(-∞,+∞)上恒成立............................3分 设g (x )=x -3x 2.当x =时,g (x )max =,∴b ≥......................................6分 (2)由题意知f ′(1)=0,即由〔1〕得3-1+b =0,∴b =-2.............7分x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2,令f ′(x )=0,得x =1或者x =-.f ′(x )>0,得x 2(,)3∈-∞-或者x (1,)∈∞,f ′(x )<0,得x 2(,1)3∈-即f(x)在x =-处取极大值...................................10分.. 又)32(-f =+c ,f (2)=2+c .∴f (x )max =f (2)=2+c ,∴2+c <c 2.解得c >2或者c <-1,所以c 的取值范围为(-∞,-1)∪(2,+∞).........................12分 19.〔12分〕解:〔1〕设AD 中点为O ,连接PO∆PAD 为等边三角形,且边长为2 ∴PO ⊥AD ,PO =3ODCBA Pzyx又 面PAD ⊥面ABCD 于AD∴PO ⊥面ABCD∴PO 为点P 到平面ABCD 的间隔,即P 到平面ABCD 的间隔为3...............6分连接BO , ABCD 是菱形,且∠BAD =60,O 为AD 中点,∴BO ⊥AD∴以O 为坐标原点,OA 、OB 、OP 分别为z y x ,,轴,建立如下列图的空间直角坐标系,那么有A(1,0,0)、P 〔0,0,3〕、B 〔0,3,0〕、C 〔-2,3,0〕. 设APB 平面的法向量为()z y x n ,,1=()0,3,1-=AB ,()3,0,1-=AP⎪⎩⎪⎨⎧==∴⎪⎩⎪⎨⎧=+-=+-∴zx y x z x y x 33,0303,∴可取()1,1,31=n同理,可取平面PAC 的法向量()1,1,02=n 设二面角A —PB -C 的平面角为θ,那么510252cos =⋅==θ 由图可知,二面角A —PB -C 的平面角是钝角∴二面角A —PB -C 的平面角的余弦值为510-……………………………………….12分 20.〔13分〕解(1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),∴F ′(x )=2ax -=2(ax 2−1)x(x >0).………………………………………2分①当a >0时,由ax 2-1>0,得x >. 由ax 2-1<0,得0<x <. 故当a >0时,F (x )在区间⎪⎭⎫⎝⎛+∞,1a 上单调递增,在区间⎪⎭⎫⎝⎛a 1,0上单调递减.…………………………………………………6分 ②当a ≤0时,F ′(x )<0(x >0)恒成立.故当a ≤0时,F (x )在(0,+∞)上单调递减.……………………………8分 (2)原式等价于方程a ==φ(x )在区间[,e]上有两个不等解.∵φ′(x )=2x (1−2lnx )x 4>0,∴φ(x )在(,)上为增函数,在(,e)上为减函数,那么φ(x )max =φ()=,……………………………10分 而φ(e)=<==φ(). ∴φ(x )min =φ(e), 如图当f (x )=g (x )在[,e]上有两个不等解时有φ(x )min =,……………………………12分a 的取值范围为≤a <.………………………………………………..13分21.〔14分〕解:〔1〕函数()y f x =在π(0,)2上的零点的个数为1.……………………………1分理由如下:因为()e sin cos x f x x x =-,所以()e sin e cos sin x x f x x x x '=++.……………………2分 因为π02x <<,所以()0f x '>, 所以函数()f x 在π(0,)2上是单调递增函数. ················· 3分因为(0)10f =-<,π2π()e 02f =>,根据函数零点存在性定理得函数()y f x =在π(0,)2上的零点的个数为1. ················· 4分〔2〕因为不等式12()()f x g x m +≥等价于12()()f x m g x -≥,所以12ππ[0,],[0,]22x x ∀∈∃∈,使得不等式12()()f x g x m +≥成立,等价于()1min 2min ()()f x m g x -≥,即1min 2max ()()f x m g x -≥. ············· 6分当π[0,]2x ∈时,()e sin e cos sin 0x x f x x x x '=++>,故()f x 在区间π[0,]2上单调递增,所以0x =时,()f x 获得最小值1-. ······················ 7分又()cos sin x g x x x x '=-,由于0cos 1,sin x x x x ≤≤≥所以()g x '0<,故()g x 在区间π[0,]2上单调递减,因此,0x =时,()g x 获得最大值. ·················· 8分所以(1m --≥,所以21m --≤.所以实数m 的取值范围是(,1-∞-. ·················· 9分 〔3〕当1x >-时,要证()()0f x g x ->,只要证()()f x g x >只要证e sin cos cos x x x x x x ->,只要证(()e sin 1cos x x x x >+,由于sin 0,10x x +>+>,只要证e1x x >+. ··········· 10分 下面证明1x >-时,不等式e1x x +成立. 令()()e 11x h x x x =>-+,那么()()()()22e 1e e 11x x xx x h x x x +-'==++, 当()1,0x ∈-时,()0h x '<,()h x 单调递减; 当()0,x ∈+∞时,()0h x '>,()h x 单调递增.所以当且仅当0x =时,()h x 获得极小值也就是最小值为1.令k ,其可看作点()sin ,cos A x x 与点()B 连线的斜率,所以直线AB 的方程为:(y k x =,由于点A 在圆221x y +=上,所以直线AB 与圆221x y +=相交或者相切, 当直线AB 与圆221x y +=相切且切点在第二象限时,直线AB 获得斜率k 的最大值为1. ···················· 12分故0x =时,()10k h <=;0x ≠时,()1h x k >≥.··········· 13分 综上所述,当1x >-时,()()0f x g x ->成立. …………………………………14分。
高二数学期末试卷(理科)及答案_必修3+选修2-1+导数

高二数学期末考试卷(理科)一、选择题1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1) D .(2,-3,-22) 2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .33、下图是容量为200的样本的频率分布直方图,那么样本数据落在[)10,14频数分别为( )A .0.32; 64 B .0.32; 62 C .0.36; 64 D .0.36; 724、若双曲线12222=-by a x 的离心率为3,则其渐近线的斜率为( ) A.2± B.2± C.21± D.22±5、已知空间四边形OABC 中,,,===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则=( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+D .c b a 213232-+6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516C .78D .07、已知椭圆)0(1:2222>>=+b a by a x E 的右焦点为),0,3(F 过点F 的直线交椭圆E 于B A 、两点。
若AB 的中点坐标为)1,1(-,则E 的方程为( )A.1364522=+y x B.1273622=+y x C.1182722=+y x D.191822=+y x 8、以下给出的是计算11113519++++的值的一个程序框图,其中判断框 内应填入的条件是( ).A .10k ≤ B .10k < C .19k ≤ D .19k <9、已知函数1sin 2cos(),22y x x π'=+-则y (导函数)的取值范围是( )A .9,28⎡⎤-⎢⎥⎣⎦B .[]0,2 C .9,8⎡⎫-+∞⎪⎢⎣⎭D .以上都不对10、函数d cx bx x x f +++=23)(的图像如图,则函数)332(log 22c bx x y ++=的 单调递减区间为( )A.],21[+∞ B.],3[+∞ C. ]3,2[- D.)2,(--∞二、填空题11、命题 “2,240x R x x ∃∈-+>”的否定是12、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 .13、对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 .14、某射箭运动员一次射箭击中10环、9环、8环的概率分别是0.2,0.3,0.3,那么他射箭一次不够8环的概率是 0.2 15、已知抛物线)0(2:2>=p px y C 的准线l ,过)0,1(M 且斜率为3的直线与l 相交于A ,与C 的另一个交点为B ,若MB AM =,则=p 三、解答题16、已知0,1a a >≠,命题:p 函数log (1)a y x =+在(0,)+∞上单调递减,命题:q 曲线2(23)1y x a x =+-+与x 轴交于不同的两点,若p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围。
高二下学期期末考试数学(理)考试题(带答案)详解+解析点睛

高二下学期期末考试数学(理)考试题(带答案)详解+解析点睛姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)第 1 题设,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案解析】C【分析】首先求出复数的共轭复数,再根据复数的几何意义判断复数在复平面内所在的象限得选项.【详解】解:因为,所以,在复平面内表示的点的坐标为位于第三象限,故选:C.【点睛】本题考查复数的共轭复数的计算,复数的几何意义,属于基础题.第 2 题若双曲线的离心率为2,则其渐近线方程为()A. B. C. D.【答案解析】B【分析】由离心率是2得,代入得,求出的值,再求出双曲线的渐近线方程.【详解】解:由题意得,,则即,所以双曲线的渐近线方程为,即,故选:B.【点睛】本题考查双曲线的标准方程以及简单的几何性质,属于基础题.第 3 题在下列结论中,正确的是()A. “”是“”的必要不充分条件B. 若为真命题,则p,q均为真命题C. 命题“若,则”的否命题为“若,则”D. 已知命题,都有,则,使【答案解析】D【分析】对于A,解不等式,可知A不正确;对于B,命题与命题一个为真命题、一个为假命题时,可得命题“”是真命题,所以B不正确;对于C,只否定了结论,没有否定条件,故C不正确;对于D,根据命题的否定的概念,可知D正确.【详解】对于A,时,则成立,但是当时,或.所以“”是“”的充分不必要条件,故A错误;对于B,若为真命题,则p,q至少一个为真命题,故B错误;对于C,“若,则”的否命题为“若,则”故C错误;对于D,,都有,则,使,故D正确.故选:D.【点睛】本题考查了命题真假的判断,充分、必要条件,特称命题的否定,原命题的否命题,复合命题与简单命题的关系等知识,是基础题.第 4 题用数学归纳法证明:时,从“到”等式左边的变化结果是()A. 增乘一个因式B. 增乘两个因式和C. 增乘一个因式D. 增乘同时除以【答案解析】C【分析】根据题意得出当和时等式的左边,比较之后可得出结论.【详解】当时,则有;当时,则有.,故从“到”等式左边变化结果是:增乘一个因式.故选:C.【点睛】本题考查数学归纳法,考查从“到”等式的变化,一般要将等式写出来,考查计算能力,属于基础题.第 5 题若两条不重合直线和的方向向量分别为,,则和的位置关系是() A. 平行 B. 相交 C. 垂直 D. 不确定【答案解析】A【分析】由,可知两直线的位置关系是平行的【详解】解:因为两条不重合直线和的方向向量分别为,,所以,即与共线,所以两条不重合直线和的位置关系是平行,故选:A【点睛】此题考查了直线的方向向量,共线向量,两直线平行的判定,属于基础题.第 6 题在对具有线性相关的两个变量和进行统计分析时,得到如下数据:48101212356.由表中数据求得关于的回归方程为,则,,这三个样本点中落在回归直线下方的有( )个A 1 B. 2 C. 3 D. 0【答案解析】B因为,所以将其代入可得,故当时,在直线上方;当时,在直线下方;当时,在直线下方,应选答案B.第 7 题设函数其中,,则f(x)的展开式中的系数为() A. -60 B. 60 C. -240 D. 240【答案解析】D【分析】根据定积分和求导运算求得,再运用二项式的展开式可求得选项.【详解】因为,,,,,,,令,所以的展开式中的系数为,故选:D.【点睛】本题中涉及到的知识点较多,主要有定积分的计算(首要找到被积函数的原函数),函数求导数及二项式定理中求指定项的系数,属于中档题.第 8 题在△ABC中,若,则△ABC的最大内角与最小内角的和为()A. B. C. D.【答案解析】D【分析】由正弦定理可得,,三边的关系,由大边对大角可得最小,最大;由余弦定理可得的值,进而由三角形内角和为可得的值.【详解】解:因为,由正弦定理可得,设,,,三角形中由大边对大角可得角最大,角最小,由余弦定理可得,因为,所以,所以,故选:.【点睛】本题考查三角形的正弦定理和余弦定理的应用,属于基础题.第 9 题已知正实数x,y满足.则的最小值为()A. 4B.C.D.【答案解析】D【分析】先把变形为,则展开后,再利用基本不等可求出其最小值.【详解】解:由,得,因为x,y为正实数,所以,当且仅当,即时取等号,所以的最小值为,故选:D【点睛】此题考查了利用基本不等式最值,注意利用基本不等式求最值必须满足“一正、二定、三相等”,属于基础题.第 10 题2020年教育部决定在部分高校中开展基础学科招生考试试点(也称为强基计划),某高校计划让参加“强基计划”招生的学生从8个试题中随机挑选4个进行作答,至少答对3个才能通过初试.已知在这8个试题中甲能够答对6个,则甲通过初试的概率为()A. B. C. D.【答案解析】A【分析】事件“至少答对3个”可能分类为“恰好答对3个”和“4个全对”,求出方法数后可得概率.【详解】从8个试题中任选4个有种选法,“至少答对3个”的方法数有,所以所求概率为.故选:A.【点睛】本题考查古典概型,解题关键是确定分类还是分步求出基本事件的个数.第 11 题已知椭圆的左、右焦点分别为、,点P在椭圆上且异于长轴端点,点M,N在△所围区域之外,且始终满足,,则的最大值为()A. 8B. 7C. 10D. 9【答案解析】A【分析】设,的中点分别为,,则,在分别以,为圆心的圆上,直线与两圆的交点△所围区域之外)分别为,时,的最大,可得的最大值为即可.【详解】解:设,的中点分别为,,,,则,在分别以,为圆心的圆上,∴直线与两圆的交点△所围区域之外)分别为,时,最大,又椭圆,所以,∴的最大值为,故选:A.【点睛】本题考查了椭圆的定义与性质,以及两个圆上的点的距离的最值,考查了转化思想,属于中档题.第 12 题已知函数,数列{an}的前n项和为Sn,且满足,,则下列有关数列{an}的叙述正确的是()A. B.C. D.【答案解析】C【分析】利用递推公式可判断A选项的正误;推导出数列的单调性可判断B选项的正误;推导出,可得出,可判断C选项的正误;推导出以及,可判断D选项的正误.【详解】,,A选项错误;,,当时,,此时,函数单调递增;令,可得,令,定义域为,,令,可得.当时,,此时,函数单调递减;当时,,此时,函数单调递增.,,,则,由零点存在定理可知,存在唯一的,使得.所以,当时,,即且,则;当时,,即.,则,,,以此类推,,所以,数列是单调递减数列,B选项错误;,,C选项正确;,而,,D选项错误.故选:C.【点睛】本题主要考查数列递推公式的应用,考查推理能力与计算能力,属于难题.第 13 题已知函数,则f(x)的单调减区间为__________.【答案解析】【分析】先求函数定义域,然后对函数求导,使导函数小于零,求出的解集与定义域求交集就是所求的单调减区间【详解】解:函数的定义域为,由,得,令,则,解得,又因为,所以,所以的单调减区间为,故答案为:【点睛】此题考查利用导数求函数的单调区间,解题时要注意函数的定义域,考查计算能力,属于基础题.第 14 题平面几何中直角三角形勾股定理是我们熟知的内容,即“在中,,则”;在立体几何中类比该性质,在三棱锥P﹣ABC中,若平面PAB,平面PAC,平面PBC 两两垂直,记,,,的面积分别是,,,,则,,,关系为__________.【答案解析】【分析】如图,过作于,连接,则由已知可得,,则化简可得结论.【详解】解:如图,过作于,连接,因为平面PAB,平面PAC,平面PBC两两垂直,所以,所以平面,所以,所以平面,所以,所以,所以,故答案为:,【点睛】此题考查了类比推理,体现了数形结合的思想,利用了三角形的面积公式,属于基础题.第 15 题某医疗研究所为了了解某种血清预防感冒的作用,把500名使用过该血清的人与另外500名未使用该血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”.已知利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列结论中,正确结论的序号是________.①有95%的把握认为“这种血清能起到预防感冒的作用”;②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%.【答案解析】①因为K2≈3.918≥3.841,而P(K2≥3.841)≈0.05,所以有95%的把握认为“这种血清能起到预防感冒的作用”,故①正确;②显然错误;因为我们检验的是假设是否成立,和该血清预防感冒的有效率是没有关系的,故③④错误.第 16 题在正方体ABCD﹣A1B1C1D1中,E,F分别为线段A1B1,AB的中点,O为四棱锥的外接球的球心,点M,N分别是直线DD1,EF上的动点,记直线OC与MN所成的角为,则当最小时,__________.【答案解析】【分析】如图,设分别为棱和的中点,则四棱锥的外接球即为三棱柱的外接球,所以外接球球心O为上、下底面三角形外心和连线的中点,是平面内的一条动直线,所以最小是直线OC与平面所成角,即问题转化为求直线OC与平面所成角的正切值,通过建立空间直角坐标系算出直线OC与平面所成角的正切值即可.【详解】如图,设分别为棱和的中点,则四棱锥{{2l 因为为等腰三角形,所以外接圆的直径为,则,从而,如图,以为原点,以的方向为轴、轴、轴的正方向建立空间直角坐标系,则,,,,,,,设平面的一个法向量为,则,令,则,因为,所以故答案为:【点睛】本题主要考查了点、线、面的位置关系,考查了直观想象与数学运算的核心素养,考查了转化与化归的数学思想,属于中档题.第 17 题已知{an}是单调递减的等比数列,,且成等差数列.(1)求数列{an}的通项公式;(2)设,求数列{bn}的前50项和.【答案解析】(1);(2).【分析】(1)设等比数列的公比为,运用等比数列的通项公式和等差数列的中项性质,可得首项和公比的方程,解方程可得首项和公比,进而得到所求通项公式;(2)求得,再由数列的裂项相消求和.【详解】解:(1)设是公比为q的等比数列,因为,且成等差数列,故可得,又因为,所以,解得或者,,又因为是单调递减的等比数列,所以,则;(2),,,.【点睛】本题考查等比数列的通项公式和等差数列的中项性质,考查数列的裂项相消求和,以及化简运算能力,属于中档题.第 18 题如图,在五面体ABCDEF中,四边形ABCD为矩形,为等边三角形,且平面平面,.(1)证明:平面平面ABCD;(2)若,求二面角的余弦值.【答案解析】(1)证明见解析;(2).【分析】(1)取的中点,连接,利用面面垂直的性质定理推导出平面,可得出,由已知条件得出,进而利用线面垂直的判定定理可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)取中点,推导出平面,以点为坐标原点,为轴、垂直平分线为轴,为轴建立空间直角坐标系,设,推导出,设可得出,由求出的值,可求得点的坐标,然后利用空间向量法可求得二面角的余弦值.【详解】(1)取的中点,连接,为等边三角形,且为的中点,于是,又平面平面,且平面平面,平面,所以平面,又因为平面,则,又四边形为矩形,则,,所以平面,平面,平面平面;(2)取中点,则,平面平面,平面平面,平面,于是平面,以点为坐标原点,为轴、垂直平分线为轴,为轴建立空间直角坐标系.设,则,,,,因为,平面,平面,所以平面,又平面平面,平面,则,所以设,所以点.那么,,由于,所以,解得,于是,,设平面的法向量为,由,得,取,得,又平面的一个法向量为,记二面角为,所以,又因为是锐角,所以二面角的余弦值为.【点睛】本题考查面面垂直的证明,同时也考查了利用空间向量法求解二面角的余弦值,考查推理能力与计算能力,属于中等题.第 19 题在直角坐标系xOy中,已知点,,直线AM,BM交于点M,且直线AM与直线BM的斜率满足:.(1)求点M的轨迹C的方程;(2)设直线l交曲线C于P,Q两点,若直线AP与直线AQ的斜率之积等于-3,证明:直线l过定点.【答案解析】(1);(2)证明见解析.【分析】(1)设,结合,坐标,通过斜率关系,求解即可.(2)设,,,,通过,得到,求出直线的方程:,说明直线恒过定点.【详解】解:(1)设,又,,则,可得,因为,所以M的轨迹C的方程为;(2)证明,设,,,又,可得,又因为,即有,即由直线l的斜率为可得直线l的方程为,化为,又因为,可得,可得直线恒过定点.【点睛】本题考查轨迹方程的求法,直线系方程的应用,考查转化思想以及计算能力,属于中档题.第 20 题已知函数.(1)若,求在处的切线方程;(2)若对,不等式恒成立,求实数m的取值范围.【答案解析】(1);(2).【分析】(1)求出和的值,利用点斜式可得出所求切线的方程;(2)由题意得出,对实数的取值进行分类讨论,利用导数分析函数在区间上的单调性,验证是否恒成立,由此可得出实数的取值范围.【详解】(1)当时,,则,,.所以,曲线在处的切线方程为,即;(2),则,且.由题意可知l 综上所述,实数的取值范围是.【点睛】本题考查利用导数求函数的切线方程,同时也考查了利用导数研究函数不等式恒成立问题,考查计算能力,属于中等题.第 21 题甲、乙两厂均生产某种零件.根据长期检测结果:甲、乙两厂生产的零件质量(单位:)均服从正态分布,在出厂检测处,直接将质量在之外的零件作为废品处理,不予出厂;其它的准予出厂,并称为正品.(1)出厂前,从甲厂生产的该种零件中抽取10件进行检查,求至少有1片是废品的概率;(2)若规定该零件的“质量误差”计算方式为:该零件的质量为,则“质量误差”.按标准,其中“优等”、“一级”、“合格”零件的“质量误差”范围分别是,、(正品零件中没有“质量误差”大于1.0g的零件),每件价格分别为75元、65元、50元.现分别从甲、乙两厂生产的正品零件中随机抽取100件,相应的“质量误差”组成的样本数据如下表(用这个样本的频率分布估计总体分布,将频率视为概率):质量误差甲厂频数103030510510乙厂频数2530255105..(ⅰ)记甲厂该种规格的2件正品零件售出的金额为X(元),求X的分布列及数学期望;(ⅱ)由上表可知,乙厂生产的该规格的正品零件只有“优等”、“一级”两种,求5件该规格零件售出的金额不少于360元的概率.附:若随机变量.则;,,.【答案解析】(1)(2)(ⅰ)详见解析(ⅱ)【分析】(1)求得没有废品的概率之后,利用对立事件概率公式可求得结果;(2)(ⅰ)首先确定“优等”、“一级”、“合格”的概率,接着确定所有可能的取值,求解出每个取值对应的概率后可得分布列,由数学期望计算公式计算可得期望;(ⅱ)利用构造不等式可确定可能的取值,利用二项分布概率公式可求得结果.【详解】(1)由正态分布可知,抽取的一件零件的质量在之内的概率为,则这件质量全都在之内(即没有废品)的概率为;则这件零件中至少有件是废品的概率为.(2)(ⅰ)由已知数据,用这个样本的频率分布估计总体分布,将频率视为概率,得该厂生产的一件正品零件为“优等”、“一级”、“合格”的概率分别为;则的可能取值为元,有:;;;;;,得到的分布列如下:150140130125115100..则数学期望为:(元).(ⅱ)设乙厂生产的5件该零件规格的正品零件中有件“优等”品,则有件“一级”品,由已知有,解得:,则取或.故所求的概率为:.【点睛】本题考查概率分布中离散型随机变量分布列与数学期望的求解、二项分布概率问题的求解、正态分布的相关知识,是对概率分布部分知识的综合考查,属于中档题.第 22 题在平面直角坐标系xOy中,直线C1的参数方程为(t为参数,为倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,在平面直角坐标系xOy中,将曲线C2上所有点的横坐标不变,纵坐标伸长为原来的2倍,再向上平移2个单位长度得到曲线C3.(1)求曲线C2、C3的直角坐标方程;(2)直线C1与曲线C3相交于E,F两个不同的点,点P的极坐标为,若,求直线C1的普通方程.【答案解析】(1);;(2).【分析】(1)曲线的极坐标方程转化为,由此能求出曲线的直角坐标方程.再根据圆锥曲线的变换规则求出的直角坐标方程;(2)首先求出的直角坐标,再将直线的参数方程代入的直角坐标方程,消元列出韦达定理,根据直线的参数方程的参数的几何意义及求出,即可得到直线的直角坐标方程;【详解】解:(1)由得,又,∴,∴.设是曲线上任意一点,点P的横坐标不变,纵坐标伸长为原来的2倍,再向上平移2个单位长度得到点为,则,又,∴,;(2)因为点P的极坐标为,所以,所以点P的直角坐标为,将代入得,因为相交于不同两点,∴.∵,∴.设方程的两个实数根为,,则,.由参数t的几何意义知,,∴,∴,∴,又,∴,所以直线的斜率,又直线过点,所以直线的普通方程为.【点睛】本题考查曲线的直角坐标方程的求法,考查直线方程的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.第 23 题已知函数.(1)当时,求不等式的解集;(2)若两函数与的图象恒有公共点,求实数m的取值范围.【答案解析】(1);(2).【分析】(1)将不等式等价于三个不等式组,解不等式即可得答案;(2)求出函数在处取得最大值,只需,即可得答案;【详解】(1)当时,,或或解得:;不等式的解集;(2)由函数知,该函数在处取得最小值1,因为,∴在上递增,在上递减,在上递减,故在处取得最大值,所以要使二次函数与函数的图象恒有公共点,只需,即.【点睛】本题考查分类讨论解绝对值不等式、不等式恒成立问题求参数取值,考查函数与方程思想、转化与化归思想、分类讨论思想,考查运算求解能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学期末考试卷(理科)一、选择题(本大题共11小题,每小题3分,共33分) 1、与向量(1,3,2)a =-平行的一个向量的坐标是( ) A .(31,1,1) B .(-1,-3,2)C .(-21,23,-1)D .(2,-3,-22)2、设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( ) A .0 B .1 C .2 D .33、“a >b >0”是“ab <222b a +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或85、已知空间四边形OABC 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .c b a 213221+-B .c b a 212132++-C .c b a 212121-+D .c b a 213232-+6、抛物线2y 4x =上的一点M 到焦点的距离为1,则点M 的纵坐标为( )A .1716 B .1516 C .78D .0 7、已知对称轴为坐标轴的双曲线有一条渐近线平行于直线x +2y -3=0,则该双曲线的离心率为( )A.5或54 D.5或538、若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( ) A .a ≤1 B .a ≤3 C .a ≥1 D .a ≥39、已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为 ( )A .55 B .555 C .553 D .511 10、已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y +2|,则动点P 的轨迹是 ( ) A .椭圆B .双曲线C .抛物线D .无法确定11、已知P 是椭圆192522=+y x 上的一点,O 是坐标原点,F 是椭圆的左焦点且),(21OF OP OQ +=4||=OQ ,则点P 到该椭圆左准线的距离为( ) A.6 B.4 C.3 D.25高二数学期末考试卷(理科)答题卷一、选择题(本大题共11小题,每小题3分,共33分)二、填空题(本大题共4小题,每小题3分,共12分)12、命题:01,2=+-∈∃x x R x 的否定是13、若双曲线 4422=-y x 的左、右焦点是1F 、2F ,过1F 的直线交左支于A 、B 两点,若|AB|=5,则△AF 2B 的周长是 .14、若)1,3,2(-=a ,)3,1,2(-=b ,则b a ,为邻边的平行四边形的面积为 . 15、以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为正常数,||||PA PB k +=,则动点P 的轨迹为椭圆;②双曲线221259x y -=与椭圆22135x y +=有相同的焦点; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④和定点)0,5(A 及定直线25:4l x =的距离之比为54的点的轨迹方程为221169x y -=. 其中真命题的序号为 _________.三、解答题(本大题共6小题,共55分)16、(本题满分8分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若q p ,只有一个为真,求实数m 的取值范围.17、(本题满分8分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,试用向量法求平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值。
A 118、(本题满分8分)(1)已知双曲线的一条渐近线方程是x y 23-=,焦距为132,求此双曲线的标准方程;(2)求以双曲线191622=-x y 的焦点为顶点,顶点为焦点的椭圆标准方程。
19、(本题满分10分)如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .20、(本题满分10分)如图所示,在直角梯形ABCD 中,|AD |=3,|AB |=4,|BC |= 3 ,曲线段DE 上任一点到A 、B 两点的距离之和都相等.(1)建立适当的直角坐标系,求曲线段DE 的方程; (2)过C 能否作一条直线与曲线段DE 相交,且所得弦以C 为中点,如果能,求该弦所在的直线 的方程;若不能,说明理由.21、(本题满分11分)若直线l :0=++c my x 与抛物线x y 22=交于A 、B 两点,O 点是坐标原点。
(1)当m=-1,c=-2时,求证:OA⊥OB;(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。
(3)当OA⊥OB时,试问△OAB的外接圆与抛物线的准线位置关系如何?证明你的结论。
高二数学(理科)参考答案:第19题图1、C2、C3、A4、C5、B6、B7、B8、D9、C 10、A 11、D12、01,2≠+-∈∀x x R x 13、18 14、56 15、②③16、p :0<m <31 q :0< m <15 p 真q 假,则空集;p 假q 真,则1531<≤m故m 的取值范围为1531<≤m17、如图建立空间直角坐标系,11C A =(-1,1,0),B A 1=(0,1,-1) 设1n 、2n 分别是平面A 1B C 1与平面AB CD 的法向量, 由 011=⋅B A n 可解得1n =(1,1,1)0111=⋅C A n易知2n =(0,0,1), 所以,212121,cos n n n n n n ⋅=33所以平面A 1B C 1与平面AB CD 所成的锐二面角的余弦值为33。
18、(1)19422=-y x 或14922=-x y ;(2)125922=+y x . 19、如图,建立空间直角坐标系O —xyz .(1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA =(1,-1,2),1CB =(0,1,2),1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB 30101||||1111=⋅CB BA CB BA . zyxD 1A 1DB 1C 1CBA(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1=(-1,1,-2), M C 1=(21,21,0).∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M .20、(1)以直线AB 为x 轴,线段AB 的中点为原点建立直角坐标系,则A (-2,0),B (2,0),C (2, 3 ),D (-2,3).依题意,曲线段DE 是以A 、B 为焦点的椭圆的一部分.12,2,4|)||(|212===+=b c BD AD a ∴所求方程为)320,42(1121622≤≤≤≤-=+y x y x (2)设这样的弦存在,其方程为:22(2),(2)11612x y y k x y k x =-=-++=即将其代入得2222(34)16)16360k x k x k ++-+--=设弦的端点为M (x 1,y 1),N (x 2,y 2),则由212122162,4,4,2342x x k x x k k +-=+=∴-==-+知解得∴弦MN 所在直线方程为y x =+验证得知,这时(0,(4,0)M N 适合条件.故这样的直线存在,其方程为y x =+ 21、解:设A(x 1,y 1)、B(x 2,y 2),由⎩⎨⎧==++202x y c my x 得0222=++c my y 可知y 1+y 2=-2m y 1y 2=2c ∴x 1+x 2=2m 2—2c x 1x 2= c 2, (1) 当m =-1,c =-2时,x 1x 2 +y 1y 2=0 所以OA ⊥OB.(2) 当OA ⊥OB 时,x 1x 2 +y 1y 2=0 于是c 2+2c=0 ∴c=-2(c=0不合题意),此时,直线l :02=-+my x 过定点(2,0).(3) 由题意AB 的中点D(就是△OAB 外接圆圆心)到原点的距离就是外接圆的半径。
),(2m c m D --而(m 2—c+21)2-[(m 2—c)2+m 2]=c -41 由(2)知c=-2 ∴圆心到准线的距离大于半径,故△OAB 的外接圆与抛物线的准线相离。