实际问题与一元二次方程(三)
实际问题与一元二次方程-(含答案)

实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。
都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。
主要研究下列两个内容:1.列一元二次方程解决实际问题。
一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。
找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
2.一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。
列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。
概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。
一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。
2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。
3) 列:是指列方程,根据等量关系列出方程。
4) 解:就是解所列方程,求出未知量的值。
5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。
6) 答:即写出答案,不要忘记单位名称。
总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
一元二次方程与实际问题的公式

一元二次方程与实际问题的公式一、引言在数学学科中,一元二次方程是一种经典的数学概念。
它在代数学和实际问题中有着重要的应用。
本文将深入探讨一元二次方程及其在实际问题中的应用,帮助读者更加全面地理解这一数学概念。
二、一元二次方程的基本形式和求解方法一元二次方程通常写作ax²+bx+c=0的形式,其中a、b和c是已知的常数,而x是未知数。
解一元二次方程可以使用因式分解、配方法和求根公式等方法。
这些方法能够帮助我们找到方程的根,进而解决各种实际问题。
三、一元二次方程在几何中的应用以一元二次方程为基础的二次函数能够描述抛物线的形状。
抛物线在现实生活和几何中都有广泛的应用,比如天文学中的行星运动轨迹、物理学中的抛体运动等。
一元二次方程在几何中有着重要的地位。
四、一元二次方程在经济学中的应用在经济学中,成本、收益和利润往往是与生产量或销售量相关的。
这些关系通常可以用一元二次方程来描述。
通过求解一元二次方程,我们可以找到最大化利润或最小化成本的最优解,这对企业经营和管理有着重要的指导意义。
五、一元二次方程在物理学中的应用在物理学中,一元二次方程经常出现在描述运动、力学和波动等方面。
比如自由落体运动、弹簧振动系统的频率等问题,都可以用一元二次方程来建模和求解。
六、总结与展望通过对一元二次方程的深入探讨,我们可以看到它在数学、几何、经济学和物理学中都有着广泛的应用。
它不仅是一种抽象的数学概念,更是解决实际问题的有力工具。
希望本文能够帮助读者更好地理解一元二次方程及其在实际问题中的应用,让数学变得更加具体和生动。
七、个人观点在我看来,数学中的一元二次方程不仅是一种工具,更是一种思维方式。
通过对实际问题的抽象和建模,我们可以运用数学的知识和方法来解决各种复杂的问题。
我认为掌握一元二次方程及其应用是非常重要的。
希望读者能够通过本文的阅读,对一元二次方程有更深入的理解和应用。
通过本文对一元二次方程的探讨,我们可以深刻地理解这一数学概念所蕴含的丰富内涵。
21.3实际问题与一元二次方程课件

试一试
4、某航空公司有若干个飞机场,每个飞机场之间 都开辟一条航线,一共开辟了10条航线,则这个 航空公司共有飞机场(B ) A.4个 B.5个 C.6个 D.7个
5、在一次商品交易会上,参加交易会的每两家公司 之间都要签订一份合同,会议结束后统计共签订了78 份合同,问有多少家公司出席了这次交易会?
B.50+50(1+x)2=196
C.50+50(1+x)+50(1+x)2=196
D.50+50(1+x)+50(1+2x)=196
试一试
1.某乡无公害蔬菜的产量在两年内从20吨增加到35吨. 设这两年无公害蔬菜产量的年平均增长率为x,根据题意, 列出方程为 __________________ .
了一系列政策措施,2001年中央财政用于支持这项改革
试点的资金约为180亿元,预计到2003年将到达304.2亿
元,求2001年到2003年中央财政每年投入支持这项改革
资金的平均增长率?
分析:设这两年的平均增长率为x,
2001年 2002 年
2003年
180
180(1+x)
180(1 x)2
解:这两年的平均增长率为x,依题有
纵向路面面积为20x 米2 。
32m
耕地矩形的长(横向)为(32-x) 米 ,
耕地矩形的宽(纵向)为 (20-x) 米 。
相等关系是:耕地长×耕地宽=540米2
即 32 x20 x 540.
化简得:x2 52 x 100 0, x1 50, x2 2
再往下的计算、格式书写与解法1相同。
x米
矩形面积减去道路面积等
于540米2。
20m
解法一、
如图,设道路的宽为x米, 则横向的路面面积为 32x 米2
初三数学一元二次方程实际问题经典题型汇总3

【解析】
【分析】
由在绿地中开辟两条道路后剩余绿地面积为4704 m²,即可得出关于x的一元二次方程.
【详解】
设路宽为m,根据题意得:
50×100-50x-100x+x2=4704.
整理得:5000-150x+x2=4704.
故答案为:B.
【点睛】
本题主要考查了由实际问题抽象出一元二次方程,解体的关键是找到等量关系,正确列出一元二次方程.
18.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:
(1)每轮传染中平均每个人传染了几个人?
(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?
(x-40)[400-10(x-50)]=6000
-130x+4200=0
解得: = 60, = 70
根据题意,进货量要少,所以 = 60不合题意,舍去.
答:售价应定为70元.
【点睛】
本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.
8.(1)月的平均增长率为 ;(2) 月份销售自行车为 辆.
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
17.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设点P运动的时间为t秒.
(1)求BE的长;
(2)当t为多少秒时,△BPE是直角三角形?
人教版九年级上册第21章一元二次方程实际应用 专项培优练习(三)(解析版)

第21章一元二次方程实际应用同步专项培优练习基础题训练(一):限时30分钟1.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出8套,现乙卖家先将标价提高m%,再大幅降价40m元,使得这款沙发在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到了50000元,求m的值.2.某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).(1)求该店主包邮单价定为53元时每周获得的利润;(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时,每周获得的利润大?最大值是多少?3.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?4.某商店在2017年至2019年期间销售一种礼盒,2017年,该商店用3500元购进了这种礼盒并且全部售完;2019年这种礼盒的进价比2017年下降了11元/盒,该商店用2400元购进了与2017年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2017年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同问年增长率是多少?5.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.(1)求出发多少秒时PQ的长度等于5cm;(2)出发秒时,△BPQ中有一个角与∠A相等.基础题训练(二):限时30分钟6.成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?7.利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低3元,平均每天可多售出6件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?8.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.9.3月国际风筝节在婺源县举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高0.1元,销售量就会减少1个,请回答下列问题:(1)用函数解析式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.参考答案1.解:(1)设降价x 元,依题意,得:8000×0.9﹣x ﹣5000≥5000×20%,解得:x ≤1200.答:最多降价1200元,才能使利润率不低于20%.(2)依题意,得:[8000(1+m %)﹣40m ﹣5000]×8(1+m %)=50000,整理,得:m 2+275m ﹣16250=0,解得:m 1=50,m 2=﹣325(不合题意,舍去).答:m 的值为50元.2.解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元). 答:每周获得的利润为2210元;(2)由题意,y =(x ﹣35﹣5)[200﹣10(x ﹣50)]即y 与x 之间的函数关系式为:y =﹣10x 2+1100x ﹣28000;(3)∵y =﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250,∵﹣10<0,∴包邮单价定为55元时,每周获得的利润最大,最大值是2250元.3.解:(1)设口罩日产量的月平均增长率为x ,根据题意,得20000(1+x )2=24200解得x 1=﹣2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.4.解:(1)设2017年这种礼盒的进价是x 元/盒,则2019年这种礼盒的进价是(x ﹣11)元/盒,依题意,得:=, 解得:x =35,经检验,x =35是原方程的解,且符合题意.答:2017年这种礼盒的进价是35元/盒.(2)2017年及2019年购进这种礼盒的数量为3500÷35=100(盒).设该商店每年销售这种礼盒所获利润的年增长率为y,依题意,得:(60﹣35)×100(1+y)2=(60﹣35+11)×100,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店每年销售这种礼盒所获利润的年增长率为20%.5.解:(1)设出发t秒时PQ的长度等于5cm,PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm.(2)设出发x秒时,△BPQ中有一个角与∠A相等.∵AB=5cm,BC=7cm∴PB=(5﹣x)cm,BQ=2xcm当∠BPQ=∠A时,又∵∠B=∠B∴△ABC∽△PBQ∴=∴=解得:x=;当∠BQP=∠A时,又∵∠B=∠B∴△ABC∽△QBP∴=∴=解得:x=故答案为:或.6.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.7.解:(1)20+6÷3×6=32(件).故答案为:32.(2)设每件商品降价x元,则平均每天的销售数量为(20+)件,依题意,得:(40﹣x)(20+)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.∵40﹣x≥25,解得:x≤15,∴x=10.答:当每件商品降价10元时,该商店每天销售利润为1200元.8.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品捐款的数额为45元.9.解:(1)根据题意得:y =180﹣,整理得: y =300﹣10x (12≤x ≤30),(2)根据题意得:(x ﹣10)(300﹣10x )=840,整理得:x 2﹣40x +384=0,解得:x 1=16,x 2=24,为让利给顾客,售价应定16元,答:售价应定16元.10.解:(1)设甲种苹果的进价为a 元/千克,乙种苹果的进价为b 元/千克, 根据题意得:,解得:. 答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x )(100﹣10x )+(2+x )(140﹣10x )=960, 整理得:x 2﹣9x +14=0,解得:x 1=2,x 2=7,经检验,x 1=2,x 2=7均符合题意.答:x 的值为2或7.。
实际问题与一元二次方程习题含答案

323 5337 9 113413 1517 1922.2实际问题与一元二次方程(1)1.一个多边形有70条对角线,则这个多边形有________条边.2.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x 名同学,依题意,可列出的方程是( ) A .x (x+1)=240 B .x (x-1)=240 C .2x (x+1)=240 D .12x (x+1)=240 3.一个小组若干人,新年互送贺卡,若全组共送贺卡72,则这个小组共( ). A .12人 B .18人 C .9人 D .10人4.有一人患了流感,经过两轮传染后,共有121人患了流感,若设每轮传染中平均每人传染了x 人,那么可列方程为.5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有几个球队参加了这次比赛?6、32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) A 、41 B 、39 C 、31 D 、297.某商店将甲、乙两种糖果混合运算,并按以下公式确定混合糖果的单价:单价=112212a m a m m m ++(元/千克),其中m 1,m 2分别为甲、乙两种糖果的重量(千克),a 1,a 2分别为甲、乙两种糖果的单价(元/千克).已知a 1=20元/千克,a 2=16元/千克,现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,•又在混合糖果中加入5千克乙种糖果,再出售时混合糖果的单价为17.5元/千克,问这箱甲种糖果有多少千克?8.(2008.市)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A .8人B .9人C .10人D .11人 9.(2008年聊城市)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( ) A .54个B .90个C .102个D .114个答案:1.10 2.B 3。
人教版九年级上册 第21章 《一元二次方程》实际应用同步练习(三)
人教版九年级上册第21章《一元二次方程》实际应用同步练习(三)基础题训练(一):限时30分钟1.暑假是旅游旺季,为吸引游客,某旅游公司推出两条“精品路线”﹣﹣“亲子游”和“夏令营”.(1)7月份,“亲子游”和“夏令营”活动的价格分别为8000元/人和12000元/人.其中,参加“夏令营”活动的游客人数为“亲子游”活动游客人数的2倍少300人,且“夏令营”线路的旅游总收入不低于“亲子游”线路旅游总收入的一半,问:参加“亲子游”线路的旅游人数至少有多少人?(2)到了8月份,该旅游公司实行降价促销活动,“亲子游”和“夏令营”线路的价格分别下降%和a%(a<20),旅游人数在7月份对应最小值的基础上分别上升3a%和5a%,当月旅游总收入达到256.32万元,求a.2.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则这个矩形是给定矩形的“加倍”矩形.如图,矩形A1B1C1D1是矩形ABCD的“加倍”矩形.解决问题:(1)当矩形的长和宽分别为3,2时,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的长与宽,若不存在,请说明理由.(2)边长为a的正方形存在“加倍”正方形吗?请做出判断,并说明理由3.甘肃是全国马铃薯主产区之一,定西又是甘肃马铃薯最大主产区.经过多年发展,定西在马铃薯种植基地建设,良种工程、优质新品种用与试验、仓储体系、合作经济组织、外销加工及市场扶植等方面取得了突出成绩,鲜薯及薯制品走销全国20多个省市区,并远销东南亚、俄罗斯等国家和地区.某种植户2016年投资20万元种植马铃薯,到2018年三年共累计投资95万元,若在这两年内每年投资的增长率相同.(1)求该种植户每年投资的增长率;(2)按这样的投资增长率,请你预测2019年该种植户投资多少元种植马铃薯.4.践行“低碳生活,绿色出行”理念,自行车成为人们喜爱的交通工具.其品牌共享自行车在慈溪的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)若该品牌共享自行车前4个月的投放量的月平均增长率相同,则4月份投放了多少辆?(2)寒假里小明骑“共享单车”去离家2000米的慈溪银泰影视城观看电影,到了影视城发现假期优惠门票忘带了,于是骑车立即返回,已知返回的平均速度是来影视城时的平均速度的2倍,且途中时间少花了5分钟.求小明去影视城的平均速度?5.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?基础题训练(二):限时30分钟6.2017年的中央一号文件《中共中央、国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》明确把深入推进农业供给侧结构性改革作为新的历史阶段农业农村工作主线,某农业公司市场调研发现,新疆阿克苏冰糖心苹果、香梨特别畅销,于是决定购进大批糖心苹果和香梨进行网上销售.3月份糖心苹果每件的售价是香梨每件售价的1.5倍,3月某顾客花780元购买糖心苹果件数是花200元购买香梨件数的2倍还多3件,根据统计3月份每周可分别卖出香梨和糖心苹果300件和800件.(1)求香梨和糖心苹果每件售价分别为多少元?(2)到了四月份,进入了香梨销售的旺季,苹果的销售淡季,公司打算提高香梨的销售价格,梨每件涨价2a%,而每周的销量比三月每周销量增加2a%;糖心苹果每件降价a%,每周的销量比三月份增加(a+10)%,四月份一周总销售额为69120元,求a的值.7.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和14.4万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.7万件,那么该公司现有的22名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?8.如图,有一块长为21m、宽为10m的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道,且人行通道的宽度不能超过3米.(1)如果两块绿地的面积之和为90m2,求人行通道的宽度;(2)能否改变人行通道的宽度,使得每块绿地的宽与长之比等于3:5,请说明理由.9.某水果经销商上月份销售一种新上市的水果平均售价为10元/千克,月销售量为1000千克.经过市场调查,若将该种水果价格调低至x元/千克,则本月份销售量y(千克)与x(元/千克)之间满足一次函数关系y=kx+b,且当x=5时,y=4000;当x=7时,y=2000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,当本月成本价为4元/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?(利润=售价﹣成本)10.名闻遐迩的采花毛尖明前茶,成本每斤400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:x(元/斤)450 500 600y(斤)350 300 200(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.参考答案1.解:(1)设参加“亲子游”线路的游客人数为x人,则参加“夏令营”活动的游客人数为(2x﹣300)人,由题意得12000(2x﹣300)≥×8000x解得x≥180,∴参加“亲子游”线路的旅游人数至少有180人;(2)由(1)可知,参加“夏令营”活动的游客人数的最小值为60人,由题意得0.8(1﹣)×180(1+3a%)+1.2(1﹣a%)×60(1+5a%)=256.32 设a%=t,整理得:50t2﹣25t+2=0解得t=0.4(舍去)或t=0.1,∴a=10.2.(1)解:存在;设“加倍”矩形的一边为x,则另一边为(10﹣x)则:x(10﹣x)=12 (3分)解之得:x1=5+,x2=5﹣,∴10﹣x1=5﹣;10﹣x2=5+;答:“加倍”矩形的长为5+,宽为5﹣;(2)不存在.因为两个正方形是相似图形,当它们的周长比为2时,则面积比必定是4,所以不存在.3.解:(1)设这两年该该种植户每年投资的年平均增长率为x,则2017年种植投资为20(1+x)万元,2018年种植投资为20(1+x)2万元,根题意得:20+20(1+x)+20(1+x)2=95,解得:x=﹣3.5(舍去)或x=0.5=50%.∴该种植户每年投资的增长率为50%;(2)2019年该种植户投资额为:20(1+50%)3=67.5(万元).4.解:(1)设月平均增长率为x,依题意,得:640(1+x)2=1000,解得:x1=﹣2.25(舍去),x2=0.25=25%,∴1000(1+x)=1250.答:4月份投放了1250辆.(2)设去影视城时的平均速度为y米/分钟,则返回时的平均速度为y米/分钟,依题意,得:﹣=5,解得:y=200,经检验,y=200是所列分式方程的解,且符合题意.答:小明去影视城的平均速度为200米/分钟.5.解:(1)设通道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400,a2=40由于是惠民工程,所以a=40符合题意.答:每个车位的月租金上涨40元时,停车场的月租金收入为14400元.6.解:(1)香梨和糖心苹果每件售价分别为x元和1.5x元,根据题意得,=2×+3,解得:x=40,经检验:x=40是原方程的解,∴1.5x=60,答:香梨和糖心苹果每件售价分别为40元和60元;(2)根据题意得,40(1+2a%)[300(1+2a%)]+60(1﹣a%){800[1+(a+10)%]}=69120,解得:a=10.7.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得:10(1+x)2=14.4,解得x1=0.2,x2=﹣2.2(不合题意舍去),∴x=0.2=20%.答:该快递公司投递总件数的月平均增长率为20%;(2)今年4月份的快递投递任务是14.4×(1+20%)=17.28(万件).∵平均每人每月最多可投递0.7万件,∴22名快递投递业务员能完成的快递投递任务是:0.7×22=15.4<17.28,∴该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务,∴需要增加业务员(17.28﹣15.4)÷0.7≈2.7≈3(人).答:该公司现有的22名快递投递业务员不能完成今年4月份的快递投递任务,至少需要增加3名业务员.8.解:(1)设人行通道的宽度为x米,则两块矩形绿地的长为(21﹣3x)(米),宽为(10﹣2x)(米),根据题意得:(21﹣3x)(10﹣2x)=90,解得:x1=10(舍去),x2=2,答:人行通道的宽度为2米;(2)设人行通道的宽为y米时,每块绿地的宽与长之比等于3:5,根据题意得:(10﹣2y):=3:5,解得:y=,∵>3,∴不能改变人行横道的宽度使得每块绿地的宽与长之比等于3:5.9.解:(1)由已知得,解得,∴y=﹣1000x+9000;(2)由题意可得1000(10﹣5)(1+20%)=(﹣1000x+9000)(x﹣4),整理得:x2﹣13x+42=0,解x1=6,x2=7(舍去).答:该种水果价格每千克应调低至6元.10.解:(1)设y与x之间的函数关系式为y=kx+b,根据题意,得:,解得:,则y=﹣x+800;(2)设总利润为w,w=(x﹣400)(﹣x+800)=﹣x2+1200x﹣320000,令w=30000得:30000=﹣x2+1200x﹣320000,解得:x=500或x=700,∵a=﹣1<0,∴500≤x≤700时w不小于30000,∵x﹣400≤400×40%,∴x≤560,∴500≤x≤560.。
一元二次方程的根与系数的关系与解决实际问题(解析版)
第3天一元二次方程的根与系数的关系与解决实际问题【知识回顾】1.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:△当△>0时,方程有两个不相等的两个实数根;△当△=0时,方程有两个相等的两个实数根;△当△<0时,方程无实数根.上面的结论反过来也成立.2.根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,12bx xa+=-,12cx xa⋅=.(3)常用根与系数的关系解决以下问题:△不解方程,判断两个数是不是一元二次方程的两个根.△已知方程及方程的一个根,求另1一个根及未知数.△不解方程求关于根的式子的值,如求,x12+x22等等.△判断两根的符号.△求作新方程.△由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.3.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.一.选择题(共10小题)1.(2020·云南一模)若α、β是一元二次方程x2+2x﹣6=0的两根,则11+αβ的值是()A.13-B.13C.﹣3D.3【答案】B【解析】△α、β是一元二次方程x2+2x﹣6=0的两根,△α+β=﹣2,αβ=﹣6,则11+-21 +===-63αβαβαβ,故选B.2.(2020·四川省射洪县射洪中学外国语实验学校期中)下列一元二次方程两实数根和为-42的是()A.2240x x--=B.2440x x-+= C.24100x x++=D.2450x x-=+【答案】D【解析】A中1222 1x x -+=-=,故错误;B中12-44 1x x+=-=,故错误;C中24164024<0b ac∆=-=-=-,故错误;D中124-4 1x x+=-=,故准确;故答案选D.3.(2020·四川省射洪县射洪中学外国语实验学校月考)方程22310m m-+=和方程224m m-=-所有实数根之和为()A.72B.32C.32-D.92【答案】B【解析】34△方程22310m m -+=根的判别式2=(-3)42110∆-⨯⨯=>△方程22310m m -+=有两个实数根△两根之和为32△方程224m m -=-的根的判别式2=(-2)414-120∆-⨯⨯=<△方程224m m -=-无实数根△方程22310m m -+=和方程224m m -=-所有实数根之和为32故选:B 4.(2020·渠县第四中学期中)已知x 1,x 2是一元二次方程x 2-2x -1=0的两根,则x 1+x 2-x 1·x 2的值是( )A .1B .3C .-1D .-3 【答案】B【解析】由题意知:122x x +=,12-1x x ⋅=,△原式=2-(-1)=3故选B .5.(2020·江苏如东二模)若x 1,x 2是方程x 2﹣3x ﹣2=0的两个根,则x 1+x 2﹣x 1•x 2的值是( ) A .﹣5B .﹣1C .5D .15【答案】C【解析】根据题意得x 1+x 2=3,x 1x 2=﹣2,所以x 1+x 2﹣x 1•x 2=3﹣(﹣2)=5.故选:C .6.(2020·内蒙古海勃湾期末)一元二次方程2310x x -+=的两个根为12,x x ,则2121232x x x x ++-的值是( )A .10B .9C .8D .7【答案】D【解析】 1x 为一元二次方程2310x x -+=的根,21131x x ∴=-,2121232x x x x ∴++-=()12121212313233x x x x x x x x -++-=++-.根据题意得123x x +=,121=x x ,212123233137x x x x ∴++-=⨯+-=.故选:D .7.(2020·银川市第十五中学一模)已知关于x 的方程x 2-4x +c +1=0有两个相等的实数根,则常数c的值为( )A.-1B.3C.1D.0【答案】B【解析】△方程x2−4x+c+1=0有两个相等的实数根,△△=(−4)2−4(c+1)=12−4c=0,解得:c=3.故答案选B.8.(2019·广东郁南月考)某中学要组织一次篮球比赛,赛制为单循环形式(毎两队之间都赛一场),计划安排21场比赛,求参加的球队支数,如果设参加的球队支数为x,则可列方程为()A.12x(x+1)=21B.x(x+1)=21C.12x(x﹣1)=21D.x(x﹣1)=21【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得:12x(x-1)=21,故选:C.9.(2020·深圳市宝安区北亭实验学校)若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为( )67A .7B .3或7C .15D .11或15【答案】C【解析】x 2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7, 当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.10.(2020·湖南隆回一模)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯B .()()130********x x --=⨯⨯8C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 【答案】D【解析】 设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D .二.填空题(共5小题) 11.(2020·江苏高淳期末)一元二次方程x 2+mx+2m=0的两个实根分别为x 1,x 2,若x 1+x 2=1,则x 1x 2=______.【答案】-2.【解析】根据题意得x 1+x 2=-m=1,x 1x 2=2m ,所以m=-1,所以x 1x 2=-2.12.(2020·温州市第二十三中学)已知关于x 的方程260x x a ++=有一个根是-2,则方程的另一个根是___________.【答案】-4【解析】因为已知关于x 的方程260x x a ++=有一个根是-2,9 所以由12b x x a+=-得2226,4x x -+=-∴=-. 故答案为-4. 13.(2020·四川省射洪县射洪中学外国语实验学校期中)若,a b 是方程2220060x x +-=的两根,则23a a b ++= .【答案】2004.【解析】2220060x x +-=的两根△a+b=-2,222006a a +=,△223=2+a =2006-2=2004++++a a b a a b故答案为:200414.(2020·四川省射洪县射洪中学外国语实验学校期中)如果关于x 的一元二次方程()20ax b ab =>的两个根分别是11x m =+与224x m =-,那么b a的值为__________. 【答案】4【解析】方程化为一般式为:ax 2-b=0x 1+x 2=m+1+2m -4=0 △x 1·x 2=(m+1)(2m -4)=-b a △10解方程△,得m=1把m=1代入△,得b a=-2×(-2)=4. 故答案为:4.15.(2019·上海交大附中)设方程( 1) (11)(11)(21)x x x x ++++++(1)(21)0x x ++=的两根为12,x x ,则()()1211x x ++=______. 【答案】2003【解析】(1)(11)(11)(21)1)(20(1)x x x x x x ++++++++=, 221211x x x ∴++++23223122210x x x ++++=, 23662630x x ∴++=.△3a =,66b =,263c =,224664326343563156b ac ∆=-=-⨯⨯=-=12000>, 1212263223x x b a a x c x =-=∴+=-=,. ()()()1212122631112213x x x x x x ++=+++=-+=2003. 故答案为:2003. 三.解析题(共5小题)1116.(2019·广东郁南月考)关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】(1)△Δ=4(k -1)2-4k 2≥0,△-8k +4≥0,△k ≤12; (2)△x 1+x 2=2(k -1),x 1x 2=k 2,△2(k -1)=1-k 2,△k 1=1,k 2=-3.△k ≤12,△k =-3. 17.(2020·甘肃省庆阳市第五中学期末)已知关于x 的一元二次方程()222120x k x k k -+++=有两个实数根12,x x .(1)求实数k 的取值范围.(2)是否存在实数k ,使得()22121216x x x x +-=成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)14k ≤;(2)存在这样的实数k ,k 的值为3-. 【解析】(1)由题意得:方程的根的判别式[]22(21)4(2)0k k k ∆=-+-+≥,12 解得14k ≤; (2)由一元二次方程根与系数的关系得:2121221,2x x k x x k k +=+=+,则()()2222121211221223x x x x x x x x x x +-=++-, ()212123x x x x =+-, ()()222132k k k =+-+, 221k k =-+,当()22121216x x x x +-=时,22116k k -+=, 即22150k k --=,因式分解得:(3)(5)0k k +-=,解得3k =-或154k =>(不符题意,舍去), 故存在这样的实数k ,k 的值为3-.18.(2020·四川南充月考)关于x 的方程2220x mx m m -+-=有两个不相等的实数根12,x x .(1)求m 的取值范围.(2)若221212x x +=,求211214x x x x +-的值.13【答案】(1)0m >;(3)0【解析】(1)△1a =,2b m =-,2c m m =-,△()()2224241b ac m m m =-=--⨯⨯- 40m =>△0m >;(2)由根与系数的关系,得:212122x x m x x m m +==-,,△221212x x +=,△()21212212x x x x +-=,△()224212m m m --=, △2+60m m -=,解得2m =或3m =-(舍去),△原方程为2420x x -+=,△212112420x x x x =-+=,,△211214220x x x x +-=-+=.19.(2020·湖南茶陵期末)已知关于x 的一元二次方程240x x m -+=.14(1)若方程有实数根,求实数m 的取值范围;(2)若方程的两个实根为12,x x ,且满足12326x x +=,求实数m 的值.【答案】(1)4m ≤;(2)12=-m .【解析】(1)△原方程有实数根,△方程的根的判别式1640m ∆=-≥,解得4m ≤;(2)由一元二次方程的根与系数的关系得:12441x x -+=-=, 又121211322()246x x x x x x +=++=⨯+=,12x ∴=-,将12x =-代入原方程得:2(2)4(2)0m --⨯-+=,解得12=-m .20.(2020·渠县第四中学期中)某商场试销一件成本为60元的服装,规定试销期间销售单价不低于成本单价,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx +b ,且x =65时,y =55;x =75时,y =45.(1)求y 与x 的函数关系式;(2)若该商场想获得利润500元,求销售单价.【答案】(1)y =-x +120(60≤x≤120);(2)销售单价为70元或110元.【解析】解:(1)根据题意,得6555 7545k bk b+=⎧⎨+=⎩解得1120 kb=-⎧⎨=⎩△一次函数关系式为y=-x+120(60≤x≤120).(2)(-x+120)(x-60)=500,整理得x2-180x+7700=0.解得x1=70,x2=110,答:当销售单价为70元或110元时,该商场获得500元利润.15。
一元二次方程的实际应用问题
一元二次方程的实际应用问题
一元二次方程是一种重要的数学工具,它可以用来解决许多实际应用问题。
以下是一些常见的一元二次方程实际应用问题的例子:
1.几何问题:例如,已知一个矩形的周长为 20 厘米,长比宽多
2 厘米,求这个矩形的长和宽。
设矩形的宽为 x 厘米,则长为 x+2 厘米。
根据矩形的周长公式2\times(长+宽),可列出方程:
所以,矩形的宽为 4 厘米,长为 6 厘米。
2.经济问题:例如,某商品的进价为每件 20 元,售价为每件 30 元。
如果每天能卖出 200 件,问每天的利润是多少?
设每天的销售量为 x 件,则每天的利润为(30-20)x 元。
根据每天的销售量为 200 件,可列出方程:
3.物理问题:例如,一个物体从高处自由落体,经过时间 t 落地。
已知物体下落的高度为 h,重力加速度为 g,求物体下落的时间t。
根据自由落体公式 h=gt^2/2,可列出方程:
以上只是一些简单的例子,实际上,一元二次方程可以应用于各种各样的实际问题中,例如物理学、工程学、经济学、生物学等等。
21-3 实际问题与一元二次方程 课件(共25张PPT)
2
5−1
− 5−1
或x2=
(不合题意,舍去),所以
2
2
小练习
例 4:邻边不等的矩形花圃ABCD,它的一边AD利用已有的围
墙,另外三边所围的栅栏的总长度是6m,若矩形的面积为
1
4m2,则AB的长度是____m(可利用的围墙长度超过6m)。
解析:设垂直墙的篱笆的AB为x,那么平行墙的篱笆BC长为(6-2x),
解方程,得:x1≈0.225,x2≈1.775(不合题意,舍去)。
则根据问题的额实际意义,甲乙两种药品成本的年平均下降率均为22.5%
知识梳理
知识点1:组合计算问题。
常见单循环赛问题,握手问题,签合同问题都有相同的规
1
律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
2
例 1:某植物的主干长出若干数目的枝干,每个枝干又长
方程,a(1-x)2=49%a,整理得:x2-2x+0.51=0,解得:x1=1.7(舍去)
或x2=0.3,∴平均每次降价30%。故选D。
知识要点
列方程解应用题的一般步骤:①审题;②设未知数;③列方程;
④解方程;⑤检查作答。
组合计数问题:常见单循环问题,握手问题,签合同问题都有
1
相同的规律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
1+x+x(1+x)
人中的每个人又传染了x个人,用代数式表示,第二轮后共有_________
个人患了流感。
列方程1+x+x(1+x)=121,
解方程,得x1=10,x2=-12(不合题意,舍去).
平均一个人传染了10个人。
教学新知