七年级数学上册2.7有理数的乘法第2课时有理数乘法的运算律教学设计2北师大版

合集下载

最新【北师大版】七年级数学上册:2.7.2《有理数乘法的运算律》课时作业(含答案)

最新【北师大版】七年级数学上册:2.7.2《有理数乘法的运算律》课时作业(含答案)

最新北师大版数学精品教学资料2.7.2 有理数乘法的运算律1.两个有理数的积是负数,和为零,那么这两个有理数( )A .一个为零,另一个为正数B .一个为零,另一个为负数C .一个为正数,另一个为负数D .互为相反数且都不为零2.若ab >0,则下列结论正确的是( )A .a >0,b >0B .a <0,b <0C .a ,b 同号D .以上答案都不对3.绝对值小于6的所有整数的积是________. 4.判断下列各个乘积的符号: ①(-2)×(-3)×4×(-5)×3;②4×(-2)×(-3.4)×(-6.7)×5×(-9)×3; ③4×7×(-5)×9×(-4.6)×9×13; ④(-2)×0×7×(-4);⑤(-2.1)×(-6)×(-9)×(-6.7)× (-5.8)×(-4.7).其中积为正数的有________,积为负数的有______,另外________的乘积既不是正数也不是负数(只填序号即可).5.计算(-2.5)×0.37×1.25×(-4)×(-8)的值为________. 6.计算:(1)(-4)×(-0.07)×(-25); (2)(47-118+314)×56.7.先阅读提供的材料,再解答相关问题: (1+12)×(1-13)=32×23=1.(1+12)×(1+14)×(1-13)×(1-15)=32×54×23×45=(32×23)×(54×45)=1×1=1.请你求(1+12)×(1+14)×(1+16)×(1-13)×(1-15)×(1-17)的结果.8.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,求(a +b)cd -2 009m 的值.9.刘亮的妈妈每天早上要送新鲜蔬菜到市场去卖,下面是她一周送出的20筐菜的重量记录表,每筐以25 kg 为标准重量.(2013·台州模拟)计算(-1 00015)×(5-10)的值为( )A .1 000B .1 001C .1 999D .5 001课后作业1.D 两数互为相反数且不为0. 2.C 同号得正. 3.04.②③⑤ ① ④ 积的符号由负因数的个数决定 5.-37 6.解:(1)-7 原式=-4×25×0.07 =-100×0.07=-7;(2)-19 原式=47×56-98×56+314×56=32-63+12 =-19.7.解:原式=32×54×76×23×45×67=1.8.解:2 009或-2 009 ∵a,b 互为相反数,∴a+b =0,∵c,d 互为倒数,∴cd=1, ∵|m|=1,∴m=±1,当m =1时, (a +b)cd -2 009m =0×1-2 009×1 =-2 009;当m =-1时,原式=0×1-2 009×(-1)=2 009.9.解:501.3 kg 25×20+(-0.8×2+0.6×5-0.5×3+4×0.4+2×0.5+4×(-0.3) =500+(-1.6+3-1.5+1.6+1-1.2) =500+1.3 =501.3(kg ). 中考链接D 原式=-(1 000+15)×(-5)=(1 000+15)×5=1 000×5+15×5=5 000+1=5 001,所以选D .。

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加.
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)

5 6

3 8
-24;
(2)
-7

4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3

值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);

七年级数学 第2章 有理数及其运算 7 有理数的乘法(第2课时)

七年级数学 第2章 有理数及其运算 7 有理数的乘法(第2课时)

8.(-21-14-16)×(-24)
=(-12)×(-24)+(-41)×(-24)+(-16)×(-24)①,
=12+6+4②,
以上运算( C )
A.运用了乘法结合律 B.运用了乘法交换律
C.①是分配律
D.②是分配律
12/6/2021
9.假设拧不紧的水龙头每秒滴下 2 滴水,每滴水约 0.05mL,那么经过 4
2018年秋
12/6/2021
数学 七年级 上册 • B
第二章 有理数及其运算
7 有理数的乘法 第2课时
用字母表示 1.乘法交换律 ab=ba ;2.乘法结合律 abc=a(bc) ;3.乘法的分 配律 a(b+c)=ab+ac . 易错题:计算:-691156×(-8)= (70-116)×8=560-12=55912 .
12/6/2021
17.首先阅读下列解题过程: 1×1 2+2×1 3+3×1 4+4×1 5=1-12+12-13+13=41+14-15=1-15=45. 请你运用上述方法计算: 7×1 8+8×1 9+9×110+…+2017×1 2018. 解:原式=17-81+18-19+91-110+…+20117-20118=17-20118=7×20210118= 2011 14126.
12/6/2021
16.个体儿童服装店老板以 32 元的价格购进 30 件连衣裙,针对不同的顾客, 30 件连衣裙的售价不完全相同,若以 47 元为标准价格,将超过标准价格的 售价记为正,不足标准价格的售价记为负,记录结果如下表所示:
售出件数 7 6 3 5 4 5 售价/元 +3 +2 +1 0 -1 -2 请问:该服装店老板在售完这 30 件连衣裙后赚了多少钱? 解:3×7+2×6+1×3+(-1)×4+(-2)×5=22(元),(47-32)×30+22= 472(元),答:赚了 472 元.

七年级数学上册第二章有理数及其运算7有理数的乘法有理数的乘除法课标要求素材北师大版

七年级数学上册第二章有理数及其运算7有理数的乘法有理数的乘除法课标要求素材北师大版

有理数的乘除法课标要求
主要内容是有理数的乘除法运算,及有理数的四则混合运算,《课标》对本节相关内容提出的教学要求是:
1。

掌握有理数的乘、除法运算及简单的混合运算(以三步以内为主).
2.理解有理数的乘法运算律,能运用运算律简化运算.
3。

能运用有理数的乘、除法运算解决简单的问题
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)

北师大版七年级数学上册 (有理数的加减混合运算)有理数及其运算教学课件(第2课时)

D.-1-(-3)-6-(-8)
4 -2-3+5的读法正确的是( A )
A.负2,负3,正5的和 B.负2,减3,正5的和
C.负2,3,正5的和
D.以上都不对
(来自《典中点》)
知1-练
5 将-3-(+6)-(-5)+(-2)写成省略括号和加号 的和的形式,正确的是( D ) A.-3+6-5-2 B.-3-6+5+2 C.-3-6-5-2 D.-3-6+5-2
1 课堂讲解 有理数的加减运算统一成加法
加法运算律在加减混合运算中的应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 加法的交换律: 两个数相加,交换加数的位置,和不变.
ab ba
加法的结合律: 三个数相加,先把前两个数相加或先把 后两个数相加,和不变.
(a b) c a (b c)
55,-40,10,-16,27,-5
今年的小麦总量与去年相比情况如何?
3、某日小明再一条南北:方向的公路上跑步,他从A地出发,每隔 10min记录下自己的跑步情况(向南为正方向,单位:m):
-1008,1100,-976,1010,-827,946
1小时后他停下来休息,此时他在A地什么方向?据A地多远?小明共 跑了多少米?
4、某中学七(1)班学生的平均身高是160厘米 (1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表.
姓名 身高 身高与平均身高的差值
小明 小彬 小丽 小亮 小颖 小山
159 162 160 154 163 165 -1 +2 0 -6 +3 +5
(2)谁最高?谁最矮? 小山最高,小亮最矮 (3)最高与最矮的学生身高相差多少? 11厘米 (4)求平均身高?

有理数的乘法 第二课时《有理数乘法相关运算律》(教学设计)-初中《数学》七年级上册-人教版

有理数的乘法 第二课时《有理数乘法相关运算律》(教学设计)-初中《数学》七年级上册-人教版
1.4.1
第二课时《有理数乘法相关运算律》教学设计
课题
数学七年级上册
版本
新人教版
执教者
课标要求
掌握多个有理数相乘的符号法则
学情分析
学生前面已经学习了有理数的加法运算和减法运算,并知道了有理数包括正数、负数和零,或正整数、正分数、负整数、负分数和零,“两负数相乘,积的符号为正”与“两负数相加,和为负”容易混淆.
几个数相乘,如果其中有因数为0,积等于0




内容分析
在上节课学习有理数乘法的基础上,巩固有理数的乘法法则,探索多个有理数相乘时,积的符号的确定方法.




知识与技能目标
掌握有理数相乘的运算顺序及积的符号确定规则
过程与方法目标
发展学生的观察、归纳、猜测、验证等能力.
情感态度与价值观目标
能让学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益.
教学资源
多媒体、PPT课件
教学重点
应用符号法则正确地进行有理数乘法运算
教学难点多个有理数相乘时积符号的确定方法教学


教学方法
观察、分析、归纳与练习巩固相结合,两先两后教学法
学习方法
自主探究,先学后教




教学环节
教学内容
教师活动
学生活动
设计意图
一、预习导学
二、学习研讨
(1)自学内容:教材第31页的内容.
几个数相乘,如果其中有一个因数为0,积等于0
例3 计算:
(1) (-3)× ×(- )×(- )
(2)(-5)×6×(- )×

七年级数学有理数的乘法教案及教学设计(精选6篇)

七年级数学有理数的乘法教案及教学设计(精选6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!七年级数学有理数的乘法教案及教学设计(精选6篇)作为一位杰出的老师,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。

有理数的乘法2


想一想
计算:
(-24)×(
1 3

3 4

1 6

5 8
)
正确解法:
_____ ______ _____ ______ 原式=(-24)×
1 3
+(-24)×(-
3 4
)+(-24)×
1 6
+(-24)×(-
5 8
)
= - 8 + 18 - 4 + 15
= - 12 +33 = 21
特别提醒: 1.不要漏掉符号, 2.不要漏乘.
不要漏写符号
思考:你能看出下式的结果吗?如果能,请说
明理由。
7.8×(-8.1)×0×(-19.6)=?
归纳:
几个数相乘,如果其中 有因数为0,积等于(0)
练习:不计算,判断下列各题的结果是否为零, 如果不为零,请说出它们的符号及结果.
(1) 3×(-5) = -15;负 (2) 3×(-5)×(-2) = 30; 正 (3) 3×(-5)×(-2)×(-4)= -120; 负
学以致用---分配律
53
(1)(- + )×(-24)
68
(2)7 3 ×5
15
(3)
(-11)×(- 52)+(-11)×2
53+(-11)×(-
1 5)
例题
例2 计算
先确定积的 多个不是0 符号,再把
(1) 3 5 9 1
6 5 4
5×3+5×(-7) = 15+(-35)=-20
乘法分配律
一般地,一个数与两个数的和相乘,等于 把这个数分别与这两个数相乘,再把积相 加。
如果a,b,c分别表示任一有理数, 那么:a(b+c)=ab+ac

有理数的乘法教案精选4篇

有理数的乘法教案精选4篇初中数学《有理数的乘法》教学设计篇一一、知识与技能(1)能确定多个因数相乘时,积的符号, 并能用法则进行多个因数的乘积运算。

(2)能利用计算器进行有理数的乘法运算。

二、过程与方法经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳 验证等能力。

三、情感态度与价值观培养学生主动探索,积极思考的学习兴趣。

教学重、难点与关键1、重点:能用法则进行多个因数的乘积运算。

2、难点:积的符号的确定。

3、关键:让学生观察实例,发现规律。

教具准备:投影仪。

四、教学过程1、请叙述有理数的乘法法则。

2、计算:(1)│-5│(-2);(2)(-)(3)0(-99.9)。

五、新授1、多个有理数相乘,可以把它们按顺序依次相乘。

例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;又如:(+2)[(-78)]=(+2)(-26)=-52.我们知道计算有理数的乘法,关键是确定积的符号。

观察:下列各式的`积是正的还是负的?(1)234(2)234(-4)(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2、多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

七年级数学有理数的乘法教案及教学设计篇二教学目的:(一)知识点目标:有理数的乘法运算律。

(二)能力训练目标:1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2.能运用乘法运算律简化计算。

(三)情感与价值观要求:1.在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2.在讨论的过程中,使学生感受集体的力量,培养团队意识。

北师大版七年级数学上册《有理数乘法的运算律》评课稿

北师大版七年级数学上册《有理数乘法的运算律》评课稿引言《有理数乘法的运算律》是北师大版七年级数学上册的一节重要课程内容。

本文是对该课程的评课稿,分析了该课程的设计与教学效果,并提出了一些建议和改进措施。

课程设计《有理数乘法的运算律》这一课程内容设计合理,符合七年级学生的学习能力和认知水平。

课程主要包括以下几个方面的内容:一、基本概念在课程开始阶段,教师对有理数的概念进行了简要回顾,并引入了有理数的乘法运算。

通过一些例题演示,让学生初步了解有理数乘法的特点和运算规律。

二、乘法运算律接下来,课程详细介绍了有理数乘法的运算律,包括以下几个方面:1.有理数的乘法交换律:乘法的顺序不影响最后的结果,通过例题验证交换律的正确性。

2.有理数的乘法结合律:多个有理数相乘,可以任意改变先乘哪两个的顺序,结果不变,通过例题验证结合律的正确性。

3.有理数的乘法分配律:乘法对加法的分配律成立,通过例题验证分配律的正确性。

通过对这些运算律的详细讲解和例题演示,学生能够更好地理解和掌握有理数乘法的运算规律。

三、运算技巧与应用除了乘法运算律的介绍外,课程还包括一些乘法的技巧和应用:1.绝对值的乘法:介绍了有理数绝对值乘法的运算规律,并通过例题演示如何计算。

2.乘方与有理数的乘法:引入乘方的概念,结合乘法运算律进行乘法计算。

3.有理数乘法的应用:通过实际问题引导学生灵活运用有理数乘法进行解答。

通过这些运算技巧和应用示例,学生能够更好地将有理数乘法运算运用于实际生活和数学解题中。

教学效果经过对该课程的观察和评估,可以得出以下几点教学效果的总结:1.学生理解力提升:通过对基本概念和乘法运算律的详细讲解,学生对有理数乘法的概念和原则有了更深入的理解。

2.学生掌握度提高:通过大量的例题演示和课堂练习,学生对有理数乘法的运算规律掌握较好,能够独立进行乘法计算。

3.应用能力增强:通过乘法运算律的应用示例,学生能够将所学的知识应用于实际问题解答中,提高了数学应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晨鸟教育
有理数乘法的运算律2
教学目标
1、经历探索有理数乘法的运算律的过程,发展学生观察、归纳等能力。
2、理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律。
3、能运用乘法运算律简化计算,进一步提高学生的运算能力。
教学重点、难点
重点:乘法的运算律
难点:灵活运用乘法的运算律简化运算。.
教学过程
(一)回顾复习,引入课题

1、计算:6561 5113212 (3)(-4)×7×0




2161.031104

你能说出各题的解答根据吗?叙述有理数的乘法运算的法则是什么?多个不为0的有理数
相乘,积的符号怎样确定?
有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积为
0。
几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号
为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。
2、学生练习:简便计算,并回答根据什么?
(1)125×0.05×8×40(小学数学乘法的交换律和结合律.)

(2)361276595321(小学数学的分配律)
3、上题变为(1)(-0.125)×(-0.05)×8×(-40)

(2)361276595321
能否简便计算?也就是小学数学的乘法交换律和结合律、分配律在有理数范围内能否使用?
[引出课题:有理数的乘法(二)]
晨鸟教育
(二)交流对话,探索新知
4、多媒体显示:学生练习:计算下列各题:
(1)(-5)×2;
(2)2×(-5);
(3)[2×(-3)]×(-4);
(4)2×[(-3)×(-4)]

(5)3123;
(6)31323
在进行加、减、乘的混合运算时,应注意:有括号时,要先算括号里面的数,没有括号时,
先算乘法,后算加减。
比较的结果.:(1)与(2);(3)与(4);(5)与(6)的计算结果一样.
计算结果一样,说明了什么?
生:说明算式相等。即:(1)(-5)×2=2×(-5);
(2)[2×(-3)]×(-4)=2×[(-3)×(-4)];

(3)3123=31323
由(1),我们可以得到乘法交换律;由(2),可以得到乘法结合律;由(3),可以得到分配律。
师:乘法的运算律在有理数范围内还成立吗?大家每人写一些不同的数据来试一试。(学生
活动。)
乘法的运算律在有理数范围内成立。
5、这节课我们探讨的乘法运算律在有理数运算中的应用。我们首先要知道乘法运算律有哪
几条?能用文字叙述吗?
乘法运算律有:乘法的交换律、乘法的结合律、分配律等三条.
多媒体显示:乘法的交换律.:两个数相乘,交换因数的位置,积不变;
乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;
分配律:一个数与两个数的和相乘,等于把这个数分别与这两数相乘,再把积相加。
乘法的交换律和结合律仅涉及一种运算,分配律要涉及两种运算。
你能用字母表示乘法的交换律、结合律,分配律吗?
晨鸟教育
如果A.B.c分别表示任一有理数,那么:
乘法的交换律:a×b=b×a.
乘法的结合律:(a×b)×c=a×(b×c)
分配律:a×(b+c)=a×b+a×c
练习:多媒体显示 下列各式中用了哪条运算律?如何用字母表示?
(1)(-5)×3=3×(-5)

(2)[-325+736]+(-729)=(-325)+[736+(-729)]
(3)(-6)×[32+(-21)]=(-6)×32+(-6)×(-21)
(4)[29×(-65)]×(-12)=29×[(-65)×(-12)]
(5)(-8)+(-9)=(-9)+(-8)
运算律在计算中起到了简化运算的作用.那我们看刚才做的5个题中,计算等号右边比较简
便还是计算等号左边比较简便?(略)
6、新知应用 乘法的运算律在有理数运算中的应用
例1、简便计算(1)(-0.125)×(-0.05)×8×(-40)

(2) 361276595321
师生共析(1)题先确定符号,再算绝对值;先用乘法的交换律,然后用结合律进行计算。
(2)题用分配律。运用运算律,有时可使运算简便。
解:(1)(-0.125)×(-0.05)×8×(-40)
=-0.125×0.05×8×40
=-0.125×8×0.05×8×40 (乘法的交换律)
=-(0.125×8)×(0.05×40 ) (乘法的结合律)
=-1×2=—2

(2) 361276595321
=36127366536953633621 (分配律)
晨鸟教育
=-18+108+20-30+21
=149-48=101
例2、计算

(1)653712 311.01062




543221303

1299.44

分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01
学生板书完成,并说明根据什么?略

例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的21,
31和4
1
。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几
个?
解:

416031602
1
60160413121160






=60-30-20-15 =-5
答:不够借,还缺5个篮球。
练习巩固:第41页1、2、
7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积
为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律?
(2)逆用分配律 第42页 5、用简便方法计算
(三)课堂小结
通过本节课的学习,大家学会了什么?
本节课我们探讨了有理数乘法的运算律及其应用.
乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);
分配律:a×(b+c)=a×b+a×c.
晨鸟教育
在有理数的运算中,灵活运用运算律可以简化运算.
(四)作业:课本42页作业题

相关文档
最新文档