【数学】1.4《导数在实际生活中的应用⑴》课件(苏教版选修2-2)

合集下载

2017_2018版高中数学第1章导数及其应用1.4导数在实际生活中的应用课件苏教版选修2_2201803123121

2017_2018版高中数学第1章导数及其应用1.4导数在实际生活中的应用课件苏教版选修2_2201803123121

上述解决优化问题的过程是一个典型的 数学建模 过程.
题型探究
类型一 例1
平面几何中的最值问题
如图所示,在二次函数f(x)=4x-x2的图象与x轴所围成图形中有一
个内接矩形ABCD,求这个矩形面积的最大值.
解答
反思与感悟
平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要
研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,
解答
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

2 400 f′(x)=6- 2. 3x+5
2 400 令 f′(x)=0,即 2=6, 3x+5
25 解得 x=5,x=- 3 (舍去).
当0<x<5时,f′(x)<0;当5<x<10时,f′(x)>0,
800 故当 x=5 时,f(x)取到最小值,对应的最小值为 f(5)=6×5+ =70. 15+5
a 解 因为当 x=5 时,y=11,所以2+10=11,
所以a=2.
解答
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销 售该商品所获得的利润最大.
解答
命题角度2 费用用材最省问题 例4 已知A、B两地相距200 km,一只船从A地逆水行驶到B地,水速 为8 km/h,船在静水中的速度为v km/h(8<v≤v0).若船每小时的燃料费 与其在静水中的速度的平方成正比,当v=12 km/h时,每小时的燃料 费为720元,为了使全程燃料费最省,船的实际速度为多少?
128π y= r +8πr2 在(0,1]上单调递减,
∴当r=1时,ymin=136π. ∴最小建造费用为136π 千元.

苏教版高中数学选修(2-2)-1.4利用导数解决生活中的优化问题1

苏教版高中数学选修(2-2)-1.4利用导数解决生活中的优化问题1

利用导数解决生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为生活中的优化问题。

导数是解决优化问题的有力工具,利用导数解决优化问题的主要步骤为:1.建立优化问题的数学模型,写出优化问题中变量间的函数关系式,确定函数的定义域;2.求函数的导数f'(x),解方程f'(x)=0,求出极值点;3.比较函数在区间端点和在极值点的取值大小,确定其最大(小)者为最大(小)值;4.检验所得结果是否符合问题的实际意义。

其中,关键在于如何建立优化问题的数学模型。

什么是数学建模?当人们面对一个实际问题时,不是直接就现实材料本身寻找解决问题的办法,而是经过一番必要而且合理的假设和简化,恰当地运用数学语言、方法去近似地刻划实际问题,得到一个数学结构(数学模型),通过数学上的结构揭示其实际问题中的含义,合理地返回到实际中去,这个过程就称为数学建模。

数学建模的全过程应该包括:(1)分析问题:了解问题的实际背景,掌握第一手资料。

(2)假设化简:根据问题的特征和目的,对问题进行化简,并用精确的数学语言来描述。

(3)建立模型:在假设的基础上利用适当的数学工具、数学知识,来刻划变量之间的数量关系,建立其相应的数学结构。

(4)求解并检验模型:对模型求解,并将求解结果与实际情况相比较,以此来验证模型的准确性。

例:(2005年全国卷Ⅲ文)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如下图),问:该容器的高为多少时,容器的容积最大?最大容积是多少?解:(1)读题:把“问题情境”翻译为数学语言,找出问题的目标与条件的关系因为焊接而成的容器为长方体,所以求容器的容积最大即为求长方体的体积最大,而长方体的高x满足0<x<24条件。

(2)建模:设容器的高为xcm,,容器的体积为V(x)cm3,则V(x)=x(90-2x)(48-2x)=4x3-276x2+4320x (0<x<24) (3)求解:∵V'(x)=12 x2-552x+4320由V'(x)=12 x2-552x+4320=0得x1=10,x2=36 (舍去)当0<x<10 时,V'(x)>0, 那么V(x)为增函数;当10<x<24时,V'(x)<0, 那么V(x)为减函数;所以,在定义域(0,24)内,函数V(x)只有当x=10时取得最大值,其最大值为V(10)=1960(cm3)答:当容器的高为10cm时,容器的容积最大,最大容积是1960(cm3)由此例可知,要完成数学建模这一过程,必须过三关:1.事理关:读懂题意,知道讲的是什么事件;2.文理关:需要将“问题情境”的文字语言转化为数学的符号语言,用数学式子表达关系;3.数理关:在构建数学模型的过程中,要求有对数学知识的检索能力,认定或构建相适应的数学模型,完成由实际问题向数学问题的转化,此后解答过程也需要较扎实的基础知识和较强的数理能力。

2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用 苏教版选修2-2(1)

2017-2018版高中数学 第1章 导数及其应用 1.4 导数在实际生活中的应用 苏教版选修2-2(1)

跟踪训练4 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶 和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘 米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位: 万元)与隔热层厚度x(单位:cm)满足关系:C(x)=3x+k 5 (0≤x≤10),若 不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20 年的能源消耗费用之和. (1)求k的值及f(x)的表达式;
解答
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销 售该商品所获得的利润最大.
解答
命题角度2 费用用材最省问题 例4 已知A、B两地相距200 km,一只船从A地逆水行驶到B地,水速 为8 km/h,船在静水中的速度为v km/h(8<v≤v0).若船每小时的燃料费 与其在静水中的速度的平方成正比,当v=12 km/h时,每小时的燃料 费为720元,为了使全程燃料费最省,船的实际速度为多少?
解答
当堂训练
1.方底无盖水箱的容积为256,则最省材料时,它的高为__4_.
解析 设底面边长为x,高为h, 则 V(x)=x2·h=256,∴h=2x526. ∴S(x)=x2+4xh=x2+4x·2x526=x2+4×x256, ∴S′(x)=2x-4×x22 56. 令S′(x)=0,解得x=8,判断知当x=8时,S(x)取得最小值. ∴h=28526=4.
10x8-130x020,x>10. (1)求年利润W(万元)关于年产量x(千件)的函数解析式;
解答
(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的 年利润最大,并求出最大值.
解答
反思与感悟
解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的 函数关系,常见的基本等量关系 (1)利润=收入-成本. (2)利润=每件产品的利润×销售件数.

高中数第一章导数及其应用1.4导数实际生活中的应用课件苏教版选修22

高中数第一章导数及其应用1.4导数实际生活中的应用课件苏教版选修22
返回
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
解析答案
1234
4.制作容积为256的方底无盖水箱,它的高为__4_时最省材料. 解析 设底面边长为x,高为h,则V(x)=x2·h=256, ∴h=2x526,∴S(x)=x2+4xh=x2+4x·2x526=x2+4×x256, ∴S′(x)=2x-4×x22 56. 令 S′(x)=0,解得 x=8,∴h=28526=4.
防范措施
解析答案
返回
当堂检测
1234
1.内接于半径为R的半圆的周长最大的矩形的边长为__5_5_R_和__4_5__5_R_.
解析 设矩形与半圆直径垂直的一边的长为x,
则另一边长为 2
R2-x2,则 l=2x+4
R2-x2(0<x<R),l′=2-
4x R2-x2.
令 l′=0,解得 x1= 55R,x2=- 55R(舍去).
解析答案
(2)如何定价才能使一个星期的商品销售利润最大? 解 对(1)中函数求导得f′(x)=-18x2+252x-432=-18(x-2)(x-12). 当x变化时,f′(x),f(x)的变化情况如下表:
(0,2
(2,12
(12,2
x0
2
12
21Байду номын сангаас
)
)
1)
∴x=12时f′,(f(xx)取得极大-值. 0

高中数学 第一章 导数及其应用 1.4 导数实际生活中的应用习题 苏教版选修2-2

高中数学 第一章 导数及其应用 1.4 导数实际生活中的应用习题 苏教版选修2-2

【创新设计】2016-2017学年高中数学第一章导数及其应用 1.4 导数实际生活中的应用习题苏教版选修2-2明目标、知重点1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路优化问题→用函数表示的数学问题优化问题的答案←用导数解决数学问题上述解决优化问题的过程是一个典型的数学建模过程.[情境导学]生活中经常遇到求利润最大、用料最省、效率最高等问题?这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具,本节我们运用导数,解决一些生活中的优化问题.探究点一面积、体积的最值问题思考如何利用导数解决生活中的优化问题?答(1)函数建模,细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y与自变量x,把实际问题转化为数学问题,即列出函数关系式y=f(x).(2)确定定义域,一定要从问题的实际意义去考察,舍去没有实际意义的变量的范围.(3)求最值,此处尽量使用导数法求出函数的最值.(4)下结论,回扣题目,给出圆满的答案.例1 学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?解 设版心的高为x dm ,则版心的宽为128xdm ,此时四周空白面积为S (x )=(x +4)⎝ ⎛⎭⎪⎫128x +2-128 =2x +512x+8,x >0.求导数,得 S ′(x )=2-512x2.令S ′(x )=2-512x2=0,解得x =16(x =-16舍去).于是宽为128x =12816=8.当x ∈(0,16)时,S ′(x )<0; 当x ∈(16,+∞)时,S ′(x )>0.因此,x =16使函数S (x )取得极小值,也是最小值.所以,当版心高为16 dm ,宽为8 dm 时,能使海报四周空白面积最小. 答 当版心高为16 dm ,宽为8 dm 时,海报四周空白面积最小.反思与感悟 (1)在求最值时,往往建立函数关系式,若问题中给出的量较多时,一定要通过建立各个量之间的关系,通过消元法达到建立函数关系式的目的.(2)在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域.跟踪训练1 如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.答案 32米,16米解析 要求材料最省就是要求新砌的墙壁总长度最短,设场地宽为x 米,则长为512x米,∴新墙壁总长度L =2x +512x (x >0),则L ′=2-512x2.令L ′=0,得x =±16. ∵x >0,∴x =16.当x =16时,L min =64,此时堆料场的长为51216=32(米).探究点二 利润最大问题例 2 某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr 2分,其中r (单位:cm)是瓶子的半径.已知每出售1 mL 的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6 cm.则瓶子半径多大时,能使每瓶饮料的利润最大?瓶子半径多大时,每瓶饮料的利润最小?解 由于瓶子的半径为r ,所以每瓶饮料的利润是 y =f (r )=0.2×43πr 3-0.8πr 2=0.8π⎝ ⎛⎭⎪⎫r 33-r 2,0<r ≤6.令f ′(r )=0.8π(r 2-2r )=0. 当r =2时,f ′(r )=0. 当r ∈(0,2)时,f ′(r )<0; 当r ∈(2,6)时,f ′(r )>0.因此,当半径r >2时,f ′(r )>0,它表示f (r )单调递增,即半径越大,利润越高;半径r <2时,f ′(r )<0,它表示f (r )单调递减,即半径越大,利润越低. 所以,半径为6 cm 时,利润最大.半径为2 cm 时,利润最小,这时f (2)<0,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本;(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解 (1)因为x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x )和f (x )的变化情况如下表:单调递增单调递减由上表可得,x 所以,当x =4时,函数f (x )取得最大值,且最大值为42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 探究点三 费用(用材)最省问题例 3 已知A 、B 两地相距200 km ,一只船从A 地逆水行驶到B 地,水速为8 km/h ,船在静水中的速度为v km/h(8<v ≤v 0).若船每小时的燃料费与其在静水中的速度的平方成正比,当v =12 km/h 时,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度为多少?解 设每小时的燃料费为y 1,比例系数为k (k >0), 则y 1=kv 2,当v =12时,y 1=720,∴720=k ·122,得k =5. 设全程燃料费为y ,由题意,得 y =y 1·200v -8=1 000v 2v -8,∴y ′=2 000v v -8-1 000v 2v -82=1 000v 2-16 000v v -82.令y ′=0,得v =16,∴当v 0≥16,即v =16 km/h 时全程燃料费最省,y min =32 000(元); 当v 0<16,即v ∈(8,v 0]时,y ′<0, 即y 在(8,v 0]上为减函数, ∴当v =v 0时,y min =1 000v 20v 0-8(元).综上,当v 0≥16时,v =16 km/h 全程燃料费最省, 为32 000元;当v 0<16,即v =v 0时全程燃料费最省,为1 000v 20v 0-8元.反思与感悟 本题在解题过程中容易忽视定义域,误以为v =16时取得最小值.本题的关键是弄清极值点是否在定义域范围内.跟踪训练3 现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时,A 地至B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度行驶?解 (1)依题意得y =500x(960+0.6x 2)=480 000x+300x ,且由题意知,函数的定义域为(0,35],即y =480 000x+300x (0<x ≤35).(2)由(1)知,y ′=-480 000x2+300,令y ′=0, 解得x =40或x =-40(舍去). 因为函数的定义域为(0,35], 所以函数在定义域内没有极值点. 又当0<x ≤35时,y ′<0,所以y =480 000x+300x 在(0,35]上单调递减,∴当x =35时,函数y =480 000x+300x 取得最小值.故为了使全程运输成本最小,轮船应以35海里/时的速度行驶.1.方底无盖水箱的容积为256,则最省材料时,它的高为________. 答案 4解析 设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x2, ∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x, ∴S ′(x )=2x -4×256x2. 令S ′(x )=0,解得x =8, ∴h =25682=4.2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.048 6),若使银行获得最大收益,则x 的取值为________. 答案 0.032 4解析 依题意,存款量是kx 2,银行支付的利息是kx 3,获得的贷款利息是0.048 6kx 2,其中x ∈(0,0.048 6).所以银行的收益是y =0.048 6kx 2-kx 3(0<x <0.048 6),则y ′=0.097 2kx -3kx 2. 令y ′=0,得x =0.032 4或x =0(舍去). 当0<x <0.032 4时,y ′>0; 当0.032 4<x <0.048 6时,y ′<0. 所以当x =0.032 4时,y 取得最大值,即当存款利率为0.032 4时,银行获得最大收益.3.设底为等边三角形的直三棱柱的体积为V ,那么其表面积最小时底面边长为________.答案 34V解析 设底面边长为x , 则表面积S =32x 2+43xV (x >0).∴S ′=3x2(x 3-4V ).令S ′=0,得x =34V .4.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 解 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为h (x )升,依题意得h (x )=⎝ ⎛⎭⎪⎫1128 000x 3-380x +8×100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.因为x ∈(0,80)时,h ′(x )<0,h (x )是减函数,x ∈(80,120)时,h ′(x )>0,h (x )是增函数,所以当x =80时,h (x )取得极小值h (80)=11.25(升). 因为h (x )在(0,120]上只有一个极小值,所以它是最小值.答 汽车以80千米/时匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. [呈重点、现规律]正确理解题意,建立数学模型,利用导数求解是解应用题的主要思路.另外需要特别注意:(1)合理选择变量,正确给出函数表达式;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.一、基础过关1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是________.答案 -1解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5), 所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.从边长为10 cm×16 cm 的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为________ cm 3. 答案 144解析 设盒子容积为y cm 3,盒子的高为x cm. 则y =(10-2x )(16-2x )x (0<x <5) =4x 3-52x 2+160x , ∴y ′=12x 2-104x +160.令y ′=0,得x =2或x =203(舍去),∴y max =6×12×2=144(cm 3).3.如果圆柱轴截面的周长l 为定值,则体积的最大值为________.答案 ⎝ ⎛⎭⎪⎫l 63π解析 设圆柱的底面半径为r ,高为h ,体积为V , 则4r +2h =l , ∴h =l -4r2,V =πr 2h =l2πr 2-2πr 3⎝⎛⎭⎪⎫0<r <l 4.则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0, ∴r =l6可以使V 取得极大值,也是最大值.∴当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.4.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱最大容积为________ cm 3. 答案 128 000解析 设水箱底边长为x cm(0<x <120),则水箱高h =60-x2(cm).水箱容积V =V (x )=x 2h =60x 2-x 32(cm 3),V ′(x )=120x -32x 2.令V ′(x )=0,得x =0(舍去)或x =80.可判断得x =80 (cm)时,V 取最大值为128 000 cm 3.5.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是________. 答案 300解析 由题意得,总利润P (x )=⎩⎪⎨⎪⎧-x3900+300x -20 000,0≤x ≤390,70 090-100x ,x >390,令P ′(x )=0,得x =300.6.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则其高为________ cm. 答案2033解析 设高为h cm ,体积为V cm 3,底面半径为r cm , 则r 2=202-h 2=400-h 2, ∴V =13πr 2h =π3(400h -h 3),V ′=π3(400-3h 2),令V ′=0,得h =2033或h =-2033(舍).7.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解 设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)·y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x (18 000x -20+25)=18 000xx -20+25x .∴S ′=18 000[x -20-x ]x -202+25=-360 000x -202+25.令S ′>0得x >140, 令S ′<0得20<x <140.∴函数在(140,+∞)上单调递增, 在(20,140)上单调递减, ∴S (x )的最小值为S (140). 当x =140时,y =175.即当x =140,y =175时,S 取得最小值为24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.二、能力提升8.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比.如果在距离车站10千米处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处. 答案 5解析 依题意可设每月土地占用费y 1=k 1x(k 1>0),每月库存货物的运费y 2=k 2x (k 2>0),其中x 是仓库到车站的距离,于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此两项费用之和为y =20x +4x 5,y ′=-20x 2+45.令y ′=0,得x =5(x =-5舍去),可使y 取得最小值. 故当仓库建在离车站5千米处时,两项费用之和最小.9.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________. 答案 3解析 设圆柱的底面半径为R ,母线长为L ,则V =πR 2L =27π,∴L =27R2,要使用料最省,只须使圆柱表面积最小,由题意,得S 表=πR 2+2πRL =πR 2+2π·27R,∴S ′(R )=2πR -54πR2=0,∴R =3,则当R =3时,S 表最小.10.为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长为a 米,高为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比,现有制箱材料60平方米,问当a =________,b =________时,经沉淀后流出的水中该杂质的质量分数最小(A ,B 孔的面积忽略不计).答案 6 3解析 设y 为流出的水中杂质的质量分数,则y =kab,其中k (k >0)为比例系数.依题意,即所求的a ,b 值使y 值最小,根据题设,4b +2ab +2a =60(a >0,b >0)得b =30-a2+a (0<a <30). 于是y =kab =k30a -a 22+a=k 2+a30a -a 2.令y ′=a 2k +4ak -60k30a -a 22=0,得a =6或a =-10(舍去).∵本题只有一个极值,∴此极值即为最值.当a =6时,b =3,即当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.11.某地建一座桥,两端的桥墩已建好,这两桥墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两桥墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+mx(2+x )x=256m x+mx +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12mx -12=m2x 2(x 32-512). 令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数;当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数,所以f (x )在x =64处取得最小值.此时n =mx -1=64064-1=9.故需新建9个桥墩才能使y 最小.12.一火车锅炉每小时煤消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h 时,每小时消耗的煤价值40元,其他费用每小时需200元,火车的最高速度为100 km/h ,火车以何速度行驶才能使从甲城开往乙城的总费用最少? 解 设速度为x km/h ,甲、乙两城距离为a km. 则总费用f (x )=(kx 3+200)·a x=a (kx 2+200x).由已知条件,得40=k ·203,∴k =1200,∴f (x )=a (1200x 2+200x).令f ′(x )=a x 3-20 000100x 2=0,得x =10320. 当0<x <10320时,f ′(x )<0;当10320<x <100时,f ′(x )>0. ∴当x =10320时,f (x )有最小值, 即速度为10320 km/h 时,总费用最少.答 火车以10320 km/h 的速度行驶,才能使从甲城开往乙城的总费用最少.三、探究与拓展13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l ≥2r .假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c (c >3)千元.设该容器的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r . 解 (1)设容器的容积为V , 由题意知V =πr 2l +43πr 3,又V =80π3, 故l =V -43πr 3πr 2=803r 2-43r =43(20r 2-r ).由于l ≥2r ,因此0<r ≤2. 所以建造费用y =2πrl ×3+4πr 2c =2πr ×43(20r 2-r )×3+4πr 2c ,因此y =4π(c -2)r 2+160πr,0<r ≤2.(2)由(1)得y ′=8π(c -2)r -160πr2=8πc -2r 2(r 3-20c -2),0<r ≤2.由于c >3,所以c -2>0.精选教案可编辑 当r 3-20c -2=0时,r = 320c -2. 令 320c -2=m ,则m >0,所以y ′=8πc -2r2(r -m )(r 2+rm +m 2). ①当0<m <2,即c >92时, 令y ′=0,得r =m .当r ∈(0,m )时,y ′<0;当r ∈(m,2]时,y ′>0,所以r =m 使函数y 取得极小值,也是最小值.②当m ≥2,即3<c ≤92时, 当r ∈(0,2]时,y ′≤0,函数单调递减,所以r =2使函数y 取得最小值.综上所述,当3<c ≤92时, 建造费用最小时r =2;当c >92时,建造费用最小时r = 320c -2.。

2020-2021学年苏教版数学选修2-2课件:1.4 导数在实际生活中的应用

2020-2021学年苏教版数学选修2-2课件:1.4 导数在实际生活中的应用

【思路导引】1.确定x,y的值⇒x与y的函数关系式⇒框架用料长度⇒最值成立 时的条件. 2.首先利用解三角形的有关知识将y表示成θ的函数,再利用导数求y的最小值.
【解析】1.依题意,有xy+ 1 x x 8,
所以y=
8 x2 4
8x
x x4
22
(0<x< 4 2 ),
于是框架用料长度为l=2x+2y+ 2( 2x )
2.(1)延长PO交AB于点Q,由条件知PQ垂直平分AB,∠BAO=θ(rad),则
OA= AQ = 10 ,故OB= 10 .
cosBAO cos
cos
又OP=10-10tan θ,所以y=OA+OB+OP= 10 + 10 +10-10tan θ.
cos cos
故函数关系式为y= 20-10sin+10(0 ).
1.4 导数在实际生活中的应用
关键能力·合作学习 类型一 平面几何中的最值问题
【典例】1.某单位用木料制作如图所示的框架,框架的下部是边长分别为 x,y(单位:m)的矩形,上部是等腰直角三角形,要求框架的总面积为8 m2,当用料 最省时,x,y的值分别是____________.(精确到0.001 m)
【解析】1.选D.设长方体的底面边长为x m, 则高为(6-2x)m,所以0<x<3, 则V=x2·(6-2x)=6x2-2x3,V′=12x-6x2, 令V′=0得x=2或x=0(舍), 所以当x∈(0,2)时,V是增函数,当x∈(2,3)时,V是减函数, 所以当x=2时,Vmax=4×2=8(m3).
3r 3
r
又l
64 3r 2
4 3
r

2018-2019学年高二数学苏教版选修2-2讲义:第1章 1.4 导数在实际生活中的应用

_1.4导数在实际生活中的应用[对应学生用书P22][例1] 用长为2∶1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?[思路点拨] 不妨设长方体的宽为x m ,则长为2x m ,高为h =18-12x4=(4.5-3x )m ⎝⎛⎭⎫0<x <32.建立长方体的体积函数模型,再求最值. [精解详析] 设长方体的宽为x m , 则长为2x m ,高为h =18-12x 4=(4.5-3x )m ⎝⎛⎭⎫0<x <32. 故长方体的体积为V (x )=2x 2(4.5-3x )=(9x 2-6x 3)m 3⎝⎛⎭⎫0<x <32. 从而V ′(x )=18x -18x 2=18x (1-x ).令V ′(x )=0,解得x =0(舍去),或x =1,因此x =1. 当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0,故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值.从而最大体积V =V (1)=9×12-6×13=3(m 3),此时长方体的长为2 m ,高为1.5 m. 故当长方体的长为2 m ,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3. [一点通] 在求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.1.要做一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为________cm.解析:设该漏斗的高为x cm ,则底面半径为202-x 2 cm ,其体积为V =13πx (202-x 2)=13π(400x -x 3)(0<x <20),则V ′=13π(400-3x 2). 令V ′=0,解得x 1=2033,x 2=-2033(舍去).当0<x <2033时,V ′>0;当2033<x <20时,V ′<0, 所以当x =2033时,V 取得最大值.答案:20332.用长为90 cm ,宽为48 cm 的长方形铁皮做一个无盖的容器.先在四角分别截掉一个大小相同的小正方形,然后把四边翻折90°,再焊接而成.问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x cm ,容积为V (x ) cm 3,则 V (x )=x (90-2x )(48-2x ) =4x 3-276x 2+4 320x (0<x <24). 故V ′(x )=12x 2-552x +4 320 =12(x -10)(x -36).令V ′(x )=0,得x =10,或x =36(舍去). 当0<x <10时,V ′(x )>0,即V (x )为增函数; 当10<x <24时,V ′(x )<0,即V (x )为减函数.因此,在定义域(0,24)内,函数V (x )只有当x =10时取得最大值,其最大值为V (10)=19 600(cm 3).因此当容器的高为10 cm 时,容器的容积最大,最大容积为19 600 cm 3.[例2] 地形限制,长、宽都不能超过16 m ,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).x (m)的函数关系式,并指出其定义域;(2)污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价. [思路点拨]分析题意→写出函数关系式→写出定义域→对函数关系式求导→讨论单调性→求最值[精解详析] (1)污水处理池长为x m ,则宽为200x m.据题意⎩⎪⎨⎪⎧0<x ≤16,0<200x ≤16,解得252≤x ≤16,y =⎝⎛⎭⎫2x +2·200x ×400+400x ×248+16 000 =800x +259 200x +16 000⎝⎛⎭⎫252≤x ≤16, (2)由(1)知y ′=800-259 200x 2=0,解得x =18,当x ∈(0,18)时,函数y 为减函数; 当x ∈(18,+∞)时,函数y 为增函数. 又∵252≤x ≤16,∴当x =16时,y min =45 000.∴当且仅当长为16 m 、宽为12.5 m 时, 总造价y 最低为45 000元.[一点通] (1)实际生活中用料最省、费用最低、损耗最小、最节省时间等都需要利用导数求解相应函数的最小值,此时根据f ′(x )=0求出函数取极值的点(注意根据实际意义舍去不合适的函数取极值的点),若函数在该点附近满足左减右增,则此时惟一的极小值就是所求函数的最小值.(2)在解题过程中很容易忽略关键词“无盖”,从而多求了一个底面积.实际问题中的用料最省问题一般都是要求几何体的表面积,但要注意实物的表面积往往会缺少一个底面或侧面等.3.做一个容积为256升的方底无盖水箱,它的高为________分米时最省材料. 解析:设水箱底面边长为x 分米,则高为256x 2分米,用料总面积S =x 2+4·256x 2·x =x 2+256×4x, S ′=2x -256×4x 2,令S ′=0得x =8,当0<x <8时,S ′<0,当x >8时,S ′>0, 所以当x =8时,S 取得最小值,则高为4分米. 答案:44.某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y 万元.(1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 解:(1)设需新建n 个桥墩, 则(n +1)x =m ,即n =mx -1.所以y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎫m x -1+m x (2+x )x =256mx+m x +2m -256. (2)由(1)知,f ′(x )=-256m x 2+12mx -12=m 2x 2(x 32-512).令f ′(x )=0,得x 32=512,所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数.所以f (x )在x =64处取得最小值. 此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.[例3] P (元/吨)之间的关系式为P =24 200-15x 2,且生产x 吨的成本为R =50 000+200x (元).问该工厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)[思路点拨] 根据利润与生产量以及价格之间的关系,建立满足题意的函数关系式,然后利用导数求解.[精解详析] 每月生产x 吨时的利润为 f (x )=⎝⎛⎭⎫24 200-15x 2x -(50 000+200x ) =-15x 3+24 000x -50 000(x ≥0).由f ′(x )=-35x 2+24 000=0,解得x 1=200,x 2=-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0,且0<x <200时,f ′(x )>0;x >200时,f ′(x )<0;故x =200就是最大值点,且最大值为f (200)=-15×2003+24 000×200-50 000=3 150 000(元).所以每月生产200吨产品时,利润达到最大,最大利润为315万元.[一点通] 利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”建立函数关系式,再利用导数求最大值.求解时要注意:①价格要大于成本,否则就会亏本;②销量要大于0,否则不会获利.5.某商品一件的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为________元时,利润最大.解析:利润为S (x )=(x -30)(200-x ) =-x 2+230x -6 000(30≤x ≤200), S ′(x )=-2x +230,由S ′(x )=0得x =115,当30≤x <115时,S ′(x )>0; 当115<x ≤200时,S ′(x )<0, 所以当x =115时利润最大. 答案:1156.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:kg)与销售价格x (单位:元/kg)满足关系式y =ax -3+10(x -6)2.其中3<x <6,a 为常数.已知销售价格为5元/kg时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/kg ,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11, 所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量 y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2 =2+10(x -3)(x -6)2,3<x <6. 从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/kg 时,商场每日销售该商品所获得的利润最大.1.解决实际生活问题的基本思路:实际问题 用函数表示的数学问题用导数解决数学问题 2.求实际问题中的最大(小)值,主要步骤如下:(1)抽象出实际问题的数学模型,列出变量之间的函数关系式y =f (x ); (2)求出函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和使f ′(x )=0的点处的取值大小,最大者为最大值,最小者为最小值.[对应课时跟踪训练(九)]一、填空题1.已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)之间的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为________万件.解析:y ′=-x 2+81,令y ′=0,得x =9(x =-9舍),且经讨论知x =9是函数取极大值的点,所以厂家获得最大年利润的年产量是9万件.答案:92.用总长为14.8 m 的钢条制作一个长方体容器的框架,若所制作容器的底面的一边比高长0.5 m ,则当高为________m 时,容器的容积最大.解析:设高为x 米,则V =x (x +0.5)⎝⎛⎭⎫14.84-2x -0.5,令V ′=-6x 2+4.4x +1.6=0, 解得x =1⎝⎛⎭⎫x =-415舍去. 答案:13.如图,将直径为d 的圆木锯成长方体横梁,横截面为矩形,横梁的强度同它的断面高的平方与宽x 的积成正比(强度系数为k ,k >0).要将直径为d 的圆木锯成强度最大的横梁,断面的宽x 应为________.解析:设断面高为h ,则h 2=d 2-x 2.设横梁的强度函数为f (x ),则f (x )=kxh 2=kx (d 2-x 2),0<x <d .令f ′(x )=k (d 2-3x 2)=0,解得x =±33d (舍去负值).当0<x <33d 时,f ′(x )>0,f (x )单调递增;当33d <x <d 时,f ′(x )<0,f (x )单调递减. 所以函数f (x )在定义域(0,d )内只有一个极大值点x =33d .所以x =33d 时,f (x )有最大值. 答案:33d4.如图,已知一罐圆柱形红牛饮料的容积为250 mL ,则它的底面半径等于________时(用含有π的式子表示),可使所用的材料最省.解析:设圆柱的高为h ,表面积为S ,容积为V ,底面半径为r ,则表面积S =2πrh +2πr 2,而V =250=πr 2h ,得h =250πr 2,则S =2πr ·250πr 2+2πr 2=500r+2πr 2,S ′=-500r 2+4πr ,令S ′=0得r =53π2π,因为S 只有一个极值,所以当r =53π2π时,S 取得最小值,即此时所用的材料最省.答案:53π2π5.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A 、B 在抛物线上运动,C 、D 在x 轴上运动,则此矩形的面积的最大值是________.解析:设CD =x ,则点C 坐标为⎝⎛⎭⎫x2,0. 点B 坐标为⎝⎛⎭⎫x2,1-⎝⎛⎭⎫x 22所以矩形ABCD 的面积S =f (x )=x ·⎣⎡⎦⎤1-⎝⎛⎭⎫x 22=-x 34+x (x ∈(0,2)). 由f ′(x )=-34x 2+1=0,得x 1=-23(舍),x 2=23, 所以x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,f (x )是递增的, x ∈⎝⎛⎭⎫23,2时,f ′(x )<0,f (x )是递减的,当x =23时,f (x )取最大值439.答案:439二、解答题6.某品牌电视生产厂家有A ,B 两种型号的电视机参加了家电下乡活动,若厂家对A ,B 两种型号的电视机的投放金额分别为p ,q 万元,农民购买电视机获得的补贴分别为110p ,25ln q 万元,已知A ,B 两种型号的电视机的投放总额为10万元,且A ,B 两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值.(精确到0.1,参考数据:ln 4≈1.4)解:设B 型号电视机的投放金额为x 万元(1≤x ≤9),农民得到的补贴为y 万元,则A 型号的电视机的投放金额为(10-x )万元,由题意得y =110(10-x )+25ln x =25ln x -110 x +1,1≤x ≤9, ∴y ′=25x -110.令y ′=0得x =4,由y ′>0得1≤x <4,由y ′<0得4<x ≤9, 故y 在[1,4)上单调递增,在(4,9]上单调递减,∴当x =4时,y 取得最大值,且y max =25 ln 4-110×4+1≈1.2,这时,10-x =6.故厂家对A ,B 两种型号的电视机的投放金额分别为6万元和4万元时,农民得到的补贴最多,最多补贴约1.2万元.7.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h (cm),底面边长为a (cm). 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值. (2)V =a 2h =22(-x 3+30x 2), V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.8.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (L)关于行驶速度x (km/h)的函数解析式可以表示为:y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100 km.(1)当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地要耗油多少L? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少,最少为多少L? 解:(1)当x =40 km/h 时,汽车从甲地到乙地行驶了10040=2.5 h ,要耗油⎝⎛⎭⎫1128 000×403-380×40+8×2.5=17.5(L). ∴当汽车以40 km/h 的速度匀速行驶时,从甲地到乙地耗油17.5 L.(2)设当速度为x km/h 时,汽车从甲地到乙地行驶了100x h ,耗油量为h (x )升,依题意得h (x )=⎝⎛⎭⎫1128 000x 3-380x +8·100x =11 280x 2+800x -154(0<x ≤120),则h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120). 令h ′(x )=0,得x =80,当x ∈(0,80)时,h ′(x )<0,h (x )是单调递减函数;当x ∈(80,120)时,h ′(x )>0,h (x )是单调递增函数.∴当x =80时,h (x )取到极小值,h (80)=11.25.∵h (x )在(0,120]上只有一个极值,且h (120)=856>h (80). ∴当x =80时函数取得最小值.∴当汽车以80 km/h 的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25 L.。

1.4 导数在实际生活中的应用 学案(苏教版高中数学选修2-2)

1.4 导数在实际生活中的应用学案(苏教版高中数学选修2-2)14导数在实际生活中的应用导数在实际生活中的应用学习目标1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题知识点生活中的优化问题1生活中经常遇到求用料最省.利润最大.效率最高等问题,这些问题通常称为优化问题2利用导数解决优化问题的实质是求函数最值3解决优化问题的基本思路上述解决优化问题的过程是一个典型的数学建模过程1优化问题就是实际生活中给定条件求最大值或最小值的问题2生活中的优化问题都必须利用导数解决3生活中的优化问题中若函数只有一个极值点,则它就是最值点类型一几何中的最值问题例1请你设计一个包装盒,如图所示,ABCD是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点设AEFBxcm某厂商要求包装盒的容积Vcm3最大,试问x应取何值并求出此时包装盒的高与底面边长的比值考点利用导数求几何模型的最值问题题点利用导数求几何体体积的最值问题解Vx2x2602x222x2602x22x3602x20x30Vx62x21202x62xx20令Vx0,得x0舍去或x20.当0x0;当20x30时,Vx0.Vx在x20时取极大值也是唯一的极值,故为最大值底面边长为2x202cm,高为230x102cm,即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积Scm2最大,试问x应取何值解AEx,HE2x.EF602x,EG22EF22602x230xS 侧4HEEG42x230x8x30x8x2240x8x1528152.当x15时,S侧最大为1800cm2.反思与感悟面积.体积容积最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验跟踪训练1已知圆柱的表面积为定值S,当圆柱的容积V最大时,圆柱的高h的值为________考点利用导数求几何模型的最值问题题点利用导数求几何体体积的最值问题答案6S3解析设圆柱的底面半径为r,则S圆柱底2r2,S圆柱侧2rh,圆柱的表面积S2r22rh.hS2r22r,又圆柱的体积Vr2hr2S2r2rS2r32,VrS6r22,令Vr0,得S6r2,h2r,Vr只有一个极值点,当h2r时圆柱的容积最大又rS6,h2S66S3.即当圆柱的容积V最大时,圆柱的高h为6S3.类型二实际生活中的最值问题命题角度1利润最大问题例2已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为Rx万元,且Rx10.8x230,010.1求年利润W万元关于年产量x千件的函数解析式;2当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值解1当010时,WxRx102.7x9810003x2.7x.所以W8.1xx33010,010.2当0x10时,令W8.1x2100,得x9.所以当0x9时,W单调递增,当9x10时,令W2.710003x20,得x1009,当10x0;当x1009时,W0,所以当x1009时,Wmax3838.6,所以当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元反思与感悟解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系1利润收入成本2利润每件产品的利润销售件数跟踪训练2某商场销售某种商品的经验表明,该商品每日的销售量y单位千克与销售价格x单位元/千克满足关系式yax310x62,其中3x6,a为常数已知销售价格为5元/千克时,每日可售出该商品11千克1求a 的值;2若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大解1因为当x5时,y11,所以a21011,所以a2.2由1可知,该商品每日的销售量为y2x310x62,所以商场每日销售该商品所获得的利润为fxx32x310x62210x3x62,3x6.从而fx10x622x3x630x4x6列表如下.x3,444,6fx0fx极大值f4由上表可得,x4是函数fx在区间3,6内的极大值点,也是最大值点所以当x4时,函数fx取得最大值为42.所以当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大命题角度2用料.费用最少问题例3某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为2xx万元假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元1试写出y关于x的函数关系式;2当m640米时,需新建多少个桥墩才能使y最小考点利用导数求解生活中的最值问题题点用料.费用最少问题解1设需新建n个桥墩,则n1xm,即nmx1.所以yfx256nn12xx256mx1mx2xx256mxmx2m256.0xm2由1知,fx256mx212m12xm2x232512x令fx0,得32x512,所以x64.当0x64时,fx0,fx在区间0,64上为减函数;当64x0,fx在区间64,640上为增函数,所以fx在x64处取得最小值此时nmx16406419.故当m640米时,需新建9个桥墩才能使y最小反思与感悟1用料最省.成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象正确书写函数表达式,准确求导,结合实际作答2利用导数的方法解决实际问题,当在定义区间内只有一个点使fx0时,如果函数在这点有极大小值,那么不与端点值比较,也可以知道在这个点取得最大小值跟踪训练3为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C单位万元与隔热层厚度x单位cm满足关系Cxk3x50x10,若不建隔热层,每年能源消耗费用为8万元设fx为隔热层建造费用与20年的能源消耗费用之和1求k的值及fx的表达式;2隔热层修建多厚时,总费用fx达到最小,并求最小值解1由题设知,每年能源消耗费用为Cxk3x5,再由C08,得k40,因此Cx403x5,而建造费用为C1x6x.因此得隔热层建造费用与20年的能源消耗费用之和为fx20CxC1x20403x56x8003x56x0x102fx624003x52.令fx0,即24003x526,解得x5,x253舍去当0x5时,fx0;当5x0,故当x5时,fx取到最小值,对应的最小值为f56580015570.所以当隔热层修建5cm厚时,总费用达到最小值70万元.1方底无盖水箱的容积为256,则最省材料时,它的高为________答案4解析设底面边长为x,高为h,则Vxx2h256,h256x2.Sxx24xhx24x256x2x24256x,Sx2x4256x2.令Sx0,解得x8,判断知当x8时,Sx取得最小值h256824.2某产品的销售收入y1万元是产品x千台的函数,y117x2;生产总成本y2万元也是x 的函数,y22x3x2x0,为使利润最大,应生产________千台答案6解析构造利润函数yy1y218x22x3x0,y36x6x2,令y0,得x6x0舍去,x6是函数y在0,上唯一的极大值点,也是最大值点3一房地产公司有50套公寓要出租,当月租金定为1000元时,公寓会全部租出去,月租金每增加50元,就会多一套租不出去,而租出去的公寓每月需花费100元维修费,则月租金定为________元时可获得最大收入答案1800解析设x套为没有租出去的公寓数,则收入函数fx100050x50x10050x,fx1600100x,当x16时,fx取最大值,故把月租金定为1800元时收入最大4要制作一个容积为4m3,高为1m的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元答案160解析设底面长为xm,由题意得底面宽为4xm.设总造价为y元,则y20x4x1012x24x,即y20x80x80,y2080x2,令y0,得x2.当x2时,ymin160.5将一段长100cm的铁丝截成两段,一段弯成正方形,一段弯成圆形,当正方形与圆形面积之和最小时,圆的周长为________cm.答案1004解析设弯成圆形的一段铁丝长为x,则另一段长为100x.设正方形与圆形的面积之和为S,则正方形的边长a100x4,圆的半径rx2.故Sx22100x420x100因此Sx2252x8x2100x8,令S0,则x1004.由于在0,100内,函数只有一个导数为0的点,问题中面积之和的最小值显然存在,故当x1004时,面积之和最小1利用导数解决生活中实际问题的一般步骤1分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系yfx2求函数的导数fx,解方程fx0.3比较函数在区间端点和极值点的数值的大小,最大小者为最大小值2正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路另外需要特别注意1合理选择变量,正确写出函数解析式,给出函数定义域2与实际问题相联系3必要时注意分类讨论思想的应用。

苏教版数学高一1.4导数在实际生活中的应用

1.4导数在实际生活中的应用学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求用料最省、利润最大、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.优化问题就是实际生活中给定条件求最大值或最小值的问题.(√)2.生活中的优化问题都必须利用导数解决.(×)3.生活中的优化问题中若函数只有一个极值点,则它就是最值点.(√)类型一几何中的最值问题例1请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长考点利用导数求几何模型的最值问题题点利用导数求几何体体积的最值问题解∵V(x)=(2x)2×(60-2x)×2 2=2x2×(60-2x)=-22x3+602x2(0<x<30).∴V′(x)=-62x2+1202x=-62x(x-20).令V′(x)=0,得x=0(舍去)或x=20.∵当0<x<20时,V′(x)>0;当20<x<30时,V′(x)<0.∴V(x)在x=20时取极大值也是唯一的极值,故为最大值.∴底面边长为2x=202(cm),高为2(30-x)=102(cm),即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S(cm2)最大,试问x应取何值?解∵AE=x,∴HE=2x.∵EF=60-2x,∴EG=22EF=22(60-2x)=2(30-x).∴S侧=4×HE×EG=4×2x×2(30-x)=8x(30-x)=-8x2+240x=-8(x-15)2+8×152.∴当x=15时,S侧最大为1 800 cm2.反思与感悟面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.跟踪训练1已知圆柱的表面积为定值S,当圆柱的容积V最大时,圆柱的高h的值为考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案6πS 3π解析 设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh . ∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS 3π. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-x 230,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎨⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,令W ′=8.1-x 210=0,得x =9.所以当0<x <9时,W 单调递增, 当9<x <10时,W 单调递减, 所以当x =9时,W max =38.6.当x >10时,令W ′=-2.7+1 0003x 2=0,得x =1009,当10<x <1009时,W ′>0;当x >1009时,W ′<0,所以当x =1009时,W max =38<38.6,所以当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 列表如下.由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值为42.所以当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 命题角度2 用料、费用最少问题例3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =mx -1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝⎛⎭⎫m x -1+m x (2+x )x =256m x+m x +2m -256.(0<x <m )(2)由(1)知,f ′(x )=-256m x 2+12m 12x -=m 2x232512x ⎛⎫- ⎪⎝⎭. 令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)上为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)上为增函数, 所以f (x )在x =64处取得最小值. 此时n =m x -1=64064-1=9.故当m =640米时,需新建9个桥墩才能使y 最小.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.(2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 解 (1)由题设知,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5,而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为 f (x )=20C (x )+C 1(x )=20×403x +5+6x=8003x +5+6x (0≤x ≤10). (2)f ′(x )=6- 2 400(3x +5)2.令f ′(x )=0,即 2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.所以当隔热层修建5 cm 厚时,总费用达到最小值70万元.1.方底无盖水箱的容积为256,则最省材料时,它的高为________. 答案 4解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0,解得x =8,判断知当x =8时,S (x )取得最小值. ∴h =25682=4.2.某产品的销售收入y 1(万元)是产品x (千台)的函数,y 1=17x 2;生产总成本y 2(万元)也是x的函数,y 2=2x 3-x 2(x >0),为使利润最大,应生产________千台. 答案 6解析 构造利润函数y =y 1-y 2=18x 2-2x 3(x >0),y ′=36x -6x 2,令y ′=0,得x =6(x =0舍去),x =6是函数y 在(0,+∞)上唯一的极大值点,也是最大值点.3.一房地产公司有50套公寓要出租,当月租金定为1 000元时,公寓会全部租出去,月租金每增加50元,就会多一套租不出去,而租出去的公寓每月需花费100元维修费,则月租金定为________元时可获得最大收入. 答案 1 800解析 设x 套为没有租出去的公寓数,则收入函数f (x )=(1 000+50x )(50-x )-100(50-x ),∴f ′(x )=1 600-100x ,∴当x =16时,f (x )取最大值,故把月租金定为1 800元时收入最大. 4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 答案 160解析 设底面长为x m ,由题意得底面宽为4x m.设总造价为y 元,则y =20x ×4x +10×1×⎝⎛⎭⎫2x +2×4x , 即y =20x +80x+80,y ′=20-80x 2,令y ′=0,得x =2.∴当x =2时,y min =160.5.将一段长100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆形,当正方形与圆形面积之和最小时,圆的周长为________ cm. 答案100π4+π解析 设弯成圆形的一段铁丝长为x ,则另一段长为100-x . 设正方形与圆形的面积之和为S ,则正方形的边长a =100-x 4,圆的半径r =x2π.故S =π⎝⎛⎭⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42(0<x <100). 因此S ′=x 2π-252+x 8=x 2π-100-x 8,令S′=0,则x=100π.4+π由于在(0,100)内,函数只有一个导数为0的点,问题中面积之和的最小值显然存在,故当x =100π时,面积之和最小.4+π1.利用导数解决生活中实际问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x).(2)求函数的导数f′(x),解方程f′(x)=0.(3)比较函数在区间端点和极值点的数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式,给出函数定义域.(2)与实际问题相联系.(3)必要时注意分类讨论思想的应用.。

苏教高一下数学选修2-2 第一章 1.4导数在实际生活中的应用练习题课件


解 (1)由PO1=2 m知O1O=4PO1=8 m.因为A1B1=AB=6 m,
所以正四棱锥P-A1B1C1D1的体积V锥=
1 3
·A1B12·PO1=13
×62×2=24(m3);
正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3).
所以仓库的容积V=V锥+V柱=24+288=312(m3).
C.28 000元
D.23 000元
解析 设毛利润为L(p),由题意知L(p)=pQ-20Q=Q(p-20)=(8 300-170p-p2)(p-20)=-p3 -150p2+11 700p-166 000,所以L′(p)=-3p2-300p+11 700. 令L′(p)=0,解得p=30或p=-130(舍去).此时,L(30)=23 000. 因为当20≤p<30时,L′(p)>0,当p>30时,L′(p)<0, 所以L(30)是极大值,根据实际问题的意义知,L(30)也是最大值,即零售价定为每件30元时, 最大毛利润为23 000元.
1.4 导数在实际生活中的应用 刷基础
题型1 面积、容积的最大(小)值问题
5.[湖北武汉华中师范大学第一附属中学2019高二期中]传说中孙悟空的“如意金箍棒”是 由“定海神针”变形得来的.设定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm且以每秒1 cm等速率缩短,而长度以每秒20 cm等速率增长.已知神针的底面半径只能 从12 cm缩到4 cm,且在这段变形过程中,当底面半径为10 cm时其体积最大.假设孙悟 空将神针体积缩到最小时定形成金箍棒,则此时金箍棒的底面半径为____4____cm. 解析 设原来神针的长度为a cm,t秒时神针体积为V(t),则V(t)=π(12-t)2·(a+20t),其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档