(完整版)一元二次方程100道计算题练习(附答案)
元二次方程100道计算题练习

一元二次方程100道计算题练习(含答案)1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 3(1)33x x x +=+x 2x+3=0 ()()0165852=+---x x二、利用开平方法解下列方程4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程220x -+= 01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程 (x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=-21302x x ++= 4)2)(1(13)1(+-=-+x x x x2)2)(113(=--x x x (x +1)-5x =0. 3x (x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元2、两个正方形,小正方形的边长比大正方形的边长的一半多 4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
一元二次方程100道计算题练习(附答案解析)

一元二次方程100道计算题练习1、)4(5)4(2xx2、x x 4)1(23、22)21()3(x x 4、31022x x5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 -52=0 9、8(3 -x )2–72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=014、x 2-4x+ 3=015、x 2-2x -1 =016、2x2+3x+1=0 17、3x 2+2x -1 =018、5x 2-3x+2 =019、7x2-4x -3 =0 20、-x 2-x+12 =021、x 2-6x+9 =022、22(32)(23)x x 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法)26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)235、2720xx 36、24410tt 37、24330x x x 38、2631350xx 39、2231210x 40、2223650xx 补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)242x x3(1)33x x xx 2-23x+3=0 0165852x x 二、利用开平方法解下列方程51)12(212y 4(x-3)2=2524)23(2x三、利用配方法解下列方程25220xx 012632x x1072x x四、利用公式法解下列方程-3x 2+22x -24=02x (x -3)=x -3.3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=022(21)9(3)x x 2230xx 21302xx4)2)(1(13)1(xx x x3(x211x x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).)()2应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多 4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为 5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程04222ax xa的一个根为0,则a 的值为。
一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案

一元二次方程100道计算题练习1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、〔x+5〕2=166、2〔2x -1〕-x 〔1-2x 〕=07、x 2 =64 8、5x 2 -52=0 9、8〔3 -x 〕2–72=010、3x(x+2)=5(x+2) 11、〔1-3y 〕2+2〔3y -1〕=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=-23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0〔配方法〕 26、(3x +2)(x +3)=x +1427、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、〔2x-1〕2 +3〔2x-1〕+2=031、2x 2-9x +8=0 32、3〔x-5〕2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-=38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解以下方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-2 ()()0165852=+---x x二、利用开平方法解以下方程 51)12(212=-y 4〔x-3〕2=25 24)23(2=+x三、利用配方法解以下方程25220x x -+=012632=--x x 01072=+-x x四、利用公式法解以下方程-3x 2+22x -24=0 2x 〔x -3〕=x -3.3x 2+5(2x+1)=0五、选用适当的方法解以下方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=-2230x x --=21302x x ++=4)2)(1(13)1(+-=-+x x x x--xx x〔x+1〕-5x=0. 3x(x-3) =2(x-1) (x+1).23(=11)2)(应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,假设商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,假设矩形铁板的面积为5 m2,那么矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余局部种草,假设使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售本钱为每千克40元的水产品,据市场分析,假设按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售本钱不超过1万元的情况下,使得月销售利润到达8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,那么a 的值为。
一元二次方程计算题及答案120道

优质解析6X2 -7X+l=06X2-7X=-1X2 -( 7 / 6 ) X+( 7 / 12)2 =-1 / 6 *( 7 / 12 ) 2(X-7 / 12)2 =25 / 144/•X-7/ 12=±5/ 12AX1=1,X2=1 / 65X2 -18=9X5X2 -9X=18x2 =()2 =・°・= ±/•X1=3,X2=4X2 -3X=52解:X2 -( 3 / 4 ) X=13(X-3 / 8)2 =13/•X-3/8=±29/8AX1=4,X2 =-13 / 45X2 =4-2X5X2+2X=4X2 +=(X+ ) 2 =x+=±X1=-1Z X2=就这么几道,最好去百度搜索,那多l)x A2-9x+8=0答案:xl=8 x2=l(2)x A2+6x-27=0 答案:xl=3 x2=-9(3)x A2-2x-80=0 答案:xl=-8 x2=10(4)x A2+10x-200=0 答案:xl=-20 x2=10⑸x A2-20x+96=0 答案:xl=12 x2=8(6)x A2+23x+76=0 答案:xl=-19 x2=-4(8)x A2-12x-108=0 答案:xl=-6 x2=18(9)x A2+4x-252=0 答案:xl=14 x2=-18(10)x A2-llx-102=0 答案:xl=17 x2=-6(11)x A2+15x-54=0 答案:xl=-18 x2=3(12)x A2+llx+18=0 答案:xl=-2 x2=-9(13)x A2-9x+20=0 答案:xl=4 x2=5(14)x A2+19x+90=0 答案:xl=-10 x2=-9(15)x A2-25x+156=0 答案:xl=13 x2=12(16)x A2-22x+57=0 答案:xl=3 x2=19(17)x A2-5x-176=0 答案:xl=16 x2=-ll(18)x A2-26x+133=0 答案:xl=7 x2=19(19)x A2+10x-ll=0 答案:xl=-ll x2=l(20)x A2-3x-304=0 答案:xl=-16 x2=19(21)x A2+13x-140=0 答案:xl=7 x2=-20(22)x A2+13x-48=0 答案:xl=3 x2=-16(23)x A2+5x-176=0 答案:xl=-16 x2=ll(24)x A2+28x+171=0 答案:xl=-9 x2=-19(25)x A2+14x+45=0 答案:xl=-9 x2=-5(26)x A2-9x-136=0 答案:xl=-8 x2=17 (2刀x A2-15x-76=0 答案:xl=19 x2=-4(28)x A2+23x+126=0 答案:xl=-9 x2=-14(29)x A2+9x-70=0 答案:xl=-14 x2=5(30)x A2-lx-56=0 答案:xl=8 x2=-7(31)x A2+7x-60=0 答案:xl=5 x2=-12(32)x A2+10x-39=0 答案:xl=-13 x2=3(33)x A2+19x+34=0 答案:xl=-17 x2=-2(34)x A2-6x-160=0 答案:xl=16 x2=-10(35)x A2-6x-55=0 答案:xl=ll x2=-5(36)x A2-7x-144=0 答案:xl=-9 x2=16(37)x A2+20x+51=0 答案:xl=-3 x2=-17(38)x A2-9x+14=0 答案:xl=2 x2=7(39)x A2-29x+208=0 答案:xl=16 x2=13(40)x A2+19x-20=0 答案:xl=-20 x2=l(42)x A2+10x+24=0 答案:xl=-6 x2=-4(43)x A2+28x+180=0 答案:xl=-10 x2=-18(44)x A2-8x-209=0 答案:xl=-ll x2=19(45)x A2+23x+90=0 答案:xl=-18 x2=-5(46)x A2+7x+6=0 答案:xl=-6 x2=-l(47)x A2+16x+28=0 答案:xl=-14 x2=-2(48)x A2+5x-50=0 答案:xl=-10 x2=5(49)x A2+13x-14=0 答案:xl=l x2=-14(50)x A2-23x+102=0 答案:xl=17 x2=6(51)x A2+5x-176=0 答案:xl=-16 x2=ll(52)x A2-8x-20=0 答案:xl=-2 x2=10(53)x A2-16x+39=0 答案:xl=3 x2=13(54)x A2+32x+240=0 答案:xl=-20 x2=-12(55)x A2+34x+288=0 答案:xl=-18 x2=-16(56)x A2+22x+105=0 答案:xl=-7 x2=-15(57)x A2+19x-20=0 答案:xl=-20 x2=l(58)x A2-7x+6=0 答案:xl=6 x2=l(59)x A2+4x-221=0 答案:xl=13 x2=-17(60)x A2+6x-91=0 答案:xl=-13 x2=7(61)x A2+8x+12=0 答案:xl=-2 x2=-6(62)x A2+7x-120=0 答案:xl=-15 x2=8(63)x A2-18x+17=0 答案:xl=17 x2=l(64)x A2+7x-170=0 答案:xl=-17 x2=10(65)x A2+6x+8=0 答案:xl=-4 x2=-2(66)x A2+13x+12=0 答案:xl=-l x2=-12(67)x A2+24x+119=0 答案:xl=-7 x2=-17(68)x A2+llx-42=0 答案:xl=3 x2=-14(69)x A20x-289=0 答案:xl=17 x2=-17(70)x A2+13x+30=0 答案:xl=-3 x2=-10(71)x A2-24x+140=0 答案:xl=14 x2=10(73)x A2+27x+170=0 答案:xl=-10 x2=-17(74)x A2+27x+152=0 答案:xl=-19 x2=-8(75)x A2-2x-99=0 答案:xl=ll x2=-9(76)x A2+12x+ll=0 答案:xl=-ll x2=-l(77)x A2+17x+70=0 答案:xl=-10 x2=-7(78)x A2+20x+19=0 答案:xl=-19 x2=-l(79)x A2-2x-168=0 答案:xl=-12 x2=14(80)x A2-13x+30=0 答案:xl=3 x2=10(81)x A2-10x-119=0 答案:xl=17 x2=-7(82)x A2+16x-17=0 答案:xl=l x2=-17(83)x A2-lx-20=0 答案:xl=5 x2=-4(84)x A2-2x-288=0 答案:xl=18 x2=-16(85)x A2-20x+64=0 答案:xl=16 x2=4(86)x A2+22x+105=0 答案:xl=-7 x2=-15(87)x A2+13x+12=0 答案:xl=-l x2=-12(88)x A2-4x-285=0 答案:xl=19 x2=-15(89)x A2+26x+133=0 答案:xl=-19 x2=-7(90)x A2-17x+16=0 答案:xl=l x2=16(91)x A2+3x-4=0 答案:xl=l x2=-4(92)x A2-14x+48=0 答案:xl=6 x2=8(93)x A2-12x-133=0 答案:xl=19 x2=-7(94)x A2+5x+4=0 答案:xl=-l x2=-4(95)x A2+6x-91=0 答案:xl=7 x2=-13(96)x A2+3x-4=0 答案:xl=-4 x2=l(97)x A2-13x+12=0 答案:xl=12 x2=l(98)x A2+7x-44=0 答案:xl=-ll x2=4(99)x A2-6x-7=0 答案:xl=-l x2=7 (100)x A2-9x-90=0 答案:xl=15 x2=-6 (101)x A2+17x+72=0 答案:xl=-8 x2=-9 (102)x A2+13x-14=0 答案:xl=-14 x2=l(104)x A2-9x-90=0 答案:xl=-6 x2=15 (105)x A2+14x+13=0 答案:xl=-l x2=-13 (106)x A2-16x+63=0 答案:xl=7 x2=9 (107)x A2-15x+44=0 答案:xl=4 x2=ll (108)x A2+2x-168=0 答案:xl=-14 x2=12 (109)x A2-6x-216=0 答案:xl=-12 x2=18 (110)x A2-6x-55=0 答案:xl=ll x2=-5 (111)x A2+18x+32=0 答案:xl=-2 x2=-16。
专题1.13解一元二次方程(精选100题)(全章专项练习)2「含答案」

专题1.13 解一元二次方程(精选100题)(全章专项练习)21.解方程:(1)()()2232x x -=-;(2)22610x x ++=.2.(1)213102x x --=(2)228=0x x --.3.选用适当的方法解下列方程.(1)260x x --=;(2)230x x +=.4.解方程:(1)()()2232x x -=-(2)2240x x --=5.用适当方法解方程:(1)()44x x +=;(2)22310x x -+=.6.(1)解方程31144xx x ++=--;(2)232(2)x x +=+.7.解方程:(1)22x x=(2)22610x x -+=8.解方程(1)()4416x x x -=-;(2)22830x x -+=9.解方程:(1)()219x -=;(2)()211x x x -=-.10.解方程:(1)2(2)4(2)x x +=+;(2)22310x x --=.11.解方程:(1)()()2311x x x -=-;(2)2251x x -=-.12.解方程:(1)2215x x -=.(2)()()()1525x x x -+=-+;13.解下列方程:(1)()234x x x -=-.(2)()22239x x -=-.14.解下列方程:(1)23(1)27x -=;(2)241x =.15.解下列方程.(1)()()22321y y -=-.(2)213120x x -+=.16.解方程:(1)26925x x ++=(2)()25160x x +-=17.用适当的方法解下列方程:(1)2230x x --=;(2)()2(1)21x x x +=+;(3)220y -=;(4)2(2)120y --=.18.选择合适的方法解下列方程:(1)228=0x x --.(2)()()3121x x x -=-.19.解下列方程:(1)33222x x x-+=--;(2)230x x --=.20.解方程:(1)214210x x -+=.(2)()23642x x x -=-.21.用合适的方法解方程:(1)2961-=-x x ;(2)()()32510--=x x .22.解下列方程:(1)()22240x x -+-=;(2)1211x x x -=--.23.解方程:(1)217x x +=;(2)2450x x +-=.24.解方程:(1)用配方法:23410x x --=;(2)用公式法:()22541x x -=+.25.解方程:(1)()2263x x -=-(2)2470x x --=26.(1)解方程 2450x x --=.(2)方程 ()()220244202450x x ----=的解为 .27.解方程:(1)2560x x +-=(用配方法解);(2)223203x x +-=(用公式法解).28.解方程:(1)2480x x --=;(2)()3260y y y -+-=.29.按要求解一元二次方程:(1)22530x x --= (配方法)(2)()()()112313x x x +-++=(因式分解法)30.用适当的方法解方程(1)()281216x -=(2)2660y y --=(3)2481x x --=-(4)()()4131x x x -=-31.用适当的方法解下列方程:(1)21690x -=(2)2120x x --=32.解方程.(1)1221x x =-+(2)220x x --=33.解方程(1)2430x x -+=.(2)2810x x --=.34.解下列方程(1)()25160+-=x (2)22630x x --=35.解方程:(1)2270x x --=;(2)()()2565x x +=+.36.解方程(1)2420x x --=(2)2620x x -=37.解方程:(1)()()32332x x x -=-;(2)2142x x +=.38.(1)23610x x -+=(用配方法)(2)()1x x x-=39.用适当的方法解下列方程:(1)()2214x -=;(2)()()()23213x x x +=-+.40.求下列方程中x 的值:(1)210009x -=;(2)()2149x -=.41.解方程:(1)()()2454x x +=+(2)()()134x x +-=-42.解方程(1)()()4540x x x -+-=;(2)2410x x -=+.43.解方程:(1)()()21210x x ---=(2)22310x x +-=44.解方程:(1)2430x x -+=;(2)22310x x --=.45.(1)用配方法解方程:221x x =-;(2)用适当的方法解方程:()2142x x x -=-.46.解方程:(1)22310x x +-=;(配方法)(2)221(3)x x x -=+.47.解下列方程:(1)351122x x x -=---;(2)2430x x -+=.48.解下列方程:(1)22150x x +-=;(2)()()22121y y +=-.49.解下列一元二次方程:(1)2(1)4x +=;(2)22730x x -+=.50.解方程:(1)210x x --=(2)()22x x x +=+1.(1)1225x x ==,(2)12x x ==【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方法是解题关键.(1)利用因式分解法进行求解即可;(2)利用公式法求解方程即可.【详解】(1)解:()()2232x x -=-,()()22320x x ---=,()()2230x x ---=,()()250x x --=,1225x ,x \==;(2)22610x x ++=,261a b c ===,,,22\D >,x \==1x \2.(1)13x =,23x =(2)12x =-,24x =【分析】本题考查解一元二次方程,涉及公式法解一元二次方程、因式分解法解一元二次方程等知识,熟练掌握一元二次方程的解法是解决问题的关键(1)由公式法解一元二次方程即可得到答案;(2)由十字相乘法解一元二次方程即可得到答案.【详解】解:(1)213102x x --=,1312a b c ==-=-Q ,,21(3)4(1)112\=--´´-=V ,3x \==解得13x =+,23x =(2)228=0x x --,\()()240x x +-=,20x +=或40x -=,解得12x =-,24x =.3.(1)13x =,22x =-(2)10x =,23x =-【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法分解因式,得到30x +=或20x +=,再解一元一次方程即可;(2)提取公因式分解因式,得到0x =或30x +=,再解一元一次方程即可;【详解】(1)解:260x x --=,()()320x x -+=,30x \+=或20x +=,\13x =,22x =-;(2)解:230.x x +=,()30x x +=,0x \=或30x +=,\10x =,23x =-.4.(1)12x =,25x =(2)11x =21x =【分析】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法并灵活选择是解题的关键.(1)变形后利用因式分解法解方程即可;(2)利用配方法解方程即可.【详解】(1)()()2232x x -=-∴()()22320x x ---=因式分解为()()250x x --=∴20x -=或50x -=解得12x =,25x =(2)2240x x --=则224x x -=两边都加上一次项系数一般的平方得到()()2222141x x -+-=+-∴()215x -=,开平方得,1x -=∴11x =+21x =-5.(1)12x =,22x =--(2)11x =,212x =【分析】本题考查解一元二次方程.根据方程的特征选择恰当方法求解是解题的关键.(1)用配方法求解即可;(2)用因式分解法求解即可.【详解】(1)解:∵()44x x +=,∴244x x +=,即2448x x ++=,∴()228x +=,∴2x +=±∴12x =,22x =--.(2)解:∵22310x x -+=,∴()()1210x x --=,∴10x -=或210x -=,∴11x =,212x =.6.(1)0x =;(2)11x =+21x =【分析】本题考查解分式方程和一元二次方程:(1)将分式方程转化为整式方程,求解后,进行检验即可;(2)公式法解一元二次方程即可.【详解】解:(1)去分母得:()()341x x ++-=-整理得:211x -=-,移项合并得:0x =,经检验0x =是分式方程的解;(2)方程化为一般式为2210x x --=,2(2)41(1)80D =--´´-=>,1x ===±1211x x \==7.(1)10x =,22x =(2)1x =2x 【分析】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.(1)用因式分解法解方程即可;(2)利用求根公式法解方程即可.【详解】(1)解:原方程移项得220x x -=,()20x x -=,解得10x =,22x =.(2)2a =Q ,6b =-,1c =,x \==1x \8.(1)124x x == (2)1x =,2x =【分析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可;解题的关键是掌握一元二次方程的解法.【详解】解:(1)()4416x x x -=-()44(4)0x x x ---=()240x -=解得:124x x ==;(2)22830x x -+=283a b c ==-=,,,2464423400b ac -=-´´=>,∴∴x =,1x =9.(1)1242x x ==-,(2)12112x x ==-,【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方程是解题关键.(1)利用直接开方法求解一元二次方程即可;(2)利用因式分解方求一元二次方程.【详解】(1)解:()219x -=,13x -=±,1242x x \==-,;(2)()211x x x -=-,()()2110x x x -+-=,(1)(21)0x x -+=,12112x x ==-,.10.(1)122,2x x =-=;(2)1x =,2x =【分析】本题考查解一元二次方程,掌握解方程的步骤与方法,根据方程的特点,选择合适的方法解方程是解决问题的关键.(1)用因式分解法解方程即可;(2)利用公式法解方程即可.【详解】(1)解:2(2)4(2)x x +=+,2(2)4(2)0x x +-+=,(2)(24)0x x ++-=,∴122,2x x =-=;(2)22310x x --=,其中2,3,1a b c ==-=-,∴()942117D =-´´-=,∴x1x \2x =.11.(1)11x =,2x =(2)1x =,2x 【分析】本题考查解一元二次方程,(1)将方程移项,然后提取公因式()1x -,然后将方程转化为两个一元一次方程来求解即可;(2)将方程整理为一般形式,找出a 、b 、c 的值,计算出根的判别式,再代入求根公式即可求解;熟练掌握解一元二次方程的一般方法并灵活运用是解题的关键.【详解】(1)解:()()2311x x x -=-,∴()()23110x x x ---=,∴()()1310x x x --é-ùû=ë,即()()1210x x -+=,∴10x -=或210x +=,解得:11x =,212x =-;(2)整理得:22510x x -+=,此时2a =,=5b -,1c =,∵()25421258170D =--´´=-=>,∴x =∴1x 2x =.12.(1)5x =或3x =-(2)1x =-或5x =-【分析】本题考查了解一元二次方程,解题的关键是运用因式分解法来解答.(1)先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,即可求出结果.(2)先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,即可求出结果.【详解】(1)解:²215,x x -=()()530x x -+=,即:50x -=或30x +=,∴5x =或3x =-;(2)解:()()()1525x x x -+=-+,()()()15250x x x -+++=,()()1250x x -++=,即: 10x +=或50x +=,∴1x =-或13.(1)12x x ==(2)123,9x x ==【分析】本题主要考查解一元二次方程:(1)方程整理后运用公式法求解即可;(2)方程移项后运用因式分解法求解即可【详解】(1)解:()234x x x -=-2264x x x -=-22740x x -+=∵()274244932170,D =--´´=-=>∴x =∴12x x =(2)解:()22239x x -=-,()()222390,x x ---=()()()223330,x x x --+-=()()()32330x x x ---+=éùëû,()()390x x --=,30,90,x x -=-=解得,123,9x x ==14.(1)14x =,22x =-(2)1x 2x =【分析】本题考查了解一元二次方程-公式法及直接开平方法,利用公式法解方程时,首先将方程整理为一般形式,找出a 、,b 及c 的值,计算出根的判别式的值,当根的判别式的值大于等于0时,代入求根公式即可求出解.(1)方程两边除以3变形后,利用平方根的定义开方转化为两个一元一次方程来求解;(2)方程整理为一般形式,找出a ,b 及c 的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【详解】(1)解:23(1)27x -=,变形得:2(1)9x -=,开方得:13x -=±,14x \=,22x =-;(2)解:241x =方程整理得:2410x -=,这里4a =,b =1c =-,Q 216180D +=>,x \则1x 2x =.15.(1)12y =-;243y =(2)11x =;212x =【分析】本题主要考查了解一元二次方程,熟知解一元二次方程的直接开平方法和因式分解法是解题的关键.(1)用直接开平方法解方程;(2)先把方程左边利用十字相乘法分解因式,然后解方程.【详解】(1)解:()()22321y y -=-321y y -=-或()321y y -=--解得12y =-;243y =(2)解:213120x x -+=因式分解,得()()1120x x --=10x -=或120-=x 解得11x =;212x =16.(1)12x =,28x =-(2)方程无解【分析】本题考查一元二次方程的解法,灵活选用直接开平方法、配方法、公式法和因式分解法解方程是解题的关键.(1)利用直接开平方法解一元二方程即可;(2)先把方程整理为一般式得到得5²650x x -+=,然后利用公式法解方程.【详解】(1)解:26925x x ++=()2325x +=35x +=或35x +=-解得:12x =,28x =-;(2)解:()25160x x +-=25650x x -+=565a b c ==-=,,,2436455640b ac -=-´´=-<,方程没有实数根,∴方程无解.17.(1)123,1x x ==-(2)121,1x x =-=(3)120,y y ==(4)1222y y =+=-【分析】本题考查了一元二次方程,选择合适的方法解一元二次方程是解题的关键.(1)利用因式分解法即可解答;(2)利用因式分解法即可解答;(3)利用因式分解法即可解答;(4)利用直接开平方法即可解答.【详解】(1)解:2230x x --=,()()310x x -+=,30,10x x \-=+=,解得123,1x x ==-;(2)解:()2(1)21x x x +=+,()2(1)210x x x +-+=,()(1)120x x x ++-=,10,120x x x \+=+-=解得121,1x x =-=;(3)解:220y -=,(20y y -=,解得120,y y ==;(4)解:2(2)120y --=,2(2)12y -=,2y -=解得1222y y =+=-.18.(1)14x =,22x =-(2)11x =,223x =【分析】本题考查解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.(1)用因式分解法求解即可;(2)用因式分解法求解即可.【详解】(1)解:228=0x x --,()()420x x -+=,40x -=或20x +=,∴14x =,22x =-;(2)解:()()3121x x x -=-,()()31210x x x ---=,()()1320x x --=,10x -=或320x -=,∴11x =,223x =.19.(2)1x =2x =【分析】本题考查了解分式方程、解一元二次方程,熟练掌握运算方法是解此题的关键.(1)先去分母,将分式方程化为整式方程,解整式方程并检验即可得出答案;(2)利用公式法解一元二次方程即可.【详解】(1)解:33222x x x-+=--,去分母得:()3223x x -+-=-,解得:43x =,检验:当43x =时,20x -¹,43x \=是原方程的解;(2)解:230x x --=Q 1a =,1b =-,3c =-,()()2241413130b ac \D =-=--´´-=>,x \=∴1x20.(1)17x =+17x =-;(2)12x =,243x =.【分析】(1)利用配方法解答即可求解;(2)移项提取公因式,利用因式分解法解答即可求解本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.【详解】(1)解:∵214210x x -+=,∴21421x x -=-,∴214492149x x -+=-+,即()2728x -=,∴7x -=±∴17x =+17x =-(2)解:移项提取公因式得,()()32420x x x ---=,因式分解得,()()2340x x --=,∴20x -=或340x -=,∴12x =,243x =.21.(1)1213x x ==(2)1215,2x x ==【分析】该题考查了解一元二次方程,解一元二次方程常用方法:配方法,公式法,因式分解法,直接开平方法.(1)整理后用配方法解答即可;(2)整理后用公式法解答即可;【详解】(1)解:2961-=-x x 移项得29610x x -+=,配方得2(31)0x -=,∴1213x x ==.(2)()()32510x x --=,整理得:221150x x -+=,∵2115,,==-=a b c ,∴()2241142581b ac -=--´´=,∴1194x ±===,∴15=x ,212x =.22.(1)12x =,20x =(2)3x =【分析】本题考查一元二次方程和分式方程的解法,正确掌握方程的解法是解题的关键.(1)利用因式分解法解一元二次方程即可;(2)先把方程两边乘以1x -,把分式方程转化为一元一次方程求解,然后进行验根即可.【详解】(1)解:()22240x x -+-=()()22220x x -+-=()()x 2x 220--+=20x -=或x 220-+=,解得:12x =,20x =;(2)1211x x x-=--两边同时乘以1x -得:()121x x +=-解方程得:3x =,经检验:3x =是原方程的解,∴.23.(1)1x =2x =(2)15x =-,21x =【分析】本题考查解一元二次方程,灵活选用解一元二次方程的方法是解题的关键.(1)运用公式法求解即可;(2)运用因式分解法求解即可.【详解】(1)解:原方程可化为2710x x -+=,()2247411450b ac -=--´´=>,x =1x (2)∵2450x x +-=,∴()()510x x +-=,∴50x +=或10x -=,∴15x =-,21x =.24.(1)123x =,223x =(2)1x =2x =【分析】本题考查解一元二次方程.关键是熟练掌握配方法和公式法解一元二次方程的一般步骤.(1)用配方法解一元二次方程时,先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式;(2)用公式法解方程时,先确定a ,b ,c 的值,再计算D ,若0D ³,即可代入求根公式,解得即可.【详解】(1)24133x x -=244143939x x +=+-;22739x æö-=ç÷èø\23x -;123x =+223=(2)整理得:22490x x ---=1672880D =+=>,\方程有两个不等的实数根x ==\1x =,2x =25.(1)13x =,25x =(2)12x =, 22x =【分析】本题考查了解一元二次方程,解题的关键是:(1)移项后利用因式分解法求解即可;(2)利用配方法求解即可.【详解】(1)解:()2263x x -=-,∴()()23260x x ---=,∴()()23230x x ---=,∴()()3320x x ---=,即()()350x x --=∴30x -=或50x -=,∴13x =,25x =;(2)解:2470x x --=,∴247x x -=,∴24474x x -+=+,∴()2211x -=,∴2x -=,∴12x =, 22x =.26.(1)11x =-,25x =;(2)12023x =,22029x =【分析】本题考查了解一元二次方程-因式分解法(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)设2024x a -=,则原方程可化为:2450a a --=,然后利用(1)的结论进行计算,即可解答.【详解】解:(1)2450x x --=,(5)(1)0x x -+=,50x -=或10x +=,1251x x ==-,;(2)设2024x a -=,则原方程可化为:2450a a --=,由(1)可得:5a =或1a =-,∴20245x -=或20241x -=-,解得:12029x =,22023x =,故答案为:12029x =,22023x =.27.(1)16x =-,21x =(2)12x x ==【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方法是解题关键.(1)利用配方法进行求解即可;(2)利用公式法进行求解即可.【详解】(1)解:2560x x +-=,256x x +=,225255624x x æö++=+ç÷èø,254924x æö+=ç÷èø,5722x +=±,16x \=-,21x =;(2)223203x x +-=,23a =Q ,3b =,2c =-,22Δ434b ac \=-=-x \==12x x \=28.(1)12x =+22x =-(2)13y =,22y =-.【分析】本题考查了解一元二次方程,解此题的关键是掌握解一元二次方程方法将一元二次方程转化成一元一次方程求解.(1)利用配方法解一元二次方程,即可解题;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:2480x x --=,24412x x -+=,()2212x -=,2x -=±2x =±12x =+22x =-(2)解:()3260y y y -+-=,()()3230y y y -+-=,()()320y y -+=,有30y -=或20y +=,解得13y =,22y =-.29.(1)13x =,212x =-(2)12x =,24x =-【分析】本题考查了配方法及因式分解法解一元二次方程,能够根据方程特点灵活选用不同的解法是解题的关键.(1)根据配方法解一元二次方程的步骤求解即可;(2)根据因式分解法解一元二次方程的步骤求解即可.【详解】(1)解:方程两边同除以2,移项得:25322x x -=即25254921616x x -+=.配方得,2549416x æö-=ç÷èø开方得,5744x -=±.13x \=,212x =-.(2)解:原方程可化为2280x x +-=,分解因式得,()()240x x -+=解得12x =,24x =-.30.(1)122214,99x x ==(2)123,3y y =+=(3)12x x ==(4)1231,4x x ==【分析】本题主要考查了解一元二次方程:(1)利用直接开平方的方法解方程即可;(2)利用配方法解方程即可;(3)利用公式法解方程即可;(4)先移项,然后利用因式分解法解方程即可.【详解】(1)解:∵()281216x -=,∴()281216x =-,∴429x -=±,解得122214,99x x ==;(2)解;∵2660y y --=,∴266y y -=,∴26915y y +=-,∴()2315y -=,∴3y -=解得123,3y y =+=;(3)解:2481x x --=-整理得24810x x -=+,∴481a b c ===-,,,∴()2844180D =-´´-=,∴x =解得2x =(4)解:∵()()4131x x x -=-,∴()()41310x x x ---=,∴()()4310x x --=,∴430x -=或10x -=,解得1231,4x x ==.31.(1)134x =,234x =-;(2)13x =-,24x =;【分析】本题考查了解一元二次方程的方法,掌握并熟练运用直接开平方法,因式分解法,配方法,公式法是解题关键.(1)移项得2916x =,利用直接开平方法即可求解;(2)分解因式得(3)(4)0x x +-=,利用因式分解法即可求解;【详解】(1)解:由 21690x -=得2916x =,\ 134x =,234x =-.(2)解:由2120x x --=,得(3)(4)0x x +-=,\ 13x =-,24x =.32.(1)5x =;(2)12x =,21x =-;【分析】本题考查了分式方程和一元二次方程.通过去分母将分式方程转化为整式方程后求解,再将整式方程的解代入最简公分母,如果最简公分母不为零,则整式方程的解是原分式方程的解,否则不是原分式方程的解;对于一元二次方程,可以通过因式分解法,配方法,公式法来求解,掌握分式方程和一元二次方程的解法是解题的关键.(1)方程两边同乘(2)(1)x x -+化为整式方程后求解,检验整式方程的根是否使得(2)(1)x x -+为零,即可得解;(2)利用因式分解法即可求解;【详解】(1)1221x x =-+两边同乘(2)(1)x x -+得:(1)2(2)x x +=-,即124x x +=-,解得:5x =,检验当5x =,(2)(1)0x x -+¹,故5x =是原方程的解.(2)220x x --=分解因式得(2)(1)0x x -+=,解得12x =,21x =-.33.(1)11x =,23x =(2)14x =24x =【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)利用因式分解法即可求解;(2)利用配方法求解即可.【详解】(1)解:2430x x -+=,()()130x x --=,10x -=或30x -=,11x =,23x =;(2)解:2810x x --=,281x x -=2228414x x -+=+()2417x -=4x -=14x =,24x =.34.(1)1219x x =-=-,(2)12x x ==【分析】本题主要考查解一元二次方程:(1)方程移项后运用直接开平方法求解即可;(2)方程运用公式法求解即可【详解】(1)解:()25160+-=x ()2516x +=()54+=±x 5454x x +=+=-,∴1219x x =-=-,(2)解:22630x x --=263a b c ==-=-,,()()2²46423600D =-=--´´-=>b ac=x ∴1x35.(1)11x =+,21x =-(2)15x =-,21x =【分析】本题考查了一元二次方程的求解,熟练掌握利用配方法、因式分解法解一元二次方程是解题的关键.(1)利用配方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)解:2270x x --=,移项得:227x x -=,配方得:22171x x -+=+,即()218x -=,开方得:1x -=±,解得:11x =+,21x =-;(2)解:()()2565x x +=+,移项得:()()20655x x -++=,分解因式得:()()5560x x ++-=,即()()510x x +-=,可得:50x +=或10x -=,解得:15x =-,21x =.36.(1)12x =22x =(2)10x =,213x =【分析】本题考查了解一元二次方程,解题的关键是∶(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解∶ 2420x x --=2x 4x 2-=24424x x -+=+()226x -=2x -=∴12x = , 22x =;(2)解∶2620x x -=()2310x x -=20x =或310x -=解得10x =, 213x =.37.(1)13x =,2x =(2)12x x =【分析】本题主要考查解一元二次方程的能力.(1)先移项,再利用因式分解法解方程即可;(2)先化为一般形式,再利用公式法解方程即可.【详解】(1)解:()()32332x x x -=-,移项得()()323320x x x ---=,因式分解得()()3230x x --=,∴30x -=或320x -=,解得13x =,223x =;(2)解:2142x x +=,2280x x \+-=,2a =Q ,1b =,8c =-,()2Δ142865\=-´´-=,x \=解得38.(2)1202x x ==,【分析】本题主要考查了解一元二次方程;(1)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方解方程即可;(2)先移项,然后利用因式分解法解方程即可.【详解】解:(1)∵23610x x -+=∴2361x x -=-,∴2123x x -=-,∴22213x x -+=,∴()2213x -=,∴1x -=解得12x x ==;(2)∵()1x x x -=,∴()10x x x --=,∴()20x x -=,∴0x =或20x -=,解得1202x x ==,.39.(1)132x =,212x =-(2)14x =,23x =-【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)利用直接开平方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:直接开平方得:212x -=±,∴212x -=或212x -=-,解得:132x =,212x =-;(2)解:移项得:()()()232130x x x +--+=,因式分解得:()()33210x x x ++-+=,即()()340x x +-=,∴40x -=或30x +=,解得:14x =,23x =-.40.(1)1103x =,2103x =-(2)18x =,26x =-【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)先移项,再开平方即可得到答案;(2)直接开平方即可得到答案.【详解】(1)解:210009x -=Q ,21009x \=,则1103x =,2103x =-;(2)解:()2149x -=Q ,17x -=或17x -=-,解得18x =,26x =-.41.(1)14x =-,21x =(2)121x x ==【分析】本题考查因式分解法解一元二次方程,熟练掌握因式分解法是解决问题的关键.(1)根据提公因式法因式分解解一元二次方程即可得到答案;(2)先由多项式乘以多项式展开,再由完全平方差公式因式分解解一元二次方程即可得到答案.【详解】(1)解:()()2454x x +=+,()()4450x x \++-=,即()()410x x +-=,40x \+=或10x -=,解得14x =-,21x =;(2)解:()()134x x +-=-,22340x x \--+=,即2210x x -+=,()210x \-=,即10x -=,解得121x x ==.42.(1)1254x x =-=,(2)1222x x =--=-+【分析】本题主要考查了解一元二次方程:(1)先把方程左边利用提公因式法分解因式,然后解方程即可;(2)利用配方法解方程即可.【详解】(1)解:∵()()4540x x x -+-=,∴()()540x x +-=,∴50x +=或40x -=,解得1254x x =-=,;(2)解:∵2410x x -=+,∴241x x +=,∴2445x x ++=,∴()225x +=,∴2x +=解得1222x x =--=-+43.(1)11x =,23x =(2)1x =,2x =【分析】本题考查了解一元二次方程-公式法,因式分解法.熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法,进行计算即可解答;(2)利用解一元二次方程-公式法,进行计算即可解答.【详解】(1)解: 2(1)2(1)0x x ---=,(1)(12)0x x ---=,10x -=,30x -=,11x =,23x =;(2)解:22310x x +-=,Q 2342(1)D =-´´-98=+170=>x \=1x \.44.(1)121,3x x ==(2)12x x =【分析】本题考查解一元二次方程,熟练掌握求解方法是解题关键;(1)利用因式分解法求解即可;(2)利用公式法求解即可.【详解】(1)∵2430x x -+=,∴()()130x x --=∴10x -=或30x -=,∴121,3x x ==(2)22310x x --=∴2,3,1a b c ==-=-∴()()22Δ43421170b ac =-=--´´-=>,∴方程有两不等实数根,∴1,2x∴12x ==.45.(1)121x x ==;(2)12122x x ==,【分析】本题主要考查了解一元二次方程:(1)先移项,然后利用完全平方公式配方,进而解方程即可得到答案;(2)先移项,然后利用因式分解法解方程即可得到答案.【详解】解:(1)221x x =-2210x x -+=()210x -=解得121x x ==;(2)()2142x x x -=-()()212210x x x ---=()()2210x x --=20x -=或210x -=解得12122x x ==,.46.,234x =-(2)1x =2x =【分析】(1)利用配方法求解即可;(2)先把方程化成一般式2310x x --=,然后利用公式法求解即可;本题考查了解一元二次方程,解题的关键在于灵活选取适当的方法解方程.【详解】(1)解:22310x x +-=23122x x +=,22331924216x x æö++=+ç÷èø,2317416x æö+=ç÷èø,34x +=134x =-,234x =-;(2)22213x x x -=+,2310x x --=,()()2Δ3411130=--´´-=>,∴∴x =∴1x 47.(1)原方程无解;(2)13x =,21x =【分析】本题考查了解分式方程,解一元二次方程,解题的关键是:(1)分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解;(2)利用配方法求解即可.【详解】解:(1)两边都乘以2x -,得:3521x x -=-+,解得2x =,经检验2x =是原方程的增根,所以原方程无解;(2)2430x x -+=,∴243x x -=-,∴24434x x -+=-+,即()221x -=,∴21x -=或21x -=-,解得13x =,21x =.48.(1)1253x x =-=,(2)1202y y ==,【分析】本题主要考查了解一元二次方程:(1)先把方程左边利用十字相乘法分解因式,然后解方程即可得到答案;(2)先移项,然后把方程左边利用平方差公式分解因式,进而解方程即可得到答案.【详解】(1)解:∵22150x x +-=,∴()()530x x +-=,∴50x +=或30x -=,解得1253x x =-=,;(2)解:∵()()22121y y +=-,∴()()221210y y +--=,∴()()1211210y y y y ++-+-+=,∴1210y y ++-=,1210y y +-+=,解得1202y y ==,.49.(1)1231x x =-=,(2)12132x x ==,【分析】本题考查了直接开平方法、因式分解法解一元二次方程.熟练掌握直接开平方法、因式分解法解一元二次方程是解题的关键.(1)利用直接开平方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)解:2(1)4x +=,∴12x +=±,解得,1231x x =-=,;(2)解:22730x x -+=,()()3210x x --=,∴30x -=或210x -=,解得,12132x x ==,.50.(1)1x =2x =;(2)12x =-,21x =.【分析】本题考查了解一元二次方程,熟练掌握因式分解法和配方法是解本题的关键.(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:210x x --=,21544x x -+=,x æçèx x1x =2x =;(2)解:()22x x x +=+,()()220x x x +-+=,()()210x x +-=,20x +=或10x -=,12x =-,21x =.。
(完整版)一元二次方程习题100道

一元二次方程百题一、用直接开平方法解下列一元二次方程。
(1)0142=-x (2)2)3(2=-x (3)()512=-x(4)()162812=-x (5)2225x =; (6)2(1)9x -=;(7)2(61)250x --=. (8)281(2)16x -=. (9)25(21)180y -=(10)21(31)644x += (11)26(2)1x +=; (12)25(21)180y -=(13)21(31)644x += (14)26(2)1x +=; (15)2()(00)ax c b b a -=≠,≥二、用配方法解下列一元二次方程。
(16)0662=--y y (17) x x 4232=- (18)9642=-x x(19)210x x +-= (20)23610x x +-= (21)21(1)2(1)02x x ---+=(22)22540x x --= (23)210x x --= (24)23920x x -+=.(25)2310y y ++=. (26).210x x +-= (27).23610x x +-=(28).21(1)2(1)02x x ---+= (29).23610x x --= (30) 22540x x --=(31)210x x --= (32)23920x x -+=. (33)0542=--x x(34)01322=-+x x (35)07232=-+x x (36)01842=+--x x(37)0222=-+n mx x (38)()00222>=--m m mx x三、用公式解法解下列方程。
(39)0822=--x x (40)22314y y -= (41)y y 32132=+(42)x 2+4x +2=0 ; (43)3x 2-6x +1=0; (44)4x 2-16x +17=0 ;(45)3x 2+4x +7=0. (1)2x 2-x -1=0; (46)4x 2-3x +2=0 ;47)01522=+-x x (48)1842-=--x x (49)02322=--x x四、用因式分解法解下列一元二次方程。
一元二次方程计算题及答案

6X²-7X+1=06X²—7X=—1X²—﹙7/6﹚X+﹙7/12﹚²=—1/6﹢﹙7/12﹚²﹙X—7/12﹚²=25/144∴X-7/12=±5/12∴X1=1,X2=1/65X²-18=9X5X²—9X=18X²-1.8X=3.6﹙X—0。
9﹚²=4。
41∴X—.9=±2。
1∴X1=3,X2=-1.24X²—3X=52解:X²—﹙3/4﹚X=13﹙X-3/8﹚²=13∴X—3/8=±29/8∴X1=4,X2 =-13/45X²=4—2X5X²+2X=4X²+0.2X=0.8﹙X+0.1﹚²=0。
81X+0。
1=±0。
9X1=—1,X2=0。
8 就这么几道,最好去百度搜索,那多1)x^2—9x+8=0 答案:x1=8 x2=1(2)x^2+6x—27=0 答案:x1=3 x2=-9(3)x^2-2x—80=0 答案:x1=—8 x2=10(4)x^2+10x—200=0 答案:x1=—20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2—25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x—102=0 答案:x1=17 x2=—6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=—9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2—22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=—11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2—3x—304=0 答案:x1=-16 x2=19(21)x^2+13x—140=0 答案:x1=7 x2=-20(23)x^2+5x-176=0 答案:x1=—16 x2=11 (24)x^2+28x+171=0 答案:x1=—9 x2=-19 (25)x^2+14x+45=0 答案:x1=-9 x2=—5 (26)x^2—9x—136=0 答案:x1=-8 x2=17 (27)x^2—15x—76=0 答案:x1=19 x2=-4 (28)x^2+23x+126=0 答案:x1=—9 x2=—14 (29)x^2+9x—70=0 答案:x1=-14 x2=5 (30)x^2-1x—56=0 答案:x1=8 x2=-7 (31)x^2+7x—60=0 答案:x1=5 x2=-12 (32)x^2+10x—39=0 答案:x1=—13 x2=3 (33)x^2+19x+34=0 答案:x1=—17 x2=-2(34)x^2—6x—160=0 答案:x1=16 x2=-10(35)x^2-6x—55=0 答案:x1=11 x2=—5 (36)x^2—7x-144=0 答案:x1=-9 x2=16 (37)x^2+20x+51=0 答案:x1=—3 x2=-17 (38)x^2-9x+14=0 答案:x1=2 x2=7 (39)x^2-29x+208=0 答案:x1=16 x2=13 (40)x^2+19x—20=0 答案:x1=—20 x2=1 (41)x^2-13x—48=0 答案:x1=16 x2=-3 (42)x^2+10x+24=0 答案:x1=—6 x2=—4 (43)x^2+28x+180=0 答案:x1=—10 x2=—18(45)x^2+23x+90=0 答案:x1=-18 x2=-5 (46)x^2+7x+6=0 答案:x1=—6 x2=-1 (47)x^2+16x+28=0 答案:x1=—14 x2=—2 (48)x^2+5x-50=0 答案:x1=-10 x2=5 (49)x^2+13x-14=0 答案:x1=1 x2=—14 (50)x^2—23x+102=0 答案:x1=17 x2=6 (51)x^2+5x-176=0 答案:x1=-16 x2=11 (52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2—16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12 (55)x^2+34x+288=0 答案:x1=—18 x2=—16 (56)x^2+22x+105=0 答案:x1=—7 x2=-15 (57)x^2+19x-20=0 答案:x1=—20 x2=1 (58)x^2—7x+6=0 答案:x1=6 x2=1(59)x^2+4x—221=0 答案:x1=13 x2=—17 (60)x^2+6x—91=0 答案:x1=-13 x2=7 (61)x^2+8x+12=0 答案:x1=-2 x2=-6 (62)x^2+7x-120=0 答案:x1=—15 x2=8 (63)x^2-18x+17=0 答案:x1=17 x2=1 (64)x^2+7x—170=0 答案:x1=-17 x2=10 (65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=—1 x2=—12 (67)x^2+24x+119=0 答案:x1=—7 x2=-17 (68)x^2+11x-42=0 答案:x1=3 x2=-14 (69)x^20x-289=0 答案:x1=17 x2=-17 (70)x^2+13x+30=0 答案:x1=-3 x2=—10 (71)x^2—24x+140=0 答案:x1=14 x2=10 (72)x^2+4x-60=0 答案:x1=-10 x2=6 (73)x^2+27x+170=0 答案:x1=—10 x2=-17 (74)x^2+27x+152=0 答案:x1=-19 x2=-8 (75)x^2-2x-99=0 答案:x1=11 x2=—9 (76)x^2+12x+11=0 答案:x1=-11 x2=—1 (77)x^2+17x+70=0 答案:x1=—10 x2=—7 (78)x^2+20x+19=0 答案:x1=—19 x2=—1 (79)x^2—2x-168=0 答案:x1=-12 x2=14 (80)x^2—13x+30=0 答案:x1=3 x2=10 (81)x^2-10x—119=0 答案:x1=17 x2=—7 (82)x^2+16x-17=0 答案:x1=1 x2=-17 (83)x^2-1x-20=0 答案:x1=5 x2=—4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2—20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=—7 x2=-15 (87)x^2+13x+12=0 答案:x1=-1 x2=—12(89)x^2+26x+133=0 答案:x1=—19 x2=-7(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x—4=0 答案:x1=1 x2=-4(92)x^2—14x+48=0 答案:x1=6 x2=8 (93)x^2-12x—133=0 答案:x1=19 x2=—7 (94)x^2+5x+4=0 答案:x1=—1 x2=—4 (95)x^2+6x-91=0 答案:x1=7 x2=-13 (96)x^2+3x-4=0 答案:x1=—4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x—44=0 答案:x1=—11 x2=4 (99)x^2—6x—7=0 答案:x1=—1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=—6 (101)x^2+17x+72=0 答案:x1=—8 x2=-9 (102)x^2+13x-14=0 答案:x1=—14 x2=1 (103)x^2+9x-36=0 答案:x1=-12 x2=3 (104)x^2-9x—90=0 答案:x1=-6 x2=15 (105)x^2+14x+13=0 答案:x1=-1 x2=—13 (106)x^2-16x+63=0 答案:x1=7 x2=9 (107)x^2-15x+44=0 答案:x1=4 x2=11 (108)x^2+2x—168=0 答案:x1=-14 x2=12 (109)x^2—6x—216=0 答案:x1=-12 x2=18(111)x^2+18x+32=0 答案:x1=-2 x2=—16。
一元二次方程十0道计算题练习附含答案

一元二次方程100 道计算题练习1、( x4) 2 5( x 4)2、( x1)2 4x3、(x3)2 (12x) 24、2x 210 x 35、( x+5)2=166、 2(2x - 1)- x ( 1- 2x ) =07、 x 2 =648、 5x22 9、8(3 -x ) 2 –72=0-=0510、 3x(x+2)=5(x+2)11、( 1- 3y )2+2 ( 3y - 1) =012、 x 2 + 2x + 3=0 13、 x 2 + 6x - 5=014、 x 2- 4x+ 3=015、x 2- 2x - 1 =0 16、 2x 2 +3x+1=017、 3x 2 +2x - 1 =018、 5x 2- 3x+2 =0 19、 7x 2- 4x - 3 =020、 -x 2 -x+12 =021、 x 2-6x+9 =022、(3x2)2 (2x 3) 223、 x 2-2x-4=024、 x 2-3=4x25、 3x 2+ 8 x -3= 0(配方法)26、 (3x + 2)(x + 3)= x + 1427、 (x+1)(x+8)=-12 28、 2(x - 3) 2= x 2- 929、- 3x 2+ 22x -24= 030、( 2x-1 )2 +3( 2x-1 ) +2=0 31、 2x 2- 9x + 8= 032、 3( x-5 )2=x(5-x)33、 (x + 2)2= 8x 34、 (x - 2) 2= (2x + 3)235、 7 x 2 2x 036、 4t 2 4t 1 02x x 3 0 38、 6 x 231x 35 0237、 4 x 339 、 2x 3121 040、2x 223x 650 增补练习:一、利用因式分解法解以下方程 (x - 2) 2= (2x-3) 2x 2 4x 03x( x 1) 3x 3 x 2-23 x+3=0x5 2 8 x 5160二、利用开平方法解以下方程1 (2 y 1) 2 14( x-3) 2=25 (3x 2)22425三、利用配方法解以下方程x2 5 2x 2 0 3x2 6x 12 0x2 7 x 10 0四、利用公式法解以下方程- 3x 2+ 22x - 24= 0 2x( x- 3)=x - 3.3x2 +5(2x+1)=0 五、采用适合的方法解以下方程(x+ 1) 2- 3 (x + 1)+ 2= 0 (2 x 1)2 9( x 3)2 x2 2x 3 0x 2 3x1 02x( x 1) ( x 1)( x 2)314(3x 11)( x 2)2x (x + 1)- 5x =0.3x(x -3) =2(x -1) (x +1).应用题:1、某商场销售一批名牌衬衫,均匀每日可售出20 件,每件盈余 40 元,为扩大销售增添盈余,赶快 减少库存,商场决定采纳适合的降价举措,经检查发现,假如每件衬衫每降价一元,市场每日可多售 2 件,若商场均匀每日盈余 1250 元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm ,大正方形的面积比小正方形的 面积的 2 倍少 32 平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板 ABCD , AB∥ CD ,∠ A=90°, AB=6 m, CD=4 m ,AD=2 m ,此刻梯形中裁出一内接矩形铁板 AEFG ,使 E 在 AB 上, F 在 BC 上, G 在 AD 上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少?4、如右图,某小在长 32 米,区规划宽 20 米的矩形场所 ABCD 上修筑三条相同宽的 3 条小道,使此中两条与 AD 平行,一条与 AB 平行,其他部分种草,若使草坪的面积为 566 米2,问小道应为多宽?5、某商铺经销一种销售成本为每千克40 元的水产品,据市场剖析,若按每千克50 元销售一个月能售出 500 千克;销售单价每涨 1 元,月销售量就减少10 千克,商铺想在月销售成本不超出1 万元的状况下,使得月销售收益达到8000 元,销售单价应定为多少?6.某工厂1998 年初投资100 万元生产某种新产品,1998 年末将获取的收益与年初的投资的和作为1999 年初的投资,到1999 年末,两年共获收益56 万元,已知1999 年的年赢利率比1998 年的年获利率多 10 个百分点,求1998 年和 1999 年的年赢利率各是多少?思虑:1、对于 x 的一元二次方程 a 2 x 2 x a 2 4 0 的一个根为0,则a的值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程100道计算题练习1、(x 4)25(x 4) 2、(x 1)24x 3、(x 3)2(1 2x)2
4、2x210x 3
5、〔x+5〕2=16
6、2〔2x-1〕-x〔1-2x〕=0
7、x2=64
8
、5x2
2
9、8〔3-x〕2–
72=0
-
=0
5
10、3x(x+2)=5(x+2) 11、〔1-3y〕2+2〔3y-1〕=0 12、x2+2x+3=0
13、x2+6x-5=0 14、x2-4x+3=0 15、x2-2x-1=0
16、2x2+3x+1=0 17、3x2+2x-1=0 18、5x2-3x+2=0
19、7x2-4x-3=0 20、-x2-x+12=0 21、x2-6x+9=0
22、(3x 2)2(2x 3)223、x2-2x-4=0 24 、x2-3=4x
25、3x2+8x-3=0〔配方法〕26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-12
28、2(x-3)2=x2-9 29、-3x2+22x-24=0 30、〔2x-1〕2+3〔2x-1〕+2=0
31、2x2-9x+8=0 32、3〔x-5〕2=x(5-x) 33 、(x+2)2=8x
34、(x-2)2=(2x+3)2
35、
7x22x0
3
6
、
4t2
4t1
2
xx3038、6x231x3502
37、4x339、2x31210 40、2x223x 65 0
一、用因式分解法解以下方程
(x-2)2=(2x-3)2
x
24x03x(x1)3x3
x
2-2 3x+3=0 x 528x 5 16 0
二、利用开平方法解以下方程
(2y1)
21
4〔x-3〕2=25
(3x2
)2
2
4
5
三、利用配方法解以下方程
x
252x20
3
x26x120
x
27x100
四、利用公式法解以下方程
-3x2+22x-24=02x〔x-3〕=x-3.
3x2+5(2x+1 )=0
五、选用适当的方法解以下方程
(x+1)2-3(x+1)+2=0
(2x1
)29(x3)2
x
22x30
2
x(x 1)(x1)(x2 )
31
4
(3x 11)(x 2) 2 x〔x+1〕-5x=0. 3x(x-3)=2(x-1)(x+1).
答案
第二章一元二次方程
备注:每题分,共计100分,配方法、公式法、分解因式法,方法自选,家长批阅,错题需在旁边纠错。
姓
名:分数:家长签字:
1、(x4)2
5(x4
)
2、
(x1)24x
3、
(x3)2
(12
x)2
X=-4或
1x=1x=4或-2/3
4、2x210x 3
5、〔x+5〕2=16
6、2〔2x-1〕-x〔1-2x〕=0 X=-1或-9 x=-1/2或-2
7、x2=64
8
、5x2
2
9、8〔3-x〕2–
72=0
-
=0
5
X=8或-8 x= x=0、6
10、3x(x+2)=5(x+2) 11、〔1-3y〕2+2〔3y-1〕=0 12、x2+2x+3=0
X=-2或5/3 y=1/3或-1/3 无解
13、x2+6x-5=0 14、x2-4x+3=0 15、x2-2x-1=0
X=
1或3
1 6、2x
+3
x+1=0
1
7、3x
+2x-
1=0
1
8、5x
2-
3x+2=0
1/3或-11或-2/5
1
9、7x-4x-3=0
20、
-x2
-
x+12=0
2
1、x
2-
6x+9=0
1或-3/7
3或-
43
22、(3x
2
)2
(2x3
)2
23、x2-2x-
4=0
2
4
、x2-
3=4x
1或-1
25、3x2+8x-3=0〔配方法〕26、(3x+2)(x+3)=x+14
27、(x+1)(x+8)=-12
28、2(x-3)2=x2-9 29、-3x2+22x-24=0 30、〔2x-1〕2+3〔2x-1〕+2=0
(2x-1+2)(2x-1+1)=0
2x(2x+1)=0
x=0 或x=-1/2
31、2x2-9x+8=0
32、3
〔x-5〕
2=x(5
-x)
3
3
、(x+
2)2=8x
b^2-4ac=81-
4*2*8=173〔x-5〕
+x(x
-5)=0
x^2+4x+4-
8x=0
x=〔9+根号17〕/4或(3+x)(x-
5)=0
x^2-
4x+4=0
〔9-根号17〕/4
x
=-3或x=5(x-2)^2=0 x=2
34、(x-2)2=(2x +3)2
35
、7x22x0
3
6
、
4t2
4t1
x^2-4x+4-4x^2-12x-9=0
x(7x+2
)=0(2t-1)^2=0
3x^2+16x+5=0x=0
或x=-
2/7t=1/2
(x+5)(3x+1)=0 x=-5或x=-1/3
37、4x 2
x
x3038、6x231x35039、2x
2 331210
(x-3)(4x-12+x)=0
(2x-7)(3x-
5)=0
(2x-
3)^2=121
(x-
3)(5x-12)=0x=7/2或x=5/3
2x-
3=11
或
2x-3=-11
x =3
或
x=12/5x=7或x=-4
40、2x2
23x6
50
(2x-13)(x-5)=0
x=13/2或x=5
补充
练习:
六、利用因式分解法解以下方程
(x-2)2=(2x-3)2
x
24x03x(x1)3x3
(x-2)^2-(2x-
3)^2=0x(x-4)=0
3x(x+1)-3(x+1)=0
(3x-5)(1-x)=0
x=0或
x=4
(x+1)(3x-
3)=0
x=5/3或x=1
x=-1或x=1
x2-23x+3=0x528x5160 (x-根号3)^2=0〔x-5-4〕^2=0
x=根号3
x =9
七、利用开平方法解以下方程
1(2y1)21
4〔x-3〕2=25
(3x2)
2
2
4
25
(2y-
1)^2=2/5〔x-3〕^2=25/4
3x+2=2根号6或3x+2=-2
2y-1=2/5或2y-1=-
2/5x-3=5/2或x=-5/2
根号6
y=7/10或y=3/10x=11/2或x=1/2
x=(2根号6-2)/3或x=
-(2根号6+2)/3
八、利用配方法解以下方程
x 252
x20
3
x26x120
x7x
210
〔x-5根号2/2〕
^2=21/2
x^2-
2x-4=0
x^2-3/2x+1/2=0(x-
7/2)^2=9/4
x =(5根号2+根号
42)/2
(x-
1)^2=5
(x-
3/4)^2=1/16x=5
或
x=2
或x=(5根号
2-根号
42)/2x=1+
根号5或
x=1或x=1/2
x=1-根号5
九、利用公式法解以下方程
-3x2+22x-24=02x〔x-3〕=x-3.3x2+5(2x+1)=0 b^2-4ac=1962x^2-7x+3=03x^2+10x+5=0
x=6或4/3
b^2-
4ac=25b^2-4ac=40
x=1/
2或3
x=(-5+根号
10)/3或
(-5-根号
10)/3
十、选用适当的方法解以下方程
(x+1)2-3(x+1)+2=0
(2x1)
29(x3)222x30
〔x+1-2〕(x+1-1)=0(2x+1+3x-9)(2x+1-
3x+9)=0
(x-
3)(x+1)=0
x(x-1)=0x=8/5或10x=3或x=-1 x=0或1
x 23
x10
2
x(x1
)(x1)(x2)
1
4
3
(x+1)(2
x-7)=0〔x+3/2〕^2=7/4
x^2+x-6=0
x=-1或
7/2x=(-3+根号7)/2或
(x+3) (x-2)=0
(-3-根号7)/2
x=-3或2
(3x11)(x2)2
x〔x+1〕-5x=
0.
3x(x-3)=2(x-1)(x+
1).
3x^2-17x+20=0x(x-4)=0x^2-9x+2=0
(x-4)(3x-5)=0x=0或4b^2-4ac=73
x=4或5/3
x=(9+根号73)/2或(9-根号73)/2。