2021年单缸四冲程柴油机

2021年单缸四冲程柴油机
2021年单缸四冲程柴油机

课程设计说明书

课程名称 _______________________

题目名称 _______________________

专业 _______________________

姓名 _______________________

指导老师 _______________________

年月日

实习(训)报告评语

等级:

评阅人:职称:

年月日

河南工程学院

实习(训)报告

实训目的(内容):

实习时间:自月日至月日

共天

实习地点:

实习单位:

指导老师:系主任:

目录

一、机构简介与设计数据

1 机构简介 (1)

2 设计数据 (2)

二、设计内容及方案分析

1 曲柄滑块机构的运动分析(6)

2 曲柄滑块机构的动态静力分析(11)

3 齿轮机构的设计(12)

4 凸轮机构的设计(13)

附:齿轮啮合图的绘制(17)

三、心得体会(21)

四、主要参考文献(22)

一、机构简介与设计数据

1. 机构简介

柴油机(图1,a)是一种内燃机,它将燃料燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,以汽缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。

本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,汽缸内的压力变化可由示功图(用示功器从汽缸内测得,见图1,b)表出,它表

示汽缸容积(与活塞位移s 成正比)与压力的变化关系。现将四个冲程压力变化作一简单介绍:

进气冲程:活塞下行,对应曲柄转角θ=0?→180?。进气阀开,燃气开始进入汽缸,汽缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a →b 。

压缩冲程:活塞上行,曲柄转角θ=180?→360?。此时进气毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b →c 。

膨胀(作功)冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,燃气压力推动活塞下行对外作功,曲柄转角θ=360?→540?,随着燃起的膨胀,汽缸容积增加,压力逐渐降低,如图上c →b 。

排气冲程:活塞上行,曲柄转角θ=540?→720?.排气阀开,废气被驱出,气缸内压力略高于1大气压力,一般亦以1大气压力计算,如图上的b →a 。

进排气阀的启闭是由凸轮机构控制的,图1,a 中y-y 剖面有进排气阀各一只(图中只画了进气凸轮)。凸轮机构是通过曲柄轴O 上的齿轮z 1和凸轮轴O 1上的齿轮z 2来传动的。由于一个工作循环中,曲柄轴转两转而进排气阀各启闭一次,所以齿轮的传动比

21

2

2112===

z z n n i 。 图1

由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程是对外作功的,其余的三个冲程则需依靠机械的惯性带动。因此,曲柄所受的驱动力不是均匀的,所以其速度波动也较大。为了减少速度波动,曲柄轴上装有飞轮(图上未画)。

2.设计数据

见表1,2,3。

1)曲柄滑块机构的运动分析

已知活塞冲程H,连杆与曲柄长度之比λ,曲柄每分钟转数n1要求设计曲柄滑块机构,绘制机构运动简图,作机构三个位置的加速度和加速度多边形,并作出滑块的运动线图。以上内容与后面动态静力分析一起画在1号图纸上(参考图例1)。

表1s

′[]

图2

曲柄位置图的作法如图2所示,以滑块在上止点时所对应的曲柄位置为起始位置(即θ=0?),将曲柄圆周按转向分成十二等分得12个位置1→12,12?(θ=375?)为汽缸指示压力达最大值时所对应的曲柄位置,13→24为曲柄第二转时对应各位置。

2)曲柄滑块机构的动态静力分析

已知 机构各构件的重量G ,绕重心轴的转动惯量J S ,活塞直径D A ,示功图数据(表2)以及运动分析所得的各运动参数。 要求 确定机构两个位置(同运动分析)的各运动副反力及曲柄上的平衡力矩M y 。以上内容作在运动分析的同一张图纸上(参考图例1)。

3)飞轮设计

已知 机器的速度不均匀系数δ,曲柄轴的转动惯量1

S J 、凸轮

轴的转动惯量1

O J 、连杆2绕其重心轴的转动惯量2

S J ,动态静力分

析求得的平衡力矩M y ;阻力矩M c 为常熟。

要求 用惯性力法确定安装在曲柄轴上的飞轮转动惯量J F 。以上内容,作在2号图纸上(参考图例2)。 注意:该部分内容为选作内容。

4)齿轮机构设计

已知齿轮齿数、模数m、分度圆压力角α;齿轮为正常齿制,

在闭式的润滑油池中工作。

要求选择两轮变位系数,计算齿轮各部分尺寸。用2号图纸

绘制齿轮传动的啮合图。

表2

表3

5.凸轮机构设计

[]α和[]α?,推已知从动件冲程h,推程和回程的许用压力角

程运动角φ,远休止角sφ,回程运动角φ?,从动件的运动规律(图3)。

要求按照许用压力角确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线。以上内容,作在2号图纸上。

图3

二 设计内容

1、曲柄滑块机构的运动分析 1)根据已知数据,取mm

m

2

L μl (以大图为准,这里只是示意),画机构运动简图。

2)运动分析

设曲柄长为OA L ,连杆长为AB L ,由表1可得, λ=AB L /OA L =4,

H=(AB L +)-(AB L -OA L )=120mm.

解得 OA L =60mm ,AB L =240mm 。

OA L =60mm

AB L =240mm

设计计算及说明

计算数据

由图4可知

b a

p 图5 11号点位速度分析图

由图5可知

设计计算及说明 计算数据

s

/18.3rad l v s m 9.2l v ab BA 122pb v 10B ===?=ω,μs /rad 53l v s m 5.7l v ab

BA 11pb v 11

B

===?=AB

ω

,μs

m 9.2v 10

B

=s

m 5.7v 11B

=

m

s

/s

2、曲柄滑块机构的动态静力分析

1) 受力分析

对10,11,12号点位进行受力分析,分别为图9(a )

(b )(c )

(a )10号点 (b )11号点 (c )12号点

图9 受力分析

2)计算活塞上的气体压力

设计计算及说明 计算数据

N D p P N D p P N D p P i

i i

274894153154510542

h

12'122

h 11'112

h

10'

10=?==?

==?=π,π,π3

3→

+G p i 3

3→

+G p i →'

P

→'

P

→'

P

43

R 43

R 43

R 2i M →

2i M →

2i M →

2

G 2

G 2

G →t R

12

→t R

12

→n R 12→n R

12

12

R N

P N P N P 27489153155105'12'

11'

10===,,

附录:

齿轮啮合图的绘制

齿轮啮合图是将齿轮各部分尺寸按一定的比例尺画出轮齿啮合关系的一种图形。它可直

观地表达一对齿轮的啮合特性和啮合参数,并可借助图形作某些必要的分析。

一、渐开线的画法

渐开线齿廓按渐开线的形成原理绘制,如图4所示。以小齿轮廓线为例,其步骤如下:

1)按公式计算出各圆直径d b 、d 、d ′、d f 及d a ,画出各相应的圆

图11

2)连心线与节圆的交点为节点P 。过P 点作基圆之切线,与基圆相切于N1,,则p n 1即为理论啮合线的一段,也是渐开线发生线的一段。

3)将p n 1线段分成若干等分:1p 、12、 23…

图12

4)根据渐开线的特性N 1 O ′=p n 1,因弧长不易测量,可按下式计

N 1

O

,1o n

,1O N ???

?

??=π01180sin b b d p n d (1)

按此弦长在基圆上取O ′点。

5)将基圆上的弧长N 1O'分成同样等分得基圆上的对应分点1'、2'、3'。

6)过点1'、2'、3'作基圆的切线,并在这些切线上分别截切线段,使得p 111,,,=

p 222,,,=、 p 333,,,=。得1"、2"、3"诸点。光滑连接0′、1"、2"、3"

各个点的曲线即为节圆以下部分的渐开线。

7)将基圆上的分点向左延伸,作出5′、6′、7′…,取

p 1555,,,?=,p 1666,,,?=…,可得节圆以下渐开线各点5"、6"…直至

画到齿顶圆为止。

8)当d f d b 时,在渐开线与齿根圆之间直接画出过渡圆角。 二、啮合图的绘制步骤

1)选取比例尺μL (mm/mm),使齿全高在图样上有30-5Omm 的高度为宜。定出齿轮中心01 、02如图所示。分别以01、02为圆心作出基圆、分度圆、节圆、齿根圆、齿顶圆。

2)画出工作齿廓的基圆内公切线,它与21O O 连心线的交点为节点P ,又是两节圆的切点,内公切线与过P 点的节圆切线间夹角为啮合角α′t 。,应与按式(1)计算之值相符。

3)过节点p 分别画出两齿轮在顶圆与根圆之间的齿廓曲线。 4)按已算得的齿厚和齿距P 计算对应弦长S 和P 。

S ???

? ??=π

180sin d s d ……(2) p ???

? ?

?=π

180sin d p d ……(3) 按S 和p 在分度圆上截取弦长得A 、C 点,则弧AB=s,

弧AC=P (见图12)

5)取AB 中点D,连01、D 两点为轮齿的对称线。用描图纸描下对称线右半齿形以此为模板画出对称的左半部分齿廓及其他相邻的3~4个齿廓。另一齿轮的作法相同。

6)作出齿廓工作段。B 1、B 2为起始与终止啮合点,以01为圆心

21B O 为半径作圆弧交齿轮1齿廓于b 1点,则从b 1点到齿顶圆一段齿廓

为齿廓工作段。同理可作出齿轮2的齿廓工作段。

7)画出两齿轮啮合过程中的滑动系数变化曲线。滑动系数计算公为

???

? ?

?-+

=x l

l z z 112

11η…… (4) ???

? ??--+=

x

l l l z z 1212η……(5) 图13

一台单缸四冲程柴油机的飞轮转速是1200r

一台单缸四冲程柴油机的飞轮转速是1200r/min,则柴油机每秒钟内(). A.完成20个冲程,做功20次 B.完成40个冲程,做功40次 C.完成40个冲程,做功10次 D.完成80个冲程,做功20次 汽油机工作过程由四个冲程组成,在这些冲程中,内能转化为机械能的是() A.吸气冲程B.压缩冲程C.做功冲程D.排气冲程 例题:热机是把______能转化______能的机器,汽油机和柴油机统称为______.因为它们都是让燃料在______内燃烧而工作的,生成______,利用这种______作为工作物质去推动______. 分析和答案:内,机械,内燃机,汽缸,高温高压燃气,燃气,活塞做功 1.关于四冲程汽油机和柴油机,下列说法正确的是(). A.在吸气冲程中,吸入气缸的都是空气 B.在压缩冲程末,柴油机气缸内气体温度比汽油低 C.在做功冲程初,都是火花塞点火 D.在排气冲程时,排气都依靠飞轮的惯性来完成 答案:D 2.柴油机工作过程由四个冲程组成,在这四个冲程中,机械能转化为内能的是().A.吸气冲程B.压缩冲程C.做功冲程D.排气冲程 答案:B 3.柴油机上安装了一个笨重的飞轮,是为了() A.提高热机效率 B.节省燃料 C.可以做更多的功 D.利用飞轮的惯性、完成吸气、压缩、排气三个辅助冲程 答案:D .汽油机在压缩冲程中工作物质被压缩,气缸中的[] A.压强增大,温度降低. B.压强减小,温度升高. C.压强增大,温度升高. D.压强减小,温度降低. 2.汽油机和柴油机相比较,下列叙述中正确的是[] A.柴油机吸入气缸的是柴油和空气的混合物,汽油机吸入的是空气. B.在压缩冲程中它们的压缩程度是一样的. C.柴油机里推动活塞做功的燃气的压强比汽油机里的高. D.在压缩冲程末,汽油机气缸内的温度比柴油机的高. 参考答案 1.C 2.C 1.热机甲的效率比热机动的效率高,这是指(). A.热机甲在单位时间内用掉的燃料比热机乙少 B.热机甲在单位时间内用掉的燃料比热机乙多 C.热机甲把燃气的内能转化为机械能的百分比比热机乙大 D.热机甲做的有用功比热机乙多

四冲程柴油机的工作原理

车辆维修试题 一、四冲程柴油机的工作原理 柴油机的工作是由进气、压缩、燃烧膨胀和排气这四个过程来完成的,这四个过程构成了一个工作循环。活塞走四个过程才能完成一个工作循环的柴油机称为四冲程柴油机。现对照上面的动画了说明它的工作理原。 1. 进气冲程 第一冲程——进气,它的任务是使气缸内充满新鲜空气。当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中还留有一些废气。 2、压缩冲程 压缩时活塞从下止点间上止点运动,这个冲程的功用有二,一是提高空气的温度,为燃料自行发火作准备:二是为气体膨胀作功创造条件。当活塞上行,进气阀关闭以后,气缸内的空气受到压缩,随着容积的不断细小,空气的压力和温度也就不断升高,压缩终点的压力和湿度与空气的压缩程度有关,即与压缩比有关,一般压缩终点的压力和温度为:Pc =4~8MPa,Tc=750~950K。 3、燃烧膨胀冲程 。在这个冲程开始时,大部分喷入燃烧室内的燃料都燃烧了。燃烧时放出大量的热量,因此气体的压力和温度便急剧升高,活塞在高温高压气体作用下向下运动,并通过连秆使曲轴转动,对外作功。所以这一冲程又叫作功或工作冲程。 4、排气冲程

排气冲程的功用是把膨胀后的废气排出去,以便充填新鲜空气,为下一个循环的进气作准备。 二、柴油机和汽油机工作过程的主要区别是什么 汽油机和柴油机它们的区别主要在于压缩比、点火方式、所用燃料及用途。柴油机吸入洁净空气,在活塞快要到达上止点时,向气缸内喷入燃油,燃油被高压高温的空气点燃,膨胀,将活塞推向下至点,而传统汽油机是吸入汽油与空气的混合气体,在活塞快要到达上止点时,用火花塞发火点燃混合气。 如今的电喷汽油机在活塞快要到达上止点时,用电子控制的喷油泵将汽油喷入气缸,但是燃烧还是靠火花塞点燃。 三、什么叫压缩比? 压缩比=汽缸总容积/燃烧室容积压缩比是内燃机的重要指标,压缩比越大,其压强越大,温度越高。柴油机的压缩比为15~18。从理论上讲,压缩比越大,效率越高。但因为气缸受材料强度的限制,而且气缸内工质的温度不能超过燃料的燃点,所以压缩比不能太大。 四、柴油机的基本构造有哪些 柴油机由曲柄连杆机构、配气机构、冷却系、润滑系、起动系五大基本构造。 五、柴油机怎样对配气和油泵齿轮 1、,将一缸活塞摇至上止点,凸轮轴一缸俩凸轮朝下,即倒八字,装入.

单缸四冲程内燃机机构设计及其运动分析

机械原理课程设计说明书题目:单缸四冲程内燃机机构设计及其运动分析 二级学院机械工程学院 年级专业机械制造及其自动化 学号 学生姓名 指导教师 教师职称

目录 第一部分绪论 (1) 第二部分课题题目及主要技术参数说明 (2) 2.1 课题题目 (2) 2.2 机构简介 (2) 2.3设计数据 (3) 第三部分设计内容及方案分析 (5) 3.1曲柄滑块机构设计及其运动分析 (5) 3.1.1设计曲柄滑块机构 (5) 3.1.2曲柄滑块机构的运动分析 (6) 3.2 齿轮机构的设计 (11) 3.2.1 齿轮传动类型的选择 (11) 3.2.2 齿轮传动主要参数及几何尺寸的计算 (12) 3.3 凸轮机构的设计 (13) 3.3.1 从动件位移曲线的绘制 (13) 3.3.2 凸轮机构基本尺寸的确定 (14) 3.3.2 凸轮轮廓曲线的设计 (15) 第四部分设计总结 (16) 第五部分参考文献 (17)

第一部分绪论 内燃机具有体积小、质量小、便于移动、热效率高、起动性能好的特点。但是内燃机一般使用石油燃料,同时排出的废气中含有害气体的成分较高。广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其汽缸内燃烧,释放出的热能使汽缸内产生高温高压的燃气。燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。内燃机是一种动力机械,它是通过使燃料在机器内部燃烧,并将其放出的热能直接转换为动力的热力发动机。它是将液体或气体燃料与空气混合后,直接输入汽缸内部的高压燃烧室燃烧爆发产生动力。这也是将热能转化为机械能的一种热机。

单缸四冲程柴油机设计及静力分析

题目二 单缸四冲程柴油机设计 一、机构简介及有关数据 1、机构简介 柴油机如图2-1所示,其中a)为机构简图,它将燃料(柴油)燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,借气缸内的燃气压力推动活塞3,再通过连杆2使曲柄1作旋转运动。 往复式内燃机有两冲程和四冲程两种,本课程设计的是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄转两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可通过示功图(或称容压曲线)如图2-1 b)看出,它表示气缸容积(与活塞位移s 成正比)与压力的变化关系。 a) 机构简图 b) 示功图 图1 单缸四冲程柴油机的机构简图和示功图 四冲程内燃机的工作原理如下: 进气冲程:活塞由上止点向下移动,对应曲柄转角000180?=→。进气阀开,空气开始进入气缸,此时气缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a b →。 压缩冲程:活塞由下止点向上移动,对应曲柄转角00180360?=→。此时进气完毕,进气阀闭,已吸入的空气受到压缩,压力渐升高,如示功图上的b c →。 膨胀(工作)冲程:在压缩冲程终了时,被压缩的空气的温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,此时燃气压力推动活塞由上向下移动对外作功(故又可称工作冲程),曲柄转角00360540?=→,随着燃气的膨胀,活塞下行,气缸容积增加,压力逐渐降低,如示功图上的c b →。 排气冲程:活塞由下向上移动,曲柄转角00540720?=→。排气阀开,废气经排

气阀门被驱除,此时气缸内压力略高于1大气压力,一般亦以1大气压力计算,如示功图上的b a →。示功图中的a b c b a →→→→即表四个冲程气缸内的压力变化情况。进、排气阀的启闭是由凸轮机构来控制的,图2-1 a )中y y -剖面有进、排气阀各一只(图示只画了进气凸轮)。凸轮机构是通过曲柄轴O 上的齿轮Z 1和凸轮轴O 1的齿轮Z 2来传动的,由于一个工作循环中,曲柄转将转两转而进、排气阀则仅各启闭一次,所以齿轮的传动比1212212i n n Z Z ===。 由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程(膨胀冲程)是对外作功的,而其余的三个冲程则需依靠机械的惯性来带动。因此,曲柄所受的驱动力是不均匀的,所以其速度波动也较大;为了减少速度波动,曲柄轴上装有飞轮(图2-1中未示出)。为了使驱动力较均匀和增加内燃机的功率,内燃机常做成多缸的,如两缸、四缸和六缸等。 2、题目数据 表1 原始数据 图2 凸轮机构从动件加速度图 表2 示功图数据表 a τ

单缸四冲程柴油机之令狐文艳创作

课程设计说明书 课程名称 _______________________ 题目名称 _______________________ 专业 _______________________ 姓名 _______________________ 指导老师 _______________________ 年月日 实习(训)报告评语 等级: 评阅人:职称: 年月日 河南工程学院 实习(训)报告 实训目的(内容): 实习时间:自月日至月日 共天 实习地点: 实习单位: 指导老师:系主任: 目录

一、机构简介与设计数据 1 机构简介 (1) 2 设计数据 (2) 二、设计内容及方案分析 1 曲柄滑块机构的运动分析(6) 2 曲柄滑块机构的动态静力分析(11) 3 齿轮机构的设计(12) 4 凸轮机构的设计(13) 附:齿轮啮合图的绘制(17) 三、心得体会(21) 四、主要参考文献(22) 一、机构简介与设计数据 1. 机构简介 柴油机(图1,a)是一种内燃机,它将燃料燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,以汽缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,汽缸内的压力变化可由示功图(用示功器从汽缸内测得,见图1,b)表出,它表示汽缸容积(与活塞位移s成正比)与压力

的变化关系。现将四个冲程压力变化作一简单介绍: 进气冲程:活塞下行,对应曲柄转角θ=0?→180?。进气阀开,燃气开始进入汽缸,汽缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a →b 。 压缩冲程:活塞上行,曲柄转角θ=180?→360?。此时进气毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b →c 。 膨胀(作功)冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,燃气压力推动活塞下行对外作功,曲柄转角θ=360?→540?,随着燃起的膨胀,汽缸容积增加,压力逐渐降低,如图上c →b 。 排气冲程:活塞上行,曲柄转角θ=540?→720?.排气阀开,废气被驱出,气缸内压力略高于1大气压力,一般亦以1大气压力计算,如图上的b →a 。 进排气阀的启闭是由凸轮机构控制的,图1,a 中y-y 剖面有进排气阀各一只(图中只画了进气凸轮)。凸轮机构是通过曲柄轴O 上的齿轮z 1和凸轮轴O 1上的齿轮z 2来传动的。由于一个工作循环中,曲柄轴转两转而进排气阀各启闭一次,所以齿轮的传动比 21 2 2112=== z z n n i 。 图1 由上可知,在组成一个工作循环的四个冲程中,活塞只

单缸四冲程柴油机课程设计说明书

单缸四冲程柴油机课程设计说明书

目录 目录 1、机构简介与设计数据 (2) (1)机构简介 (2) (2)设计数据 (3) 2、设计内容及方案分析 (3) (1)曲柄滑块机构的运动分析 (4) (2)齿轮机构的设计 (6) (3)凸轮机构的设计 (8) 3、设计体会 (11) 4、主要参考文献 (11)

单缸四冲程柴油机 1、机构简介与设计数据 (1)机构简介 柴油机(如附图1(a))是一种内燃机,他将燃料燃烧时所产生的热能转变成机械能。往复式内燃机的主体机构为曲柄滑块机 构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。 进气冲程:活塞下行,对应曲柄转角θ=0°→180°。进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a → b。 压缩冲程:活塞上行,曲柄转角θ=180°→ 360°。此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。 做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃的温度,因此,在高压下射入的柴油立刻爆燃,气缸内的压力突然增至最高点,燃气压力推动活塞下行对外做功,曲柄转角θ=360°→540°。随着燃气的膨胀,气缸容积增加,压力逐渐降低,如图上c→b。 排气冲程:活塞上行,曲柄转角θ=540°→720°。排气阀打开,废气被驱出,气缸内压力略高于1大气压,一般亦以1大气压计算,如图上的b→a。 进排气阀的启闭是由凸轮机构控制的。凸轮机构是通过曲柄轴O上的齿轮Z1和凸轮轴上的齿轮Z2来传动的。由于一个工作循环中,曲柄转两转而进排气阀各启闭一次,所以齿轮的传动比i12=n1/n2=Z1/Z2 =2。 由上可知,在组成一个工作循环的四个冲程中,活塞只有一个冲程是对外做功的,其余的三个冲程则需一次依靠机械的惯性带动。

单缸四冲程柴油机课程设计说明书

目录 第1章设计要求 (2) 设计任务 (2) 设计思路 (2) 机构简介 (3) 设计数据 (4) 第2章连杆机构设计和运动分析 (5) 连杆机构的设计要求 (5) 杆件尺寸确定 (5) 杆件运动的分析与计算 (5) 图解法作杆件的运动分析 (7) 第3章齿轮机构传动设计 (8) 齿轮机构的设计要求 (8) 齿轮参数的计算 (8) 第4章凸轮机构设计 (11) 凸轮机构的设计要求 (11) 运动规律的选择 (11) 基圆半径的计算 (12) 凸轮设计图 (13) 课程设计小结 (14) 参考文献 (14)

第1章 设计要求 1.1设计任务 设计一个四冲程内燃机。机器的功能与设计要求:该机器的功能是把化学能转化成机械能。须完成的动作为:活塞的吸气,压缩,做功,排气4个过程,进,排气门的开关与关闭、燃料喷射。 1.2设计思路 设计四冲程内燃机的关键点在于活塞的吸气,压缩,做功,排气以及气门的开闭几个动作的完成。而怎样将这个几个动作完成并按照运动循环图结合起来这是我们完成这次课程设计所需要解决的问题。所以,我将从这些方面入手,依据这些需要来选择机构。 1.3机构简介 柴油机(如附图1(a))是一种内燃机,它将燃料燃烧时所产生的热能转变成机械能。往复式内燃机的主体机构为曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。 进气冲程:活塞下行,对应曲柄转角θ=0°→180°。进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a →b。 压缩冲程:活塞上行,曲柄转角θ=180°→360°。此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。 做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃的温度,因此,在高压下射入的柴油立刻爆燃,气缸内的压力突然增至最高点,燃气压力推动活塞下行对外做功,曲柄转角θ=360°→540°。随

单缸四冲程柴油机

课程设计说明书 课程名称_______________________ 题目名称_______________________ 专业_______________________ 姓名_______________________ 指导老师_______________________ 年月日 实习(训)报告评语

等级: 评阅人:职称: 年月日 河南工程学院 实习(训)报告

实训目的(内容): 实习时间:自月日至月日 共天 实习地点: 实习单位: 指导老师:系主任: 目录

一、机构简介与设计数据 1 机构简介(1) 2 设计数据(2) 二、设计内容及方案分析 1 曲柄滑块机构的运动分析(6) 2 曲柄滑块机构的动态静力分析(11) 3 齿轮机构的设计(12) 4 凸轮机构的设计(13) 附:齿轮啮合图的绘制(17) 三、心得体会(21) 四、主要参考文献(22) 一、机构简介与设计数据 1. 机构简介

柴油机(图1,a )是一种内燃机,它将燃料燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,以汽缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,汽缸内的压力变化可由示功图(用示功器从汽缸内测得,见图1,b)表出,它表示汽缸容积(与活塞位移s 成正比)与压力的变化关系。现将四个冲程压力变化作一简单介绍: 进气冲程:活塞下行,对应曲柄转角θ=0?→180?。进气阀开,燃气开始进入汽缸,汽缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a →b 。 压缩冲程:活塞上行,曲柄转角θ=180?→360?。此时进气毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b →c 。 膨胀(作功)冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,燃气压力推动活塞下行对外作功,曲柄转角θ=360?→540?,随着燃起的膨胀,汽缸容积增加,压力逐渐降低,如图上c →b 。 排气冲程:活塞上行,曲柄转角θ=540?→720?.排气阀开,废气被驱出,气缸内压力略高于1大气压力,一般亦以1大气压力计算,如图上的b →a 。 进排气阀的启闭是由凸轮机构控制的,图1,a 中y-y 剖面有进排气阀各一只(图中只画了进气凸轮)。凸轮机构是通过曲柄轴O 上的齿轮z 1和凸轮轴O 1上的齿轮z 2来传动的。由于一个工作循环中,曲柄轴转两转而进排气阀各启闭一次,所以齿轮的传动比 21 2 2112=== z z n n i 。

单缸四冲程柴油机凸轮机构设计

目录 1,设计任务及要求 (1) 2,设计思想及数学模型的建立 (2) 3,程序框图 (6) 4,程序清单及运行结果 (7) 5,总结 (18) 6,参考文献 (18)

一、设计任务及要求 机械原理课程设计任务书(六) 姓名XXX 专业机械电子工程班级机电XX-X 学号XX 一、设计题目:单缸四冲程柴油机凸轮机构设计 二、系统简图: 1)计算从动件位移和速度。绘制线图(坐标纸或计算机绘制)。 2)用计算机语言按照许用压力角确定凸轮机构的基本尺寸,选滚子半径,画凸轮的实际轮廓曲线,并按比例绘出机构运动简图(A2图纸)。 3)编写出计算说明书。 指导教师:YYY YY 开始日期:XX年XX月XX日 完成日期:XX年XX 月XX日。

二、设计过程及数学模型的建立 2.1、设计思想 1) 首先,任取一个基圆半径r0,计算出位移s 、速度v 、 加速度a,画出位移s 、速度v 、加速度a 随旋转角δ变化的曲线图;其次,把圆周分为72等份,算出静态时的凸轮理论和实际轮廓线各点坐标值,将其分别放入x[]、y[]、xx[]、yy[]数组中;然后,再利用坐标旋转(x=x*cos θ+y*sin θ;y=x*sin θ-y*cos θ),从而模拟出凸轮的运动。 2.2基圆半径选择 因为基圆半径r0≥35mm ,所以选基圆半径r0=40mm 。 2.3数学模型 推程时: 等加速:0≤δ≤5π/36 φ δ2 2 2h s = , φ ωδ 2 4h v = , φ ω 2 2 h 4= a 等减速:5π/36≤δ≤5π/18

() φ δφ2 2 2-- =h h s ,φ δφω2 ) (4-= h v ,φ ω2 2 4h a - = 远休止: s=h , v=0, a=0 回程时: 等加速:0≤δ≤5π/36 ′ 2 2 2- φδh h s =,' - =φωδ 2 4h v , ' - =φω 2 4h a 等减速:5π/36≤δ≤5π/18 () ' -'= φδφ2 22h s , () ' -'- =φδφω2 4h v ,' = φω2 24h a 近休止: s=0, v=0, a=0 如图所示,已知从动件运动规律为s=s (δ),基圆半径为r0,滚子半径为Rt , 偏

二冲程与四冲程柴油机区别

1、二冲程柴油机的工作原理 通过活塞的两个冲程完成一个工作循环的柴油机称为二冲程柴油机,油机完成一个工作循环曲轴只转一圈,与四冲程柴油机相比,它提高了作功能力,在具体结构及工作原理方面也存在较大差异。 二冲程柴油机与四冲程柴油机基本结构相同,主要差异在配气机构方面。二冲 程柴油机没有进气阀,有的连排气阀也没有,而是在气缸下部开设扫气口及排气口; 或设扫气口与排气阀机构。并专门设置一个由运动件带动的扫气泵及贮存压力空气 的扫气箱,利用活塞与气口的配合完成配气,从而简化了柴油机结构。 图是二冲程柴油机工作原理图。扫气泵附设在柴油机的一侧,它的 转子由柴油机带动。空气从泵的吸入吸入,经压缩后排出,储存在具有较大容积的 扫气箱中,并在其中保持一定的压力。现以图说明二冲程柴油机的工作 原理。 燃烧膨胀及排气冲程: 燃油在燃烧室内着火燃烧,生成高温高压燃气。活塞在燃气的推动下,由上止点 向下运动,对外作功。活塞下行直至排气口打开(此时曲柄在点位置,此时燃气 膨胀作功结束,气缸内大量废气靠自身高压自由排气,从排气口排人到排气管。 当气缸内压力降至接近扫气压力时(一般扫气箱中的扫气压力为0 12,下行活塞把扫气口3打开(此时曲柄在点4的位置,扫气空气进入气缸, 同时把气缸内的废气经排气口赶出气缸。活塞运行到下止点,本冲程结束,但扫气 过程一直持续到下一个冲程排气口关闭(此时曲柄在点位置为止。 ·4· 342 第三篇船舶柴油机检修图二冲程柴油机工作原理示意图 扫气及压缩冲程: 活塞由下止点向上移动,活塞在遮住扫气口之前,由扫气泵供给储存在扫气箱 内的空气,通过扫气口进入气缸,气缸中的残存废气被进入气缸的空气通过排气口 扫出气缸。活塞继续上行,逐渐遮住扫气口,当扫气口完全关闭后(此时曲柄在点

四冲程柴油机工作原理

四冲程柴油机的工作原理 柴油机的工作过程,是按照一定规律将燃料和空气送人气缸,使之在气缸内不断着火燃烧放出热能。燃烧使气缸内气体的温度和压力升高,高温高压的燃气在气缸内膨胀便推动活塞做功,实现热能向机械能的转换,而膨胀后的废气又必须及时从气缸中排出。我们可用图1-1来表示在气缸中这种能量形式的转化进程。 图1-1柴油机工作过程框图 图1-1为四冲程柴油机的实际工作过程示意图,图中表示出每个过程中活塞、连杆、曲轴及气门的相对位置。 下面对照图1-2和图1-3来说明四冲程柴油机的工作过程。 图1-2 单缸四冲程柴油机工作过程示意图图1-3 单缸四冲程柴油机工作过程示功图 1、第一冲程——进气冲程 活塞从上止点移动到下止点。这时进气门打开,排气门关闭。当进气冲程开始时,气缸内残留着上一工作循环未排净的残余废气(图1-2(a)中以小十字符号表示)。它的压力久(图 1-3 中r点)稍高于大气压力户。(圈1-3中水平线),约为 105 kPa。 当曲轴沿图 1-2 (a)中箭头所示方向旋转时,通过连杆带动活塞向下运动。

随着活塞的下移,活塞顶上部的气缸容积逐渐增大,压力随之减小,当气缸内压力低于大气压力Pa。略低于大气压力值,大约为80-95kPa,另外,新鲜空气从高温的残余废气、燃烧室壁面和活塞顶等高温部件处吸收了热量,进气终了时气缸内气体的温度T。会略高于环境温度,可达300—340K。在示功图上:r-a线即表示进气冲程中气缸内气体压力随气缸容积变化的情况。由图中可以看出,进气冲程中气缸内气体压力.基本保持不变。 2、第二冲程——压缩冲程 活塞从下止点移动到上止点。这期间进排气门都关闭。压缩冲程中,曲轴在飞轮惯性作用下带动旋转,通过连杆带动活塞向上移动,气缸内气体容积逐渐减小气体被压缩,其压力和温度随之升高,为实现高温气体引燃柴油的目的,柴油机一般有较大的压缩比,使压缩终了时气缸内的气体温度T。比柴油的自然温度 =3-5Mpa(图1-2中c点)。(约650K)高出200-300K,即Tc=750~950K,而压力P C 示功图上a-c-c线表示了压缩冲程中气缸容积与压力的变化情况 为了充分利用燃料燃烧所产生的热能,燃烧过程能够在活塞移动到上止点略后位置迅速完成,以使燃烧后的气体充分膨胀作功。但是由于燃料喷入气缸内时必须经过一定的着火准备阶段才能着火燃烧,因此,实际柴油机工作时是在压缩冲程结束前(约在活塞到达上止点前10o-35o 曲轴转角)开始将燃料喷入气缸。图1-2中c点表示喷油开始时刻,它对应的至上止点的曲轴转角称为喷油提前角。 3、第三冲程——作功冲程(燃烧膨胀冲程)。 活塞从上止点移动到下址点,这期间进排气门仍处于关闭状态。 由于喷入气缸的燃料在高温空气中着火燃烧,产生大量热能使气缸内气体的温度和压力急剧升高。高温高压气体推动活塞向下移动,通过连杆带动曲轴旋转。因为只有在这一冲程才实现了热能转化为机械能。因此,通常把这一冲程称为作功冲程。 =1800-2200K,最高压力(最大爆发压作功冲程中,缸内气体的最高温度 T Z 力)PZ=6-9MPa(增压柴油机可达 lO MPa以上)。随着活塞的被推动下移,气缸容积逐渐增大,气体压力随之逐渐减小。示功图上。c-z-z-b线表示作功冲程中气缸容积与压力的变化情况。在这一曲线上,几乎垂直的c-z段表示出燃料急剧燃烧时压力升高的情况。此外,由于柴油的喷射,与空气的混合及燃烧等要持续一

四冲程柴油机工作原理

各位领导、老师大家下午好: 我今天的述课题目是四行程柴油机的工作原理。 我在本科阶段曾经学过的核心专业课有:机械原理、机械制造基础、工程机械构造、工程机械发动机与底盘理论、液压传动、机电一体化系统设计、工程机械运用技术、工程机械状态检测与故障诊断、机械设计、测试与传感技术等 硕士阶段的核心专业课有:工程机械作业质量控制工程机械理论工程车辆牵引动力学工程机械测试方法与性能评价工作装置与介质相互作用理论智能控制理论 发动机的功能是将燃料在气缸内燃烧使其热能转换成机械能,从而输出动力。能量的转换是通过不断地依次反复进行“进气—压缩—做功——排气”四个连续过程来实现的,每进行这样一个连续过程就叫做一个工作循环。为了更好的学习与理解此工作循环,我们应先熟悉一下发动机的基本术语: 上止点: 下止点: 活塞行程: 气缸工作容积: 排量: 压缩比 燃烧室容积: 1、进气行程—活塞由曲轴带动从上止点向下止点运动,此时排气门关闭,进气门开启。活塞移动的过程中,气缸内的容积逐渐增大,形成一定的真空度,于是经过虑芯的空气通过进气门进入气缸。直至活塞到达下止点时,进气门关闭,停止进气。 2、压缩行程—进气行程结束时,活塞在曲轴的带动下,从下止点向上止点运动,气缸容积逐渐减小,由于进排气门均关闭,气体被压缩,气缸内温度上升,直至活塞到达上止点时,压缩结束。压缩终了时气缸内的温度约为800~1000K,压力3~5MPa。 3、做功行程—在压缩行程结束时,进排气门均处于关闭状态,此时喷油泵将高压柴油经喷油器呈雾状喷入气缸内的高温空气中,雾状柴油迅速气化并与空气形成混合气,由于气缸内的温度远远高于柴油的自燃温度(约500K),柴油便在高温高压下立即自行燃烧。使气体的温度、压力迅速升高而膨胀,从而推动活塞由上止点向下止点运动,再通过连杆驱动曲轴转动做功,至活塞到下止点时,做功结束。在此行程中,瞬时压力可达5~10MPa,瞬时温度可达1800~2200 K,做功行程终了时,压力约为0.2~0.4 MPa,温度1200~1500 K。 4、排气行程—在做功行程结束时,进气门处于关闭状态,排气门被打开,曲轴通过连杆推动活塞由下止点向上止点运动,废气在自身剩余压力和活塞的推力作用下,被排出气缸,直至活塞到达上止点时,排气门关闭,排气结束。排气行程终了时由于燃烧室容积存在,气缸内还存少量废气,气体压力也因排气门和排气管的阻力而仍高于大气压。此时气缸内压力约为0.105~0.125 MPa,温度约为800~1000 K。

单缸四冲程柴油机课程设计说明书..

《机械原理》 课程设计说明书 设计题目:单缸四冲程柴油机 院(系、部):机械工程学院 专业:材料成型及控制工程 班级:01班 学号:1003040124 设计者:解志强 指导教师:王靖 2012年 12月 20日

目录 第1章设计要求 (2) 1.1 设计任务 (2) 1.2 设计思路 (2) 1.3 机构简介 (3) 1.4 设计数据 (4) 第2章连杆机构设计和运动分析 (5) 2.1 连杆机构的设计要求 (5) 2.2 杆件尺寸确定 (5) 2.2 杆件运动的分析与计算 (5) 2.3 图解法作杆件的运动分析 (7) 第3章齿轮机构传动设计 (8) 3.1 齿轮机构的设计要求 (8) 3.2 齿轮参数的计算 (8) 第4章凸轮机构设计 (11) 4.1 凸轮机构的设计要求 (11) 4.2 运动规律的选择 (11) 4.3 基圆半径的计算 (12) 4.4 凸轮设计图 (13) 课程设计小结 (14) 参考文献 (14)

第1章 设计要求 1.1设计任务 设计一个四冲程内燃机。机器的功能与设计要求:该机器的功能是把化学能转化成机械能。须完成的动作为:活塞的吸气,压缩,做功,排气4个过程,进,排气门的开关与关闭、燃料喷射。 1.2设计思路 设计四冲程内燃机的关键点在于活塞的吸气,压缩,做功,排气以及气门的开闭几个动作的完成。而怎样将这个几个动作完成并按照运动循环图结合起来这是我们完成这次课程设计所需要解决的问题。所以,我将从这些方面入手,依据这些需要来选择机构。 1.3机构简介 柴油机(如附图1(a))是一种内燃机,它将燃料燃烧时所产生的热能转变成机械能。往复式内燃机的主体机构为曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,气缸内的压力变化可由示功图(用示功器从气缸内测得,如附图1(b)所示),它表示汽缸容积(与活塞位移s成正比)与压力的变化关系,现将四个冲程压力变化做一简单介绍。 进气冲程:活塞下行,对应曲柄转角θ=0°→180°。进气阀开,燃气开始进入汽缸,气缸内指示压力略低于1个大气压力,一般以1大气压力算,如示功图上的a →b。 压缩冲程:活塞上行,曲柄转角θ=180°→360°。此时进气完毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。 做功冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油的自燃

单缸四冲程柴油机机构设计机械原理课程设计报告

机械原理课程设计 说明书 设计题目:单缸四冲程柴油机机构设计 学院:机电工程学院 专业:车辆工程 班级:S1 学号:2012126849

设计者:黄通尧 指导教师:王洪波 提交日期:二○一四年七月 1、机构简介 柴油机是内燃机的一种,如图1所示。它将柴油燃烧时所产生的热能转变为机械能。往复式内燃机的主运动机构是曲柄滑块机构,以气缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 图1 柴油机机构简图及示功图 四冲程内燃机是以活塞在气缸内往复移动四次(对应于曲柄轴转两转)完成一个工作循环。在一个工作循环中气缸内的压力变化可用示功器或压力传感器从气缸内测得,然后将压力与活塞位移的关系绘成曲线图,称为示功图,见图1(b)。

现将四冲程柴油机的压力变化关系作一粗略介绍: 进气冲程:活塞下行,对应曲柄转角=0°—180°,进气阀开启,空气进入气缸。汽缸内 指示压力略低于1个大气压,一般可以1个大气压来计算。进气结束时,进气阀关闭。如示功 图上的a 一b 段。 压缩冲程:活塞上行,对应曲柄转角 =180°—360°,将进入气缸的空气压缩。随着活塞 的上移气缸内压力不断升高。如示功图上的b 一c 段。 膨胀冲程:在压缩冲程结束前,被压缩空气的温度已超过柴油的自燃温度。因此当高压油泵将柴油喷进燃烧室时,呈雾状细滴的柴油与高温空气相接触,立即爆炸燃烧,使气缸内的压力骤增至最高点。燃气产生的高压推动活塞下行,通过连杆带动曲柄旋转对外作功。对应曲柄转角 =360°—540°,随着燃气的膨胀活塞下行气缸容积增大,气缸内压力逐渐降低,如示功图上c —d 段。 排气冲程:排气阀开启,活塞上行将废气排出。气缸内压力略高于1个大气压,一般亦以一个大气压计算。对应曲柄转角 =540°—720°,如示功图上d —a 段。 进、排气阀的开启是通过凸轮机构控制的。凸轮机构是通过曲柄轴上的齿轮Z1和凸轮轴上的齿轮Z2来传动的。这一对齿轮称为正时齿轮,由于一个工作循环中,曲柄轴转动两周而进、排气阀各开启一次,所以正时齿轮的传动比为i 12=2。 由上可知,在一个工作循环的四个冲程中只有一个冲程是作功的,其余三个冲程都要依靠机械的惯性来带动、要消耗功的。因此曲柄会由于驱动力的不均匀而引起速度波动。为了减小速度波动,曲柄轴上应加装飞轮来进行调速。 2、 已知数据 已知数据表 设计内容 曲柄滑块机构的运动分析 曲柄滑块机构的动态静力分析及飞轮转动惯量的确定 符号 H l As2 l 04B n 1 D h D G 1 G 2 G 3 J s1 J s2 J 01 单位 mm m m r/mi n mm N kgm 2 数据 120 4 80 54 1500 100 200 210 20 10 0.1 0.05 0.2 1/100 齿轮机构设计 凸轮机构设计 Z 1 Z 1 m h s ′ [] [a ′] mm ° mm ° 22 44 5 20 20 50 10 50 30 75

四冲程柴油机的工作原理

一、四冲程柴油机的工作原理 柴油机的工作是由进气、压缩、燃烧膨胀和排气这四个过程来完成的,这四个过程构成了一个工作循环。活塞走四个过程才能完成一个工作循环的柴油机称为四冲程柴油机。现对照上面的动画了说明它的工作理原。 1.进气冲程 第一冲程——进气,它的任务是使气缸内充满新鲜空气。当进气冲程开始时,活塞位于上止点,气缸内的燃烧室中还留有一些废气。 2、压缩冲程 压缩时活塞从下止点间上止点运动,这个冲程的功用有二,一是提高空气的温度,为燃料自行发火作准备:二是为气体膨胀作功创造条件。当活塞上行,进气阀关闭以后,气缸内的空气受到压缩,随着容积的不断细小,空气的压力和温度也就不断升高,压缩终点的压力和湿度与空气的压缩程度有关,即与压缩比有关,一般压缩终点的压力和温度为:Pc=4~8MPa,Tc=750~950K。 3、燃烧膨胀冲程 。在这个冲程开始时,大部分喷入燃烧室内的燃料都燃烧了。燃烧时放出大量的热量,因此气体的压力和温度便急剧升高,活塞在高温高压气体作用下向下运动,并通过连秆使曲轴转动,对外作功。所以这一冲程又叫作功或工作冲程。 4、排气冲程 排气冲程的功用是把膨胀后的废气排出去,以便充填新鲜空气,为下一个循环的进气作准备。

二、柴油机和汽油机工作过程的主要区别是什么 汽油机和柴油机它们的区别主要在于压缩比、点火方式、所用燃料及用途。柴油机吸入洁净空气,在活塞快要到达上止点时,向气缸内喷入燃油,燃油被高压高温的空气点燃,膨胀,将活塞推向下至点,而传统汽油机是吸入汽油与空气的混合气体,在活塞快要到达上止点时,用火花塞发火点燃混合气。 如今的电喷汽油机在活塞快要到达上止点时,用电子控制的喷油泵将汽油喷入气缸,但是燃烧还是靠火花塞点燃。 三、什么叫压缩比 压缩比=汽缸总容积/燃烧室容积压缩比是内燃机的重要指标,压缩比越大,其压强越大,温度越高。柴油机的压缩比为15~18。从理论上讲,压缩比越大,效率越高。但因为气缸受材料强度的限制,而且气缸内工质的温度不能超过燃料的燃点,所以压缩比不能太大。 四、柴油机的基本构造有哪些 柴油机由曲柄连杆机构、配气机构、冷却系、润滑系、起动系五大基本构造。 五、柴油机怎样对配气和油泵齿轮 1、,将一缸活塞摇至上止点,凸轮轴一缸俩凸轮朝下,即倒八字,装入. 2、,将柴油泵里加注柴油并排除空气,转动油泵轴,排除高压油路里的空气.轻转至一缸油管接头刚刚出油停止,固定此位置,将过桥齿轮装入即可. 重摇曲轴,再次确认气门的位置和喷油时刻,无误,即可试车.(主要是为了排除活塞顶气门) 3、起动后,根据烟色和声音适当调整供油角度. 六、柴油机机油里进来水,是什么原因造成的

单缸四冲程汽油机和单缸四冲程柴油机的工作原理

单缸四冲程汽油机和单缸四冲程柴油机的工作原理 单缸四冲程汽油机的工作原理 四冲程汽油机每一个工作循环低都有四个活塞行程,按其作用分别称为进气行程、压缩行程、做功行程和排气行程。 1 、进气行程:在进气行程终,活塞由曲轴带动由上止点向下止点运行,此时排气门关闭,进气门开启。由于活塞由上止点向下止点运动过程中,汽缸内容积逐渐增大,形成一定的真空度,所以混合气通过进气门被吸入汽缸。当活塞到达下止点时,整个汽缸内充满混合气。 2 、压缩行程:进气行程结束后,活塞在曲轴的带动下由下止点向上止点运动,此时排气门仍处于关闭状态,而进气门开始逐渐关闭。随着活塞的向上运动,汽缸内容积减小,由于进气门和排气门均处于关闭状态,进入汽缸内的混合气被压缩,其温度和压力升高,直到活塞到达下止点时压缩行程结束, 3 、做功行程:当活塞运动接近压缩行程上止点时,火花塞跳火点燃汽缸内的混合气,此时进气门和排气门均处于关闭状态,汽缸内的温度和压力同时升高,从而推动活塞从上止点向下止点运动,并通过连杆推动曲轴旋转输出机械能。 4 、排气行程:做功行程结束时,气缸内的气体将活塞推至下止点,气缸内的混合气也因燃烧变为废气。此时排气门打开,进气门仍处于关闭状态,活塞在曲轴的带动下从下止点向上止点运动,气缸内的废气经排气门排出,直到活塞到达上止点,排气行程结束。 发动机工作时,需要连续不断地进行循环,在每个循环中都是依次完成进气、压缩、做功、排气四个行程。 单缸四冲程柴油机的工作原理 单缸四冲程柴油机工作原理与单缸四冲程汽油机工作原理一样,每个工作循环也是由进气、压缩、做功和排气四个行程组成。但由于柴油与汽油的性质不同,使柴油机混合气的形成方式和着火方式等与汽油机有很大的区别。 单缸四冲程柴油机与单缸四冲程汽油机各行程的区别如下。 1 、进气行程:在此行程进入柴油机汽缸的不是混合气,而是纯空气。 2 、压缩行程:在此行程柴油机压缩的是进气行程进入汽缸的纯空气,且由于柴油机压缩比大,压缩终了时气缸内的压力和温度均比汽油机高。 3 、做功行程:柴油机的做功行程与汽油机的差别较大,在柴油机压缩行程

单缸四冲程柴油机

学号成绩课程设计说明书 课程名称_______________________ 题目名称_______________________ 专业_______________________ 姓名_______________________ 指导老师_______________________

年月日 实习(训)报告评语 等级: 评阅人:职称:

年月日 河南工程学院 实习(训)报告 实训目的(内容): 实习时间:自月日至月日 共天 实习地点: 实习单位:

指导老师:系主任: 目录 一、机构简介与设计数据 1 机构简介(1) 2 设计数据(2) 二、设计内容及方案分析 1 曲柄滑块机构的运动分析(6) 2 曲柄滑块机构的动态静力分析(11) 3 齿轮机构的设计(12) 4 凸轮机构的设计(13) 附:齿轮啮合图的绘制(17) 三、心得体会(21) 四、主要参考文献(22)

一、机构简介与设计数据 1. 机构简介 柴油机(图1,a)是一种内燃机,它将燃料燃烧时所产生的热能转变为机械能。往复式内燃机的主体机构为曲柄滑块机构,以汽缸内的燃气压力推动活塞3经连杆2而使曲柄1旋转。 本设计是四冲程内燃机,即以活塞在气缸内往复移动四次(对应曲柄两转)完成一个工作循环。在一个工作循环中,汽缸内的压力变化可由示功图(用示功器从汽缸内测得,见图1,b)表出,它表示汽缸容积(与活塞位移s成正比)与压力的变化关系。现将四个冲程压力变化作一简单介绍: 进气冲程:活塞下行,对应曲柄转角θ=0?→180?。进气阀开,燃气开始进入汽缸,汽缸内指示压力略低于1大气压力,一般以1大气压力计算,如示功图上的a→b。 压缩冲程:活塞上行,曲柄转角θ=180?→360?。此时进气毕,进气阀关闭,已吸入的空气受到压缩,压力渐高,如示功图上的b→c。 膨胀(作功)冲程:在压缩冲程终了时,被压缩的空气温度已超过柴油自燃的温度,因此,在高压下射入的柴油立刻爆炸燃烧,气缸内压力突增至最高点,燃气压力推动活塞下行对外作功,曲柄转角θ=360?→540?,随着燃起的膨胀,汽缸容积增加,压力逐渐降低,如图上c→b。 排气冲程:活塞上行,曲柄转角θ=540?→720?.排气阀开,废气被驱出,气缸内压力略高于1大气压力,一般亦以1大气压力计算,如图上的b→a。 进排气阀的启闭是由凸轮机构控制的,图1,a中y-y剖面有进排气阀各一只

船舶柴油机二四冲程柴油机结构区别

类型二冲程四冲程 定义活塞在两个行程内完 成一个工作循环的柴 油机活塞在四个行程内完成一个工作循环的柴油机 按工作循环分类活塞运动两个行程一 个工作循环活塞运动四个行程一个工作循环 常用活塞类型十字头----活塞设有 活塞杆,通过十字头 与连杆相连,并在气 缸下部设中隔板将气 缸与曲轴箱隔开。 (优点:工作可靠, 寿命长。 缺点:重量和高度增 大,结构复杂。)筒形----活塞通过活塞销直接与连杆相连。 (优点:结构简单、紧凑、轻便,发动机高度小。 缺点:运动时有侧推力,活塞与气缸之间磨损较大。) 工作原理条件:为保证扫气, 在气缸套下部开设气 口。同时用扫气泵或 增压器提高进气压 力。 过程:扫气,压缩, 燃烧和膨胀过程:进气,活塞从上止点下行,进气阀开(在到上止点前开。) 压缩,活塞自下止点向上运动,进气阀关(在丅止点后关)。燃烧和膨胀,活塞从上止点向下运动至排气阀开(在到丅止点前)。 排气,活塞自下至上行,至排气阀关(到上止点后)。 从工作原理得出的特点二台气缸尺寸与转速相同的四冲程与二冲程 柴油机,考虑损失,二冲程机功率为四冲程 机的1.6~1.8倍。 二冲程机曲轴的回转比四冲程机均匀,可使 用较小的飞轮。 二冲程机的换气机构较简单,便于维修保养。 二冲程机的换气质量较四冲程机差。 二冲程机的热负荷比四冲程机高。

基本组成主要固定件机座,机架,气缸, 气缸盖将气缸体和机架做成一体,省去机座代之以轻便的油底壳 主要运动件活塞,连杆组件,曲 轴及十字头组件活塞,连杆组件,曲轴 润滑系统气缸注油系统和曲轴 箱油系统曲轴箱油系统(机油系统) 燃烧室部件负荷及结构特点机械负荷:气体压力和安装预紧力(气缸盖 和气缸套),往复惯性力(活塞) 热负荷:热疲劳,蠕变,塑性变形,裂纹(低 频应力),高频应力 欲降低机械负荷采用厚壁,降低热负荷采用 薄壁,即薄壁强背。通过钻孔冷却,使冷却 水孔离触火面很近,产生很薄的热屏障。 活塞作用在保证密封的情况下完成压缩和膨胀过程, 并将气体力经连杆传递给曲轴 启闭气口,控制换气承受侧推力,起滑块 的作用 构造活塞头(耐热合金钢, 顶部下凹,利于燃油 和空气混合,内部支 撑体现薄壁强背原 则); 活塞裙(耐磨铸铁, 圆筒状); 活塞环(密封燃烧 室); 活塞杆(锻钢用四个 螺栓与十字头固紧); 活塞冷却机构(滑油 润滑,冷却油由十字 头上套管供入,经底 部钻孔进入活塞杆中 滑油管内,再进活塞 头的冷却油腔,由油 孔到外部油腔,冷却 活塞后从滑油管外环 形空间和十字头流 出)活塞头(铸钢,顶部浅盆形,利于油气混合和燃烧); 活塞裙(球墨铸铁)活塞环(两道气环,一道油环); 活塞销 (中型强载:活塞头部和裙部分开制造强度不大或小型:活塞头和裙制成一体,即活塞本体) 活塞采用滑油冷却,滑油经曲轴、连杆、活塞销和活塞裙中的通道送至环形冷却腔,再由此流入中央冷却腔,最后由冷却腔的中央孔泄至曲轴箱内。

相关文档
最新文档