高考物理电磁感应精讲精练电磁感应中的“杆导轨”模型学案

合集下载

高考物理二轮复习真题模型再现电磁感应中的导体杆模型学案

高考物理二轮复习真题模型再现电磁感应中的导体杆模型学案

真题模型再现(五)——电磁感应中的“导体杆”模型来源图例考向核心归纳2020·全国卷Ⅲ第15题楞次定律、右手定则“导体杆”模型是电磁感应中的常见模型,选择题和计算题均有考查。

1.常考的模型:(1)“单杆+水平导轨”模型(2)“单杆+倾斜导轨”模型(3)“双杆+导轨”模型(4)“圆盘、线框旋转切割”模型(5)“线圈平动切割”模型(6)“线圈静止不动,磁场发生变化”模型2.模型解法(1)牢记两个定律,楞次定律(右手定则)和法拉第电磁感应定律。

(2)熟记两个公式:E=BLv和E=I(R+r)。

注意感应电动势的其他表达式:E=nΔΦΔt,E=12Bωl2。

(3)图象问题中两个好用的结论。

①图象问题多用排除法,如用电流的正、负表示方向来排除;②图象问题中,同一条直线的斜率所对应的物理量不变(大小和方向都不变);(4)力、电综合问题做好“五分析”2020·全国卷Ⅱ第20题电磁感应与力学规律的综合2020·新课标全国卷Ⅲ第25题导体棒平动切割、法拉第电磁感应定律、电荷量的计算2020·新课标全国卷Ⅲ第21题半圆形、扇形导线框旋转切割、交流电的有效值2020·新课标全国卷Ⅱ第15题右手定则、三角框旋转切割、电势差【预测1】 (2020·福建省毕业班质量检查)如图14,磁感应强度大小为B 的匀强磁场中有一固定金属线框PMNQ ,线框平面与磁感线垂直,线框宽度为L 。

导体棒CD 垂直放置在线框上,并以垂直于棒的速度v 向右匀速运动,运动过程中导体棒与金属线框保持良好接触。

图14(1)根据法拉第电磁感应定律E =ΔΦΔt,推导MNCDM 回路中的感应电动势E =Blv ; (2)已知B =0.2 T ,L =0.4 m ,v =5 m/s ,导体棒接入电路中的有效电阻R =0.5 Ω,金属线框电阻不计,求:①导体棒所受到的安培力大小和方向; ②回路中的电功率。

全国通用2021年高考物理二轮复习真题模型再现5电磁感应中的“导体杆”模型学案

全国通用2021年高考物理二轮复习真题模型再现5电磁感应中的“导体杆”模型学案

真题模型再现(五)——电磁感应中的“导体杆”模型来源图例考向核心归纳2017·全国卷Ⅲ第15题楞次定律、右手定则“导体杆”模型是电磁感应中的常见模型,选择题和计算题均有考查。

1.常考的模型:(1)“单杆+水平导轨”模型(2)“单杆+倾斜导轨”模型(3)“双杆+导轨”模型(4)“圆盘、线框旋转切割”模型(5)“线圈平动切割”模型(6)“线圈静止不动,磁场发生变化”模型2.模型解法(1)牢记两个定律,楞次定律(右手定则)和法拉第电磁感应定律。

(2)熟记两个公式:E=BLv和E=I(R+r)。

注意感应电动势的其他表达2017·全国卷Ⅱ第20题电磁感应与力学规律的综合2016·新课标全国卷Ⅲ第25题导体棒平动切割、法拉第电磁感应定律、电荷量的计算2016·新课标全国卷Ⅲ第21题半圆形、扇形导线框旋转切割、交流电的有效值2015·新课标全国卷Ⅱ第15题右手定则、三角框旋转切割、电势差式:E =n ΔΦΔt ,E =12Bωl 2。

(3)图象问题中两个好用的结论。

①图象问题多用排除法,如用电流的正、负表示方向来排除; ②图象问题中,同一条直线的斜率所对应的物理量不变(大小和方向都不变);(4)力、电综合问题做好“五分析”【预测1】 (2017·福建省毕业班质量检查)如图14,磁感应强度大小为B 的匀强磁场中有一固定金属线框PMNQ ,线框平面与磁感线垂直,线框宽度为L 。

导体棒CD 垂直放置在线框上,并以垂直于棒的速度v向右匀速运动,运动过程中导体棒与金属线框保持良好接触。

图14(1)根据法拉第电磁感应定律E =ΔΦΔt,推导MNCDM 回路中的感应电动势E =Blv ;(2)已知B =0.2 T ,L =0.4 m ,v =5 m/s ,导体棒接入电路中的有效电阻R =0.5 Ω,金属线框电阻不计,求:①导体棒所受到的安培力大小和方向;②回路中的电功率。

高考物理复习 电磁感应现象中的“杆+导轨”模型问题

高考物理复习  电磁感应现象中的“杆+导轨”模型问题

电磁感应现象中的“杆+导轨”模型问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零。

变换物理模型,是将陌生的物理模型与熟悉的物理模型相比较,分析异同并从中挖掘其内在联系,从而建立起熟悉模型与未知现象之间相互关系的一种特殊解题方法.巧妙地运用“类同”变换,“类似”变换,“类异”变换,可使复杂、陌生、抽象的问题变成简单、熟悉、具体的题型,从而使问题大为简化.电磁感应现象部分的知识历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过近年高考题的研究,此部分每年都有“杆+导轨”模型的高考题出现。

一、命题演变“杆+导轨”模型类试题命题的“基本道具”:导轨、金属棒、磁场,其变化点有: 1.导轨(1)导轨的形状:常见导轨的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)导轨的闭合性:导轨本身可以不闭合,也可闭合; (3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)导轨的放置:水平、竖直、倾斜放置等等.[例1](2003·上海·22)如图1所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中粗线表法),R 1= 4Ω、R 2=8Ω(导轨其它部分电阻不计).导轨OAC 的形状满足方程y =2sin (3x )(单位:m ).磁感强度B=0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v=5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:(1)外力F 的最大值;(2)金属棒在导轨上运动时电阻丝R 1上消耗的最大功率; (3)在滑动过程中通过金属棒的电流I 与时间t 的关系.解析:本题难点在于导轨呈三角函数图形形状,金属棒的有效长度随时间而变化,但第(1)(2)问均求的是某一状态所对应的物理量,降低了一定的难度.解第(3)问时可根据条件推导出外力F 的表达式及电流I 与时间t 的关系式,由三角函数和其他条件求出需要的量即可.(1)金属棒匀速运动F 外=F 安 ,当安培力为最大值时,外力有最大值. 又∵E=BLv总R EI =∴F 安=BIL=总R vL B 22即当L 取最大值时,安培力有最大值 ∵L max =22sinπ =2(m )38R 2121=+=R R R R 总(Ω)∴总R v L B F 2max 2max = 代入数据得F max =0.3(N )(2)R 1、R 2相并联,由电阻丝R 1上的功率121R E P =,可知当max L L =时P 1有最大功率,即140.522.0 222122max 212max max =⨯⨯===R v L B R E P (W ) (3)金属棒与导轨接触点间的长度随时间变化 L =2sin (3πx )(m )且x=vt ,E=BLv ∴ I=总总R BLv R E == 43sin (35πt )(A ) 2.金属棒(1)金属棒的受力情况:受安培力以外的拉力、阻力或仅受安培力;图1(2)金属棒的初始状态:静止或运动;(3)金属棒的运动状态:匀速、匀变速、非匀变速直线运动,转动; (4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线;(5)金属棒与导轨的连接:金属棒可整体或部分接入电路,即金属棒的有效长度问题. 3.磁场(1)磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化. (2)磁场的分布:有界或无界. 二、模型转换电磁感应现象考查的知识重点是法拉第电磁感应定律,根据法拉第电磁感应定律的表达式tBS nt nE ∆∆=∆∆Φ=)(,有下列四个模型转换: 1.B 变化,S 不变 (1)B 均匀变化 ①B 随时间均匀变化如果B 随时间均匀变化,则可以写出B 关于时间t 的表达式,再用法拉第电磁感应定律解题,如例2第(1)问.②B 随位置均匀变化B 随位置均匀变化的解题方法类似于B 随时间均匀变化的情形. (2)B 非均匀变化B 非均匀变化的情况在高中并不多见,如例2第(3)问.如果题目给出了B 非均匀变化的表达式,也可用后面给出的求导法求解.[例2](2000·上海·23)如图2所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计.开始磁感强度为B 0.(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时棒保持静止.求棒中的感应电流.在图上标出感应电流的方向;(2)在上述(1)情况中,始终保持棒静止,当t =t 1末时需加的垂直于棒的水平拉力为多大?(3)若t =0时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)?解析:将加速度的定义式和电磁感应定律的表达式类比,弄清k 的物理意义,写出可与at v v t +=0相对照的B 的表达式kt B B +=0;第(3)问中B 、S 均在变化,要能抓住产生感应电流的条件(①回路闭合;②回路中有磁通量的变化)解题.(1)磁感强度均匀增加,每秒增量为k ,得k tB=∆∆ ∵感应电动势2S kl tBt E =∆∆=∆∆Φ=∴感应电流rkl r E I 2==由楞次定律可判定感应电流方向为逆时针,棒ab 上的电流方向为b →a . (2)t=t 1时,B=B 0+kt 1 又∵F=BIl∴rkl kt B F 310)(+=(3)∵棒中不产生感应电流 ∴回路中总磁通量不变 ∴Bl (l+vt )=B 0l 2 得vtl lB B +=02.B 不变,S 变化(1)金属棒运动导致S 变化金属棒在匀强磁场中做切割磁感线的运动时,其感应电动势的常用计算公式为BLv E =,此类题型较常见,如例3.[例3](2002·上海·22)如图3所示,两条互相平行的光滑金属导轨位于水平面内,d图2距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T .一质量为m =0.1kg 的金属直杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下做匀变速直线运动,加速度大小为a =2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系.解析:杆在水平外力F 和安培力的共同作用下做匀变速直线运动,加速度a 方向向左.杆的运动过程:向右匀减速运动→速度为零→向左匀加速运动;外力F 方向的判断方法:先假设,再根据结果的正负号判断.(1)感应电动势E=Blv ,感应电流I=RBlvR E =∴I=0时v=0∴x =av 2 2=1(m )(2)当杆的速度取最大速度v 0时,杆上有最大电流I m =RBlv 0RBlv I I m 22'0==安培力F 安=BI ’l=Rv l B 2022=0.02(N )向右运动时F+F 安=ma ,得F=ma- F 安=0.18(N ),方向与x 轴相反 向左运动时F- F 安=ma ,得F=ma+F 安=0.22(N ),方向与x 轴相反(3)开始时v=v 0,F 安=BI m l=R v l B 022F+F 安=ma ,F=ma- F 安=ma- Rv l B 022∴当v 0<22l B maR=10m/s 时,F >0,方向与x 轴相反当v 0>22l B maR=10m/s 时,F <0,方向与x 轴相同 (2)导轨变形导致S 变化常常根据法拉第电磁感应定律解题,如例4.[例4] (2001·上海·22)如图4所示,半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ’的瞬时(如图所示),MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN 将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为π4=∆∆t B (T/s ),求L 1的功率. 解析:(1)当棒滑过圆环直径OO ’的瞬时,棒的有效长度为2a ,灯L 1、L 2是并联的. E 1=B 2av =0.2×0.8×5 =0.8(V )4.028.011===R E I (A ) (2)将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º后,圆环的有效面积为半圆.其中B 随时间是均匀变化的,注意此时灯L 1、L 2是串联的.32.0222=⨯∆∆=∆∆Φ=a t B t E π (V )RE P 221)2(==1.28×102(W ) 另外还可在S 不规则变化上做文章,如金属棒旋转、导轨呈三角形等等. 3. “双杆+导轨”模型[例5]足够长的光滑金属导轨E F ,P Q 水平放置,质量为m 电阻为R 的相同金属棒ab ,cd 与导轨垂直且接触良好,磁感强度为B 的匀强磁场垂直导轨平面向里如图5所示。

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型

永寿中学2020-2021学年度高(三)年级第二学期教学设计科课题课型课时主备人执教者物理电磁感应中的“杆+导轨”模型复习 1 王涛教学目标知识与技能“杆+导轨”模型电磁感应中的应用过程与方法“杆+导轨”模型情感、态度、价值观物理建模教学重点电磁感应中的“单杆+导轨”模型教学难点电磁感应中的“双杆+导轨”模型教学方法归纳总结,分析讲授学法指导物理建模解题教学过程教师活动学生活动二次备写检查学生自主学习情况:提问:1安培力方向的判断2安培力做功的性质评价学生的回答。

1.单杆“水平导轨”模型(1)、建模(2)、动态分析(3)、收尾状态分析a.运动形式b.力学特征c.电学特征例1:(示例1)1、引导学生分析受力、运动及电磁感应2、查看、评价学生习作情况2.单杆“倾斜导轨”模型(1)、建模(2)、动态分析(3)、收尾状态思考并回答老师提问在老师的引导下进行建模并归纳总结解题的方法根据建模,在老师指导下分析解答问题在老师的引导下进行建模并归纳总结解题的方法。

教学过程教师活动学生活动二次备写a.运动形式b.力学特征c.电学特征例2 (示例2)1、引导学生分析物体受力和运动2、查看、评价学生习作情况3.电磁感应中的“双杆+导轨”模型(1)、建模(2)、力学观点分析(3)、动量观点分析(4)、能量观点分析两种情况(1)一杆切割、一杆静止时,分析同单杆类似。

(2)两杆同时切割时,感应电动势由两杆共同决定,E=ΔΦΔt=Bl|v1-v2|。

例3 (示例3)1、引导学生分析物体受力、运动动情况、动量和能量。

2、启发学生选择解题方法形成思路3、规范书写解题过程课堂练习(应用提升练题2)指导学生的练习、查看并评价布置自主复习任务:《光电效应原子结构原子核》根据建模,在老师指导下分析解答问题在老师的引导下进行建模并归纳总结解题的方法在老师的引导下进行方法的归纳总结根据建模,在老师指导下分析解答问题学生思考并完成练习作业布置“题组专练”14、15、18教学反思。

电磁感应现象中的杆+导轨模型专题教案 学生

电磁感应现象中的杆+导轨模型专题教案 学生

电磁感应现象中的“杆+导轨”模型专题1.导轨(1)导轨的形状:常见导轨的形状为U 形,还可以为圆形、三角形、三角函数图形等; (2)导轨的闭合性:导轨本身可以不闭合,也可闭合; (3)导轨电阻:不计、均匀分布或部分有电阻、串上外电阻; (4)导轨的放置:水平、竖直、倾斜放置等等.[例1](2003·上海·22)如图1所示,OACO 为置于水平面内的光滑闭合金属导轨,O 、C 处分别接有短电阻丝(图中粗线表法),R 1= 4Ω、R 2=8Ω(导轨其它部分电阻不计).导轨OAC 的形状满足方程y =2sin (3πx )(单位:m ).磁感强度B=0.2T 的匀强磁场方向垂直于导轨平面.一足够长的金属棒在水平外力F 作用下,以恒定的速率v=5.0m/s 水平向右在导轨上从O 点滑动到C 点,棒与导轨接触良好且始终保持与OC 导轨垂直,不计棒的电阻.求:(1)外力F 的最大值;(2)金属棒在导轨上运动时电阻丝R 1上消耗的最大功率; (3)在滑动过程中通过金属棒的电流I 与时间t 的关系. 2.金属棒(1)金属棒的受力情况:受安培力以外的拉力、阻力或仅受安培力;(2)金属棒的初始状态:静止或运动;(3)金属棒的运动状态:匀速、匀变速、非匀变速直线运动,转动; (4)金属棒割磁感线状况:整体切割磁感线或部分切割磁感线;(5)金属棒与导轨的连接:金属棒可整体或部分接入电路,即金属棒的有效长度问题. 3.磁场(1)磁场的状态:磁场可以是稳定不变的,也可以均匀变化或非均匀变化. (2)磁场的分布:有界或无界. 二、模型转换电磁感应现象考查的知识重点是法拉第电磁感应定律,根据法拉第电磁感应定律的表达式tBS nt nE ∆∆=∆∆Φ=)(,有下列四个模型转换: 1.B 变化,S 不变 (1)B 均匀变化图1①B 随时间均匀变化如果B 随时间均匀变化,则可以写出B 关于时间t 的表达式,再用法拉第电磁感应定律解题,如例2第(1)问.②B 随位置均匀变化B 随位置均匀变化的解题方法类似于B 随时间均匀变化的情形. (2)B 非均匀变化B 非均匀变化的情况在高中并不多见,如例2第(3)问.如果题目给出了B 非均匀变化的表达式,也可用后面给出的求导法求解.[例2](2000·上海·23)如图2所示,固定于水平桌面上的金属框架cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动.此时abed 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计.开始磁感强度为B 0.(1)若从t =0时刻起,磁感强度均匀增加,每秒增量为k ,同时棒保持静止.求棒中的感应电流.在图上标出感应电流的方向;(2)在上述(1)情况中,始终保持棒静止,当t =t 1末时需加的垂直于棒的水平拉力为多大? (3)若t =0时刻起,磁感强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感强度应怎样随时间变化(写出B 与t 的关系式)?2.B 不变,S 变化(1)金属棒运动导致S 变化金属棒在匀强磁场中做切割磁感线的运动时,其感应电动势的常用计算公式为BLv E ,此类题型较常见,如例3.[例3](2002·上海·22)如图3所示,两条互相平行的光滑金属导轨位于水平面内,距离为l =0.2m ,在导轨的一端接有阻值为R =0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B =0.5T .一质量为m =0.1kg 的金属直杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下做匀变速直线运动,加速度大小为a =2m/s 2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且接触良好.求:(1)电流为零时金属杆所处的位置;(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系. (2)导轨变形导致S 变化R常常根据法拉第电磁感应定律解题,如例4.[例4] (2001·上海·22)如图4所示,半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ’的瞬时(如图所示),MN 中的电动势和流过灯L 1的电流.(2)撤去中间的金属棒MN 将右面的半圆环OL 2O ’以OO ’为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为π4=∆∆t B (T/s ),求L 1的功率.3. “双杆+导轨”模型[例5]足够长的光滑金属导轨E F ,P Q 水平放置,质量为m 电阻为R 的相同金属棒ab ,cd 与导轨垂直且接触良好,磁感强度为B 的匀强磁场垂直导轨平面向里如图5所示。

2021届高考物理二轮复习核心素养微专题6电磁感应中的“杆+导轨”模型课件202103302375

2021届高考物理二轮复习核心素养微专题6电磁感应中的“杆+导轨”模型课件202103302375

此时回路中的感应电动势和感应电流分别为 E=(43v0-v′)Bl,I=2ER 此时棒 cd 所受的安培力 F=BIl=B42lR2v0 由牛顿第二定律可得棒 cd 的加速度大小为 a=mF=B42ml2Rv0,方向水平向右。 答案:(1)41mv02 (2)B42ml2Rv0
5.如图所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有 阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨 间的动摩擦因数μ=0.45。建立原点位于底端、方向沿导轨向上的坐标 轴x,在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场。从t=0时 刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面 向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1。当棒 ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2= 0.8 m处时撤去外力F,此后棒ab将继续运动,最终返回至x=0处。棒ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用Fx图像下的 “面积”代表力F做的功,sin 37°=0.6)
2.(多选)如图所示,平行导轨放在斜面上,匀强磁场垂直于斜面向上, 恒力F拉动金属杆ab从静止开始沿导轨向上滑动,接触良好,导轨光滑。 从静止开始到ab杆达到最大速度的过程中,恒力F做的功为W,ab杆克服 重力做的功为W1,ab杆克服安培力做的功为W2,ab杆动能的增加量为 ΔEk,电路中产生的焦耳热为Q,ab杆重力势能增加量为ΔEp,则( CD) A.W=Q+W1+W2+ΔEk+ΔEp B.W=Q+W1+W2+ΔEk C.W=Q+ΔEk+ΔEp D.W2=Q,W1=ΔEp
匀强磁场与导轨垂直,磁感应强度为 B,棒 ab 长为 L,质 量为 m,初速度为零,拉力恒为 F,水平导轨光滑,除电阻 物理模型 R 外,其他电阻不计

高二物理:电磁感应中的“杆+导轨”模型

(2)金属杆的质量m和阻值r; (3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做 的功W。
转到解析
3.规律方法
解决此类问题的分析要抓住三点 (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力 为零); (2)整个电路产生的电能等于克服安培力所做的功; (3)电磁感应现象遵从能量守恒定律。
(1)电阻R消耗的功率; (2)水平外力的大小。
答案
B2l2v2 (1)
B2 (2)
l2v+μmg
R
R
转到解析
【思维训练2】(2016·泰州一模)如图13甲,MN、PQ两条平行的光滑 金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B= 0.5 T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为 r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得 到vm与R的关系如图乙所示。已知轨距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计。求:(1)杆ab下滑过程中感应电流的方 向及R=0时最大感应电动势E的大小;
2.典例剖析
【思维训练1】(2015·海南单科,13)如图12,两平行金属导轨位于同 一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中, 磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上 ,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保 持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为μ,重 力加速度大小为g,导轨和导体棒的电阻均可忽略。求
目录页
Contents Page
物理建模:电磁感应 中的“杆+导轨”模型

(完整版)高分策略之电磁感应中的杆+导轨模型

电磁感应现象中的杆4导轨模型一、单棒问题、含容式单棒问题三、无外力双棒问题竇力愣况分析动力学观点 *动量现点 运动情况伽能冒观点 牛輛定律 平衡羞件动能定理〕 幡■守恒无外力等距式1¥杆1做a渐小的加速运动杆2做a渐小的减速运动V1=V2I = 0无外力不等距式» 1杆1做a渐小的减速运动杆2做a渐小的加速运动a= 0I = 0L1V1 = L2V2四、有外力双棒问题题型一阻尼式单棒模型如图。

1 •电路特点:导体棒相当于电源。

4.运动特点:速度如图所示。

a减小的减速运动基本模型运动特点有外力等距式i厂F12杆1做a渐大的加速运动杆2做a渐小的加速运动有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动最终特征a i=a2, A v 恒定I恒定a i M a2, a i、a2恒定I恒定2•安培力的特点:安培力为阻力,并随速度减小而减小。

F B=BII= B+r3.加速度特点:加速度随速度减小而减小,a==5 •最终状态:静止 6.三个规律(1)能量关系:「'• ■ , -0 = Q ,=【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为 L 的区域内,那么(【答案】B由上述二式可得' ,- •,即B 选项正确。

【典例2】如图所示,AB 杆受一冲量作用后以初速度 V 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止. AB 的质量为m=5g 导轨宽为L=0.4m ,电阻为R=2Q ,其余的电阻不计,磁 感强度B=0.5T ,棒和导轨间的动摩擦因数为卩=0.4 ,测得杆从运动到停止的过程中通过导线的(2)动量关系:BII t 0 mv 0(3)瞬时加速度: a ==-有一个边长为a ( a<L )的正方形闭合线圈以初速V 0垂直磁场边界滑过磁场后速度变为V ( V<V 0)A. 完全进入磁场中时线圈的速度大于( v o +v ) /2B. 安全进入磁场中时线圈的速度等于( V o +V ) /2C. 完全进入磁场中时线圈的速度小于(V o +V ) /2D. 以上情况A B 均有可能,而C 是不可能的【解析】设线圈完全进入磁场中时的速度为对于线圈进入磁场的过程,据动量定理可得:对于线圈穿出磁场的过程,据动量定理可得:V x 。

高考物理大一轮复习单元综合专题十电磁感应中的“杆轨”模型课件


当感应电动势 E′与电池电动势 E 相等时,ab 的速度达到 最大值.设最终达到的最大速度为 vm,根据上述分析可知:E- Blvm=0
所以 vm=BEl=0.81×.50.5 m/s=3.75 m/s.
(2)如果 ab 以恒定速度 v=7.5 m/s 向右沿导轨运动, 则 ab 中感应电动势 E′=Blv=0.8×0.5×7.5 V=3 V 由于 E′>E,这时闭合电路中电流方向为逆时针方向, 大小为:I′=ER′+-rE=03.8-+10.5.2 A=1.5 A
电磁感应中的“单杆+电容””模型 【基本模型】如图,轨道水平光滑,杆 ab 质量为 m,电阻 不计,两导轨间距为 L,拉力 F 恒定,开始时 a=mF ,杆 ab 速度 v↑⇒感应电动势 E=BLv↑.
经过Δt 速度为 v+Δv,感应电动势 E′=BL(v+Δv), Δt 时间内流入电容器的电荷量Δq=CΔU=C(E′-E)= CBLΔv,电流 I=ΔΔqt=CBLΔΔvt=CBLa, 安培力 F 安=BLI=CB2L2a, F-F 安=ma, a=m+BF2L2C,所以杆以恒定的加速度匀加速运动.
单元综合专题(十) 电磁感应中的“杆—轨”模型
要点综述
一、电磁感应中的“杆-轨”模型 电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动 过程中力、能、电的综合应用,此类问题是高考命题的重点,主 要类型有:“单杆”模型、“单杆+电源”模型、“单杆+电容” 模型、“双杆”模型.
二、题型鸟瞰
题型鸟瞰 题型一:电磁感应中的“单杆”模型 题型二:电磁感应中的“单杆+电源”模型 题型三:电磁感应中的“单杆+电容””模型 题型四:电磁感应中的“双杆””模型
①作用于 ab 的恒力(F)的功率: P=Fv=0.6×7.5 W=4.5 W ②电阻(R+r)产生焦耳热的功率: P′=I′2(R+r)=1.52×(0.8+0.2) W=2.25 W ③逆时针方向的电流 I′,从电池的正极流入,负极流出, 电池处于“充电”状态,吸收能量,以化学能的形式储存起来.电 池吸收能量的功率:P″=I′E=1.5×1.5 W=2.25 W.

高考物理一轮总复习 第十章 电磁感应 专题强化8 电磁感应中的“杆——轨”模型课件 新人教版


内有垂直于斜面的匀强磁场(图中未画出),磁感应强度大小为B;
在时区间域t变Ⅱ化内的有规垂律直如于图斜乙面所向示下。的t=匀0强时磁刻场在,轨其道磁上感端应的强金度属大细小棒Bab1随从
图示位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd也从
位于区域Ⅰ内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界
(3)经分析可知,ab 棒的质量也为 m,ab 棒在区域Ⅱ中运动的整个过程中, 由能量守恒定律有
Q2=mg·2Lsinθ 经分析可知,ab 棒在区域Ⅱ中的运动时间与其进入区域Ⅱ前的运动时间相 同,即 t1=t2=2vLx ,全过程中电流不变,故 ab 棒在进入区域Ⅱ前回路产生的热量 为 Q1=Q2 又 Q=Q1+Q2 联立解得 Q=4mgLsinθ
[解析] (1)由楞次定律可知,ab 棒在区域Ⅱ内运动的过程中,通过 cd 棒的 电流方向由 d→c,由于 cd 棒保持静止,结合左手定则可以判断,区域Ⅰ内磁场 的方向垂直于斜面向上,
F 安=BIL,F 安=mgsinθ 又 P=I2R 解得 P=m2gB2R2Ls2in2θ (2)对 ab 棒,由法拉第电磁感应定律有2Bt-x B·(L×2L)=BLtxgsinθ,ab 棒开 始下滑的位置到区域Ⅱ的上边界的距离为 x1=12gsinθ·t2x,又 x=x1+2L 解得 x=3L
• ①作用于ab的恒力(F)的功率: • P=Fv=0.6×7.5W=4.5W • ②电阻(R+r)产生焦耳热的功率: • P′=I′2(R+r)=1.52×(0.8+0.2)W=2.25W • ③逆时针方向的电流I′,从电池的正极流入,负极流出,电池处于
“充电”状态,吸收能量,以化学能的形式储存起来。电池吸收能 量的功率:P″=I′E=1.5×1.5W=2.25W。 • 答案:(1)6m/s2 3.75m/s (2)0.6N 见解析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的“杆+导轨”模型 “杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“杆+导轨”模型又分为“单杆”型和“双杆”型(“单杆”型为重点);导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速、匀变速、非匀变速运动等. 考点一 单杆水平式模型

1.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中( ) A.PQ中电流先增大后减小 B.PQ两端电压先减小后增大 C.PQ上拉力的功率先减小后增大 D.线框消耗的电功率先减小后增大 解析:选C.PQ在运动过程中切割磁感线产生感应电动势,相当于电源,线框左右两端电阻并联,当PQ运动到中间时并联电阻最大,流经PQ的电流最小,因此在滑动过程中,PQ中的电流先减小后增大,选项A错误;由于外接电阻先增大后减小,因此PQ两端的电压即路端电压先增大后减小,选项B错误;

由能量守恒得拉力功率等于线框和导体棒的电功率,因此拉力功率为P=E2R总=BLv2R总,由于电路总电阻先增大后减小,因此拉力功率先减小后增大,选项C正确;矩形线框abcd总电阻为3R,当PQ滑动到ab中点时,线框并联总电阻最大,最大值为34R,小于导体棒PQ的电阻,所以滑动过程中线框消耗的电功率先增大后减小,选项D错误. 2.U形光滑金属导轨水平放置,如图所示为俯视图,导轨右端接入电阻R=0.36 Ω,其他部分无电阻,导轨间距为L=0.6 m,界线MN右侧有匀强磁场,磁感应强度为B=2 T.导体棒ab电阻为零,质量m=1 kg.导体棒与导轨始终垂直且接触良好,在距离界线MN为d=0.5 m处受恒力F=1 N作用从静止开始向右运动,到达界线PQ时恰好匀速,界线PQ与MN间距也为d.

(1)求匀速运动时的速度v的大小; (2)求导体棒在MN和PQ间运动过程中R的发热量Q.

解析:(1)匀速时合力为零,所以F=F安=BIL=B2L2vR

得v=FRB2L2=0.5 m/s (2)设导体棒从出发到匀速的过程安培力做功为WA,根据动能定理有F·2d+WA=12mv2 得WA=-78 J R的发热量即为导体棒克服安培力做的功,

即Q=|WA|=78 J

答案:(1)0.5 m/s (2)78 J 3.如图所示,一对足够长的平行光滑金属导轨固定在水平面上,两导轨间距为L,左端接一电源,其电动势为E、内阻为r,有一质量为m、长度也为L的金属棒置于导轨上,且与导轨垂直,金属棒的电阻为R,导轨电阻可忽略不计,整个装置处于磁感应强度为B,方向竖直向下的匀强磁场中. (1)若闭合开关S的同时对金属棒施加水平向右恒力F,求棒即将运动时的加速度和运动过程中的最大速度; (2)若开关S开始是断开的,现对静止的金属棒施加水平向右的恒力F,一段时间后再

闭合开关S;要使开关S闭合瞬间棒的加速度大小为Fm,则F需作用多长时间.

解析:(1)闭合开关S的瞬间回路电流I=ER+r 金属棒所受安培力水平向右,其大小FA=ILB 由牛顿第二定律得a=FA+Fm

整理可得a=ER+rmLB+Fm 金属棒向右运动的过程中,切割磁感线产生与电源正负极相反的感应电动势,回路中电流减小,安培力减小,金属棒做加速度逐渐减小的加速运动,匀速运动时速度最大,此时由平衡条件得FA′=F 由安培力公式得FA′=I′LB

由闭合电路欧姆定律得I′=BLvm-ER+r

联立求得vm=FR+rB2L2+EBL (2)设闭合开关S时金属棒的速度为v, 此时电流I″=BLv-ER+r

由牛顿第二定律得a″=F-FA″m 所以加速度a″=Fm-BLv-ER+rmLB 若加速度大小为Fm,则Fm-BLv-ER+rmLB=Fm 解得速度v1=EBL,v2=EBL+2FR+rB2L2 未闭合开关S前金属棒的加速度一直为a0=Fm 解得恒力F作用时间 t1=v1a0=mEFBL或t2=v2a0=mEFBL+2mR+rB2L2

答案:(1)ER+rmLB+FmFR+rB2L2+EBL (2)mEFBL或mEFBL+2mR+rB2L2 考点二 单杆倾斜式模型

1.如图所示,平行金属导轨宽度为d,一部分轨道水平,左端接电阻R,倾斜部分与水平面成θ角,且置于垂直斜面向上的匀强磁场中,磁感应强度为B,现将一质量为m、长度也为d的导体棒从导轨顶端由静止释放,直至滑到水平部分(导体棒下滑到水平部分之前已经匀速,滑动过程中与导轨保持良好接触,重力加速度为g).不计一切摩擦力,导体棒接入回路电阻为r,则整个下滑过程中( ) A.导体棒匀速运动时速度大小为mgR+rθB2d2 B.匀速运动时导体棒两端电压为mgR+rθBd C.导体棒下滑距离为s时,通过R的总电荷量为BsdR D.重力和安培力对导体棒所做的功大于导体棒获得的动能 解析:选A.导体棒下滑过程中受到沿斜面向下重力的分力和沿斜面向上的安培力,当

匀速运动时,有mgsin θ=BId,根据欧姆定律可得I=ER+r,根据法拉第电磁感应定律可

得E=Bdv,联立解得v=mgR+rB2d2sin θ,E=mgR+rBdsin θ,故导体棒两端的电压为U=Er+RR=mgRBdsin θ,A正确,B错误.根据法拉第电磁感应定律E=ΔΦΔt=BΔSΔt=BdsΔt,故q=IΔt=ER+rΔt=BsdR+r,根据动能定理可得重力和安培力对导体棒所做的功等于导体棒获得的动能,C、D错误. 2.如图所示,两根足够长平行金属导轨MN、PQ固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R=3 Ω的定值电阻,下端开口,轨道间距L=1 m.整个装置处于磁感应强度B=2 T的匀强磁场中,磁场方向垂直斜面向上.质量m=1 kg的金属棒ab置于导轨上,ab在导轨之间的电阻r=1 Ω,电路中其余电阻不计.金属棒ab由静止释放后沿导轨运动

时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2.

(1)求金属棒ab沿导轨向下运动的最大速度vm; (2)求金属棒ab沿导轨向下运动过程中,电阻R上的最大电功率PR; (3)若从金属棒ab开始运动至达到最大速度过程中,电阻R上产生的焦耳热总共为1.5 J,求流过电阻R的总电荷量q. 解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度vm. 由牛顿第二定律得mgsin θ-μmgcos θ-F安=0 F安=BIL,I=BLvmR+r,解得vm=2.0 m/s

(2)金属棒以最大速度vm匀速运动时,电阻R上的电功率最大,此时PR=I2R,解得PR

=3 W

(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x,由能量守恒定律得

mgxsin θ=μmgxcos θ+QR+Qr+12mv2m

根据焦耳定律QRQr=Rr,解得x=2.0 m

根据q=I Δt,I=ER+r E=ΔΦΔt=BLxΔt,解得q=1.0 C

答案:(1)2 m/s (2)3 W (3)1.0 C 3.如图所示,两足够长的平行光滑的金属导轨MN、PQ相距L,导轨平面与水平面的夹角θ=30°,导轨电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面向上.长为L的金属棒垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m、电阻为R.两金属导轨的上端连接一个灯泡,灯泡的电阻也为R.现闭合开关K,给金属棒施加一个方

向垂直于杆且平行于导轨平面向上的、大小为F=2mg的恒力,使金属棒由静止开始运动,当金属棒达到最大速度时,灯泡恰能达到它的额定功率.重力加速度为g,求:

(1)金属棒能达到的最大速度vm; (2)灯泡的额定功率PL; (3)若金属棒上滑距离为s时速度恰达到最大,求金属棒由静止开始上滑2s的过程中,金属棒上产生的电热Q1. 解析:(1)金属棒先做加速度逐渐减小的加速运动,当加速度为零时,金属棒达到最大速度,此后开始做匀速直线运动,设最大速度为vm,则速度达到最大时有

E=BLvm,I=E2R,

F=BIL+mgsin θ,解得vm=3mgRB2L2, (2)PL=I2R,解得PL=9m2g2R4B2L2. (3)设整个电路放出的电热为Q,由能量守恒定律有 F·2s=Q+mgsin θ·2s+12mv2m,

由题意可知Q1=Q2,解得Q1=32mgs-9m3g2R24B4L4. 答案:(1)3mgRB2L2 (2)9m2g2R4B2L2 (3)32mgs-9m3g2R24B4L4 考点三 双杆模型

物理模型

“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.

分析方法 通过受力分析,确定运动状态,一般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解.

1. 如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T.在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω 的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg、电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2.问:

(1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; (3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab上产生的热量Q是多少.

相关文档
最新文档