2012中考试题抛物线与几何问题精选
2012年中考数学压轴题100题精选(71-80题)答案

2012年中考数学压轴题100题精选(71-80题)答案2 ba【071】解:(1)由题意得,解得13 2a 4 9a 3b c 0∴此抛物线的解析式为3b 3c 2 c 2 242分 y x 2x 33(2)连结、.因为的长度一定,所以周长最小,就是使最ACBCBC△PBCPC PB小.点关于对称轴的对称点是点,与对称轴的交点即为所求的点. ACx 1BAP y 设直线的表达式为ACy kx b E,k A O B x 则解得3 D2 3k b 0∴此直线的表达式为……5分b 2 b 2 P 2 C.344 (第24题图)把代入得∴点的坐标y x 2, 33 (3)为······································ 6分 ·x 1y P 1存在最大值·························································································7分S理由:∵即DE∥PC,DE∥AC.ODOE2 mOE∴∴即△OED∽△OAC. , .OCOA2333∴OE 3 mm,AE 3,OE 22方法一:OP连结△OED△POE△POD△OED四边形S S S S S SPDOE134113= 3 m 2 m 1 3 m 2 m·················································223222 332= ···········································8分m m423333m 1∵,∴当最大4424时, ·········································· 9分 0S方法二:S S S S S△OAC△OED△AEP△PCD1131341 =13 2 3 m 2 m m m2222232 33332 2= (8)分 m m m 1 424433∵,∴当时,··························································9分m 1 0S 最大448【072】解:(1)①,,,S=12 OC 4OA 4AB 2OABC梯形2②当时,直角梯形OABC被直线扫过的面积=直角梯形OABC面积-直角三角开DOE面积2 t 4l1228 (2)存S 12 (4 t) 2( 4t )t t8 4在,,4),P(4,4),P(8,4)P( 12,4),P( 4,4),P( 451233对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二:① 以点D为直角顶点,作轴PP x1 设.(图示阴影), 在Rt OD E中,OE 2OD, OD b,OE 2bRt ODE Rt PPD1,在上面二图中分别可得到点的生标为P(-12,4)、P(-4,4)E点在0点 b ,2b 8P与A点之间不可能;② 以点E为直角顶点8同理在②二图中分别可得点的生标为P(-,4)、P(8,4)E点在0点下方不可能. P3③ 以点P为直角顶点同理在③二图中分别可得点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4),PE点在A点下方不可能. 8综上可得点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-,4)、P3P(8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类):第一类如上解法⑴中所示图此时D(-b,o),E(O,2b) P为直角:设直线DE:y 2x 2b,b1b3b,直线的中垂线方程:,令得.由的中点坐标为(-,b)y b (x )P( 8,4)DEy 4 2222 3 222222 (b 8) (4 2b) b 4b 已知可得即化简得解2PE DE3b 32b 64 0283b 得 ; P( 4,4)b 8,b 将之代入P (-8,4) P (4,4)、 121232 第二类如上解法②中所示图此时D (-b,o),E(O,2b) E 为直角:设直线DE :y 2x 2b ,1,直线的方程:,令得.由已知可得即y x 2bPEPE DEP(4b 8,4)y 4 2 222222化简得解之得 ,(4b 8) (4 2b) b 4bb (2b 8)48 b 4,b ,4)将之代入P (4b-8,4) P (8,4)、P( 123433 第三类如上解法③中所示图此时D (-b,o),E(O,2b) D 为直角:设直线DE :y 2x 2b ,1,直线的方程:,令得.由已知可得即y (x b)PDPD DEP( b 8,4)y 4 2 2222 解得8 4 b 4b (-b-8,4) P (-12,4)、b 4,b 4将之代入P512. (与重合舍去)P( 4,4)P( 4,4)P6628综上可得点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-,4)、 P 3P (8,4)、P (4,4). 事实上,我们可以得到更一般的结论: b a 如果得出设,则P 点的情形如下 AB a 、OC b 、OA h 、k h 直角分类情形 k 1k 1 P(h,h)1 P( h,h) P 为直角1 P( h,h)2hk P( ,h)3h1 k P( ,h) E 为直角2hk2 P(,h)4k 1 P( h(k 1),h)P(0,h)53 D 为直角 P( 2h,h)P( h(k 1),h)46 【073】(1)∵∠A 、∠C 所对的圆弧相同,∴∠A =∠C . APPD ∴Rt △APD ∽Rt △CPB ,∴,∴PA·PB =PC·PD ;………………………3分 CPPB(2)∵F 为BC 的中点,△BPC 为Rt △,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°.∴EF⊥AD.(3)作OM⊥AB于M,ON⊥CD于N,同垂径定理:222222∴OM=(2)-4=4,ON=(2)-3=11 55 y 又易证四边形MONP是矩形, O l 3O P 2O 2260°∴OP= OM ON 151 B D D x O A 1 C (第22题答图)点坐标为.在中,,Rt△AOC OAC 60° A ( 12,【074】(1)解:由题意得,OA | 4| |8| 12设直线的解析式为,由过两点的坐标为. C(0, 123) 123 b0) OC OAtan OAC 12 tan60° 123b 123 解得直线的解析式为:. ly 3x 123 k 3 点,得 A、Clly kx b 0 12k b(2)如图,设平移秒后到处与第一次外切于点,⊙O⊙O⊙O t P231与轴相切于点,连接.则x OO OP PO 8 5 13在⊙ODOO,OD1313113313轴,, OD⊥x OD 531312222OD OO OD 13 5 12中,.····································6分Rt△OOD111331131,,(秒)平移的时间为5OD OO OD 4 13 17 DD OD OD 17 12 51111115秒. ····························································· 8分 ⊙O t 521【075】解:(1)对称轴是直线:, x 1点A的坐标是(3,0).···························································· 2分(说明:每写对1个给1分,“直线”两字没写不扣分)(2)如∵点ADC的坐标分别图11,连接AC、AD,过D作于点M,DM y 轴△AOC∽△CMD解法一:利用、、、, a b b是 A (3,0),D(1,)C(0),AOOC3b3 ab 0∴AO=3,MD=1.由得∴·············································3分∴函数解析式0 2CMMDa13 ab 0a 1 2又∵∴由得0 a ( 1) 2a ( 1) b b 33a b为: ·········································································· 6分 y x 2x 3解法二:利用以AD为直径的圆经过点C ∵点A、D的坐标分别是A (3,0)、D(1,)、C(0,), a b b222222∴,,∵∴…① 又AC 9 bCD 1 aAD 4 ( a b)AC CD AD2∵…②···········································4分由①、②得∴函数解析式3 ab 00 a ( 1) 2a ( 1) b2为:·······························6分a 1,b 3y x 2x 3(3)如图所示,当BAFE为平行四边形时,则∥,并且=. BAEFBAEF ∵=4,∴=4 ,由于对称为,∴点F的横坐标为5. ·························· 7分 x 1BAEF2 E 将根据抛物线的对称代入得,∴F(5,12). F x 5y x 2x 3y 12 y性可知,在对称轴的左侧抛物线上也存在点F,使得四边形BAEF是平行四边形,此时点F坐标为(,12). 3当四边形BEAF是平行四边形时,点F即为点D,此时点F的坐标为(1,). 4综上所述,点F的坐标为(5,12), O A B x (,12)或(1,). 3 4【076】解:(1)∵四边形OBHC为矩形,∴CD∥AB, C 又D(5,2),∴C(0,2),OC=2 .图11 ∴解得 2 1 2 5 5 m n 2 D 5n 2 mn 22 152 ∴抛物线的解析式为:…… 4分y x x 222(2)点E落在抛物线上. 理由如下:……… 5分152由y = 0,得. 解得x=1,x=4.∴A(4,0),B(1,0). x x 2 01222 ∴OA=4,OB=1. 由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°,由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°,∴点E的坐标为(3,-1). 151522把x=3代入,得,2222(3)法一:∴点E在抛物线上. y x x 2y 3 3 2 1存在点P(a,0),延长EF交CD于点G,易求OF=CG=3,PB=a-1. S=5,S= 3,记S= S,S= S, BCGF ADGF BCQP 1ADQP 2梯形梯形梯形梯形1 下面分两种情形:①当S∶S=1∶3时,,S (5 3)2 512 14PFEF1此时点P在点F(3,0)的左侧,则PF = 3-a,由△EPF∽△EQG,得,则QG=9 QGEG319-3a,∴CQ=3-(9-3a) =3a -6,由S=2,得,解得;(3a 6 a 1) 2 2a 1243②当S∶S=3∶1时,此时点P在点F(3,0)的右侧,则PF = a-S (5 3) 6 51214,3,由△EPF∽△EQG,得QG = 3a-9,∴CQ = 3 +(3 a-9)= 3 a-6,913113由S= 6,得,解得,综上所述:所求点P的坐标为24440)……… 14分(,0)或(,(3a 6 a 1) 2 6a 1法二:存在点P(a,0). 记S= S,S= S,易求S= 8. BCQP 1ADQP 2ABCD 梯形梯形梯形当PQ经过点F(3,0)时,易求S=5,S= 3,此时S∶S不符合条件,故a≠3. 12 121 k,则,解得设直线PQ的解3k b 1 a 3k≠0 y = kx+b()析式为, aak b 0 b∴. 由y = 2得xa 3 1a= 3a-6,∴Q(3a-6,2)……… 10分 y x a 3a 31∴CQ1211= 2;= 3a-6,BP = a-1,. (3a 6 a 1) 2 4a 7S下面分两种情形:①当S∶S= 1∶3时,S 8S 12 1梯形ABCD449-∴4a7 = 2,解得; (12)分a 43313-②当S∶S= 3∶1时,;∴4a7 = 6,解得;1梯形ABCD444913,0)………… 14分综上S 8 6S a 12所述:所求点P的坐标为(,0)或(44913[说明:对于第(3)小题,只要考生能求出或两个答案,就给6分. ] a a 443【077】解:(1)把B(0,6)代入,得=6 (1)分my m43 把=0代入,得=8 xy 6y4∴点A 的坐标为(8,0)…………… 3分 B'PCP(2)在矩形OACB中,AC =OB=6,BC=OA=8,∠C=90°GDQ∴AB=FIE'JM∵PD⊥AB∴∠PDB=∠C=2222AC BC 6 8 1090° OMEABDBD8BC,∴∴cos CBA BPa10BA 44∴BD aAD 10 a55又∵BC∥AE,∴△PBD∽△EAD4a10 AEAEAD54a5∴,即,∴ AE (10 ) 12.5 a 4aaBPBD45511∵,∴梯形PEAC22S (PC AE)ACs (8 a 12.5 a)6 6a 61.5()……………………………7分(注:写成不扣分) o a 8o a 8② ⊙Q是△OAB的内切圆,可设⊙Q的半径为r 11∵,解得OAB22、、r=2.………………………………………8分 S (6 8 10)r 6 8设⊙Q与OBABOA分别切于点F、G、H 可知,OF=2∴BF=BG=OB-OF=6-2=4,设直线PD与⊙Q交于点I、J ,过Q作QM⊥IJ于点1M,连结IQ、QG,∵QI=2, IM IJ 1.2222 ∴∴在∴BD=矩形GQMD中,GD=QM=1.6 QM QI IM 1.6BDBC85BG+GD=4+1.6=5.6,由,得 cos CBA BP BD 7 BPBA104∴点P的坐标为(7,6)…………………………………………………………………11分当PE在圆心Q的另一侧时,同理可求点P的坐标为(3,6)………………………12分综上,P点的坐标为(7,6)或(3,6).………………………………………………13分。
2012年河南中考试题数学

22.(10分)类比转化、从特殊到一般等思想方法,在数学学习和研
究中经常用到,如下是一个案例,请补充完整。
原题:如图1,在□ABCD中,点E是BC边的中点,点F是线段AE上一点
BF的延长线交射线CD于点G。若,求的值。
1 尝试探究
在图1中,过点E作EH//AB交BG于点H,则AB和EH的数量关系是
足 21%
1
这次接受图随1 机抽样调查的项市目 民总人数为
2 图1中m的值是
;
图2
;
3 求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数; 4 若该市18∼65岁的市民约有200万人,请你估算其中认为导致吸烟人口
比例高的最主要原因是“对吸烟危害健康认识不足”的人数。
18.(9分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边
两弧相交于点G;③作射线AG交BC边于点D,
则∠ADC的度数为
。
C G
F D
A
E
B
第10题
11.母线长为3,底面圆的直径为2的圆锥的侧面
积为
.
12.一个不透明的袋子中装有三个小球,它们除
分别标有的数字1、3、5不同外,其它完全相
同。任意从袋子中摸出一球后放回,再任意摸
出一球,则两次摸出的球所标数字之和为6的
△AEF为直角三角形时,BD的长为
.
A`
E
B
D
F
C
第15题
三、解答题(本大题8个小题,满分75分)
16.(8分)先化简
,
然后从的范围
内选取一个合适的整数作为x
的值代入求值。
17.(9分)5月31日是世界无烟日,某市卫生机构为了了解“导致吸烟人口 比例高的主要原因”,随机抽样调查了该市部分18∼65岁的市民,下图是根
初三抛物线试题大全及解析

初三抛物线试题大全及解析一、抛物线的基本概念抛物线是一种重要的几何图形,它在中考数学试题中占有重要地位。
抛物线通常由一条直线和一个二次曲线组成,它可以用来描述一些常见的数学问题,如二次函数、几何问题等。
二、抛物线试题类型1. 已知抛物线解析式求未知量2. 抛物线的性质与应用3. 抛物线的形状与开口方向、对称轴、顶点坐标的关系4. 抛物线与方程的综合题5. 与抛物线有关的实际问题三、抛物线试题解析【例1】(基础题)已知抛物线解析式为y=x²-2x-3,请回答下列问题:(1)求该抛物线的开口方向、对称轴和顶点坐标;(2)当x在什么范围内时,y随x的增大而增大?【解析】(1)因为a=1>0,所以抛物线开口向上。
对称轴为直线x=-b/2a=-(-2)/2=1,顶点坐标为(1,-4)。
(2)因为对称轴为直线x=1,且开口向上,所以当x>1时,y随x的增大而增大。
【例2】(提高题)已知二次函数y=ax²+bx+c的图像经过A(1,0),B(0,-6),C(2,-4)三点,求这个二次函数的解析式。
【解析】由题意可设y=ax²+bx-6,把C(2,-4)代入得4a+2b-6=-4,即b-a=1。
再由点A(1,0)在抛物线上可求c值,即可得到二次函数的解析式。
【答案】解:由题意可设y=ax²+bx-6。
把C(2,-4)代入得4a+2b-6=-4,即b-a=1。
又因为图像经过A(1,0),B(0,-6),所以y=x²+x-6。
【例3】(压轴题)已知二次函数y=ax²+bx+c的图像经过A(0,5),B(1,3),C(-2,7)三点。
求这个二次函数的解析式和图像的对称轴。
【解析】这道题需要用到待定系数法。
首先根据条件确定系数可能取到的值,再代入求出解析式。
然后根据对称性求出对称轴。
【答案】设这个二次函数的解析式为y=a(x-h)²+k,将A(0,5),B(1,3),C(-2,7)三点代入得{c=5a+b+c=39a−2a+k=7解得{a=2k=5∴y=2(x−1)2+3图像的对称轴为直线x=1。
抛物线练习题

抛物线习题精选精讲(1)抛物线——二次曲线的和谐线ﻩ椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.【例1】P 为抛物线px y 22=上任一点,F为焦点,则以P F为直径的圆与y 轴( ).A 相交 .B 相切 .C 相离 .D 位置由P 确定【解析】如图,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线是 :2pl x =-.作PH ⊥l 于H,交y 轴于Q,那么PF PH =, 且2pQH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的中位线,()111222MN OF PQ PH PF =+==.故以PF 为直径的圆与y 轴相切,选B .【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的.(2)焦点弦——常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】 过抛物线()022p px y =的焦点F作直线交抛物线于()()1122,,,A x y B x y 两点,求证:pBF AF 211=+ (1)12AB x x p =++ (2)【证明】(1)如图设抛物线的准线为l ,作1AA l ⊥11111,2pA BB l B AA x ⊥==+于,则AF , 122pBF BB x ==+.两式相加即得:12AB x x p =++(2)当AB ⊥x 轴时,有AF BF p ==,112AF BF p∴+=成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=- ⎪⎝⎭.代入抛物线方程:l XY FA(x,y)11B(x,y)22A 1B 1l2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x1,x 2,∴1224k x x ⋅=.()122111212121111112224x x p p p p p AF BF AA BB x x x x x x +++=+=+=+++++ ()()121222121222424x x p x x p p p p pp x x p x x ++++===+++++. 故不论弦AB 与x 轴是否垂直,恒有pBF AF 211=+成立.(3)切线——抛物线与函数有缘有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功.【例3】证明:过抛物线22y px =上一点M(x 0,y 0)的切线方程是:y 0y=p(x+x 0)【证明】对方程22y px =两边取导数:22.py y p y y''⋅=∴=,切线的斜率 00x x p k y y ='==.由点斜式方程:()()20000001p y y x x y y px px y y -=-⇒=-+20021y px =,代入()即得: y0y=p (x+x0)(4)定点与定值——抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值.掌握它们,在解题中常会有意想不到的收获.例如:1.一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点 ( )()()()().4,0.2,0.0,2.0,2A B C D -显然.本题是例1的翻版,该圆必过抛物线的焦点,选B. 2.抛物线22y px =的通径长为2p ;3.设抛物线22y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =-以下再举一例【例4】设抛物线22y px =的焦点弦AB 在其准线上的射影是A1B1,证明:以A1B 1为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么A 1B 1=A B=2p ,而A1B1与AB 的距离为p,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对A B的一般情形给于证明.【证明】如图设焦点两端分别为()()1122,,,A x y B x y , 那么:22121112.y y p CA CB y y p =-⇒⋅==设抛物线的准线交x 轴于C,那么.CF p =2111111.90A FB CF CA CB A FB ∴∆=⋅∠=︒中故.这就说明:以A 1B 1为直径的圆必过该抛物线的焦点.● 通法 特法 妙法(1)解析法——为对称问题解困排难解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等). 【例5】(07.四川文科卷.10题)已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B ,则|AB |等于( )A.3B.4C.32 D .42 【分析】直线AB 必与直线x+y=0垂直,且线段 AB 的中点必在直线x+y=0上,因得解法如下.【解析】∵点A 、B关于直线x+y=0对称,∴设直线AB 的方程为:y x m =+. 由()223013y x mx x m y x =+⎧⇒++-=⎨=-+⎩设方程(1)之两根为x 1,x2,则121x x +=-. 设AB 的中点为M (x 0,y 0),则120122x x x +==-.代入x+y=0:y0=12.故有11,22M ⎛⎫- ⎪⎝⎭. 从而1m y x =-=.直线AB 的方程为:1y x =+.方程(1)成为:220x x +-=.解得:2,1x =-,从而1,2y =-,故得:A(-2,-1),B (1,2).AB ∴=,选C.(2)几何法——为解析法添彩扬威虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(07.全国1卷.11题)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛XYAB FA 1B 11M C XOY ABMl x y +=ÿ物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积( )A.4B. C. D .8 【解析】如图直线AF时∠A FX =60°. △AFK 为正三角形.设准线l 交x 轴于M,则2,FM p ==且∠KFM=60°,∴24,4AKFKF S ∆===选C. 【评注】(1)平面几何知识:边长为a 的正三角形的面积用公式24S a ∆=计算. (2)本题如果用解析法,需先列方程组求点A的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法——追本求真的简单一着许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单. 【例7】(07.湖北卷.7题)双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A.1-ﻩ B .1ﻩ C .12-D.12【分析】 这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半 焦距c,离心率为e ,作 MH l H ⊥于,令1122,MF r MF r ==.∵点M 在抛物线上,1112222,MF MF r MH MF r e MH MF r ∴=====故,这就是说:12||||MF MF 的实质是离心率e.其次,121||||F F MF 与离心率e有什么关系?注意到: ()1212111122111F F e r r c e a e e MF r r r e +⋅⎛⎫====-=- ⎪⎝⎭. XY O F(1,0)AK60°Y2=2px L:x=-1M这样,最后的答案就自然浮出水面了:由于()12112||||11||||F F MF e e MF MF -=-+=-.∴选 A ..(4)三角法——本身也是一种解析三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(07.重庆文科.21题)如图,倾斜角为a 的直线经过抛物线x y 82=的焦点F,且与抛物线交于A 、B 两点。
2012年中考压轴题精选(12)

2012年中考压轴题精选(12)1、定义:P 、Q 分别是两条线段a 和b 上任意一点,线段PQ 长度的最小值叫做线段a 与线段b 的距离.已知O(0,0),A(4,0),B(m ,n),C(m+4,n)是平面直角系中四点. (1)根据上述定义,当m=2,n=2时,如图1,线段BC 与线段OA 的距离是_ ____; 当m=5,n=2时,如图2,线段BC 与线段OA 的距离(即线段AB 的长)为____ __; (2)如图3,若点B 落在圆心为A ,半径为2的圆上,线段BC 与线段OA 的距离记为d ,求d 关于m 的函数解析式; (3)当m 的值变化时,动线段BC 与线段OA 的距离始终为2,线段BC 的中点为M. ①求出点M 随线段BC 运动所围成的封闭图形的周长; ②点D 的坐标为(0,2),m≥0,n≥0,作MH ⊥x 轴,垂足为H ,是否存在m 的值,使以A 、M 、H 为顶点的三角形与△AOD 相似,若存在,求出m 的值;若不存在,请说明理由。
班级____________________ 姓名____________________………………密………………………………………………封………………………………………………线………………2、如图,经过原点的抛物线2y x 2mx(m 0)=-+>与x 轴的另一个交点为A.过点P(1,m)作直线PM x ⊥轴于点M ,交抛物线于点B.记点B 关于抛物线对称轴的对称点为C (B 、C 不重合).连结CB,CP 。
(1)当m 3=时,求点A 的坐标及BC 的长;(2)当m 1>时,连结CA ,问m 为何值时CA ⊥CP ?(3)过点P 作PE ⊥PC 且PE=PC ,问是否存在m ,使得点E 落在坐标轴上?若存在,求出所有满足要求的m 的值,并写出相对应的点E 坐标;若不存在,请说明理由。
3、在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.4、如图1,已知直线y=kx 与抛物线2422y=x +x 273交于点A (3,6). (1)求直线y=kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD .继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?答案1、解:(1)2(2)∵点B 落在圆心为A ,半径为2的圆上,∴2≤m≤6。
神奇的抛物线——与抛物线一个几何模型有关的试题探究

【 1 直 方 m , Y p / , 、设 线 程 :ya与 2 婴 , + =x
2 p z
正 好是 准线 !亦 即两 条切 线交 点一 定落在 准 线 上 !
联立得 Y - p y 2 a 0 . ・ : 2a’_r 叫 , 2m 一 p = Y Y -p . = l2 . x
・ . .
豸2" =,)。。.一  ̄Y (+ = 一D Yl Yp A , -( l 2 O 一 _ / / O
A, 0 , D 三点共 线 .
又 / E+/E O+ZB D+ZDFO =1 0 _ AF F F 8。
. .
ZEFO +ZDFO =9 。, . EF -DF . 0 。 . J
切线 A T的方程 :Y Y =e(— i 切 线 B — , -- X), -x T的 方程 :Y 2 --x : ,联 立这 两个 方程 ,求得点 —Y =e(-x) -
J ,
/ 、
T 坐 p , Z / , 的 标f I 又同( ) 证明: ★ 处 z
Y・2 一 . : , l =P Y x 一 故点 T r 的轨迹是直线 = , 一
+ : — m :—
・
c
・
一
3
( ) 1 当线段 M 1 N的长度最小时, 在椭 圆c上是
1
. ‘
・ . . .
m … = 一 +
+ m 1 一l≥ 6一 1= , +I + ) = 5 。
+1
m +1
、
否存在这样的点 , 使得AS TB的面积为{?若存在,
・
.
.
联想到普通高中数学课程标准实验教科书数学 选修 21( — 人教版)P 5阅读与思 7 考 中介 绍 的抛 物 线 的 光 学性 质 :
2012年数学中考压轴题分类5 ——几何图形与动点问题
2012年数学中考压轴题分类5 ——几何图形与动点问题1.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?2.(12分)如图,在矩形ABCD中,AB=12cm,BC=8cm,点E,F,G分别从点A,B,C三点同时出发,沿矩形的边按逆时针方向移动,点E,G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EF G的面积为S(cm2).(1)当t=1秒时,S的值是多少?(2)写出S和t之间的函数解析式,并指出自变量t的取值范围.(3)若点F在矩形的边BC上移动,当t为何值时,以点E,B,F为顶点的三角形与以F,C,G为顶点的三角形相似?请说明理由.Array(第24题图)3.如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为cm(用含t的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.(4)连结CD.当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.4.(12分)如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.5.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.6、已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运到,连结DP,作CN⊥DP于点M,且交直线AB于点N,连结OP,ON。
2012中考数学压轴题及答案40例(7)
∴yB=a()2= 5分 设抛物线F2的对称轴与x轴交于点P,如图1. ∵a>0,∴BP=. ∵顶点N(,-),∴NP=|-|=. ∴BP=NP. 6分 ∵抛物线是轴对称图形,∴OP=AP. ∴四边形ABMN是平行四边形. 7分 ∵BN是抛物线F2的对称轴,∴BN⊥OA. ∴四边形ABMN是菱形. 8分 ∵BN=BP+NP,∴BN=. ∵四边形ABMN的面积为×OA·BN=×|m|× ∴当m>0时,四边形ABMN的面积为×m×=. 9分 当m<0时,四边形ABMN的面积为×(-m)×=-. 10 分 (3)点C的坐标为(0,+c)(参考图2).
=(yD-yP)(xB-xA) =[(x+)-(x 2+x)](1+2) =-x 2-x+ =-(x+)2+ ∴当x=-时,△PAB的面积有最大值,最大值为. 8分 此时yP=×(-)2+×(-)=-. ∴此时P点的坐标为(-,-). 9分
∴直线ON的解析式为y=-x.
由x=-x 2+x,得x1=0,x2=6. ∴N(6,-3). 过点N作NC⊥x轴于C. 在Rt△BCN中,BC=6-4=2,NC=3 ∴NB==. ∵OB=4,∴NB≠OB,∴∠BON≠∠BNO,∴△OBN与 △OAB不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的 点. ∴在x轴下方的抛物线上不存在点N,使△OBN与△OAB相 似. 10分 31.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段 OA绕原点O顺时针旋转120°,得到线段OB. (1)求点B的坐标; (2)求经过A、O、B三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长 最小?若存在,求出点C的坐标;若不存在,请说明理由. (4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么
2012中考数学试题及答案分类汇编:平面几何基础
2012中考数学试题及答案分类汇编:平面几何基础一、选择题1.(河北省2分)如图,∠1+∠2等于A、60°B、90°C、110°D、180°【答案】B。
【考点】平角的定义。
【分析】根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°。
故选B。
2.(河北省3分)已知三角形三边长分别为2,x,13,若x为正整数则这样的三角形个数为A、2B、3C、5D、13【答案】B。
【考点】一元一次方程组的应用,三角形三边关系。
【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边,得213132x >x <+⎧⎨+⎩,解得,11<x <15,所以,x 为12、13、14。
故选B 。
3.(山西省2分)如图所示,∠AOB 的两边、OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB平行,则∠DEB 的度数是A 、35°B 、70°C 、110°D 、120°【答案】B 。
【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。
【分析】过点D 作DF ⊥AO 交OB 于点F,则DF 是法线,根据入射角等于反射角的关系,得∠1=∠3,∵CD ∥OB,∴∠1=∠2(两直线平行,内错角相等)。
∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°。
故选B 。
4.(山西省2分)一个正多边形,它的每一个外角都等于45°,则该正多边形是A 、正六边形B 、正七边形C 、正八边形D 、正九边形【答案】C 。
2012年中考压轴题
1.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,(1)求证:BC是⊙O的切线;(2)求的长.2.如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.3.我们知道,经过原点的抛物线的解析式可以是y=ax2+b x(a≠0) (1)对于这样的抛物线:当顶点坐标为(1,1)时,a=________;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是________(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过Dn,求所有满足条件的正方形边长.4.如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.5.如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x 轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.24.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).6.我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.示例(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.7.如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x 轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由..已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D 在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当时(如图),求证:CD是⊙O的切线;(2)当时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.9.已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)使用a、c表示b;(2)判断点B所在象限,并说明理由;(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点,求当x≥1时y1的取值范围.10.如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x 轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,,求AD的长.12.如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.13.如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y 轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ACBD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.14.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.1.如图,二次函数的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:________;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.16.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.17.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线垂直的直线l5的函数表达式.18.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数的图象与坐标轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?19.如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数(x>0)图象上任意一点,以P 为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.20.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.21.已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.22.如图,抛物线与y轴交于点C(0,-4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.23、函数的运用题(30题10分).如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(-6,n),线段OA=5,E为x轴正半轴上一点,且(1)求反比例函数的解析式;(2)求△AOB的面积.24.如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(-1,0),以AB的中点P为圆心,AB为直径作⊙P的正半轴交于点C.(1)求经过A、B、C三点的抛物线所对应的函数解析式;(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;(3)试说明直线MC与⊙P的位置关系,并证明你的结论.25.如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012数学中考试题抛物线与几何问题精选 1、(辽宁12市)如图,在平面直角坐标系中,直线33yx与x轴交于点A,与y
轴交于点C,抛物线223(0)3yaxxca经过ABC,,三点. (1)求过ABC,,三点抛物线的解析式并求出顶点F的坐标; (2)在抛物线上是否存在点P,使ABP△为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由; (3)试探究在直线AC上是否存在一点M,使得MBF△的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.
解:(1)直线33yx与x轴交于点A,与y轴交于点C. (10)A,,(03)C, 点AC,都在抛物线上, 23033acc
333ac
抛物线的解析式为2323333yxx顶点4313F,
(2)存在1(03)P,2(23)P, (3)存在 理由: 延长BC到点B,使BCBC,连接BF交直线AC于 点M,则点M就是所求的点.
过点B作BHAB于点H. B点在抛物线2323333yxx上,(30)B,
A O x y B F C
A O x y B F C
图9
H
B M 在RtBOC△中,3tan3OBC, 30OBC,23BC,
在RtBBH△中,1232BHBB, 36BHBH,3OH,(323)B, 设直线BF的解析式为ykxb
233433kbkb
解得36332kb
33362yx
3333362yxyx
解得371037xy, 310377M,
在直线AC上存在点M,使得MBF△的周长最小,此时310377M,. 2、(山东济南)已知:抛物线2yaxbxc(a≠0),顶点C (1,3),与x轴交于A、B两点,(10)A,. (1)求这条抛物线的解析式. (2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,
PN⊥DB于N,请判断PMPNBEAD是否为定值? 若是,请求出此定值;若不是,请说明理由. (3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP ,FG分别与边.
AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断PAEFPBEG是否成
立.若成立,请给出证明;若不成立,请说明理由. 【思路点拨】(2)证△APM∽△ABE,PMAPBEAB 同理: PNPBADAB (3)证PH=BH且△APM∽△PBH 再证△MEP∽△EGF可得。
解:(1)设抛物线的解析式为2(1)3yax 将A(-1,0)代入: 20(11)3a ∴ 34a ∴ 抛物线的解析式为23(1)34yx,即:2339424yxx (2)是定值,1PMPNBEAD ∵ AB为直径,∴ ∠AEB=90°,∵ PM⊥AE,∴ PM∥BE ∴ △APM∽△ABE,∴ PMAPBEAB ①
同理: PNPBADAB ② ① + ②:1PMPNAPPBBEADABAB (3)∵ 直线EC为抛物线对称轴,∴ EC垂直平分AB ∴ EA=EB ∵ ∠AEB=90° ∴ △AEB为等腰直角三角形. ∴ ∠EAB=∠EBA=45° .................... 7分 如图,过点P作PH⊥BE于H, 由已知及作法可知,四边形PHEM是矩形, ∴PH=ME且PH∥ME 在△APM和△PBH中 ∵∠AMP=∠PHB=90°, ∠EAB=∠BPH=45° ∴ PH=BH 且△APM∽△PBH
∴ PAPMPBBH
∴ PAPMPMPBPHME ① 在△MEP和△EGF中, ∵ PE⊥FG, ∴ ∠FGE+∠SEG=90° ∵∠MEP+∠SEG=90° ∴ ∠FGE=∠MEP ∵ ∠PME=∠FEG=90° ∴△MEP∽△EGF
∴PMEFMEEG ②
C O x A D P M E B
N
y 由①、②知:PAEFPBEG 3、 (浙江杭州) 在直角坐标系xOy中,设点A(0,t),点Q(t,b)。平移二 次函数2txy的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B,C两点(∣OB∣<∣OC∣),连结A,B。 (1)是否存在这样的抛物线F, OCOBOA2?请你作出判断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO=23,求抛物线F
对应的二次函数的解析式。 【思路点拨】(1)由关系式OCOBOA2来构建关于t、b的方程;(2)讨论 t的取值范围,来求抛物线F对应的二次函数的解析式。
解:(1)∵ 平移2txy的图象得到的抛物线F的顶点为Q, ∴ 抛物线F对应的解析式为:btxty2)(. ∵ 抛物线与x轴有两个交点,∴0bt.
令0y, 得tOBtb,tOCtb, ∴ tOCOB(|||||tb)( ttb)|2|t 22|OAttb , 即22tttb, 所以当32tb时, 存在抛物线F使得||||||2OCOBOA.-- 2分 (2) ∵BCAQ//, ∴ bt, 得F: ttxty2)(, 解得1,121txtx. 在RtAOB中, 1) 当0t时,由 ||||OCOB, 得)0,1(tB, 当01t时, 由ABOtan23||||OBOA1tt, 解得3t, 此时, 二次函数解析式为241832xxy; 当01t时, 由ABOtan23||||OBOA1tt, 解得t53, 此时,二次函数解析式为y532x +2518x +12548. 2) 当0t时, 由 ||||OCOB, 将t代t, 可得t53, 3t, (也可由x代x,y代y得到) 所以二次函数解析式为 y532x +2518x –12548或241832xxy.
4、(江苏常州)如图,抛物线24yxx与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上一动点. (1)求点A的坐标; (2)以点A、B、O、P为顶点的四边形中,有菱形、等 腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标; (3)设以点A、B、O、P为顶点的四边形的面积为S, 点P的横坐标为x,当462682S时,求x的取值范围. 【思路点拨】(3)可求得直线l的函数关系式是y=-2x,所以应讨论①当点P在第二象限时,x<0、 ②当点P在第四象限是,x>0这二种情况。
解:(1)∵4)2(422xxxy ∴A(-2,-4) (2)四边形ABP1O为菱形时,P1(-2,4)
四边形ABOP2为等腰梯形时,P1(5452,)
四边形ABP3O为直角梯形时,P1(5854,) 四边形ABOP4为直角梯形时,P1(51256,) (3)
由已知条件可求得AB所在直线的函数关系式是y=-2x-8,所以直线l的函数关系式是y=-2x ①当点P在第二象限时,x<0,
△POB的面积xxSPOB4)2(421
∵△AOB的面积84421AOBS, ∴)0(84xxSSSPOBAOB ∵286264S, ∴286264SS
即2868426484xx ∴22412232Sx ∴x的取值范围是22322241x ②当点P在第四象限是,x>0, 过点A、P分别作x轴的垂线,垂足为A′、P′ 则四边形POA′A的面积
44)2(21)2(224xxxxxSSSOPPAAP梯形PAAPO ∵△AA′B的面积42421BAAS ∴)0(84xxSSSBAAAAPO ∵286264S,
∴286264SS 即2868426484xx ∴21242223Sx ∴x的取值范围是21242223x 5、(浙江丽水)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线2x
与x轴相交于点B,连结OA,抛物线2xy从点O沿OA方向平移,与直线2x交于点P,顶点M到A点时停止移动. (1)求线段OA所在直线的函数解析式; (2)设抛物线顶点M的横坐标为m, ①用m的代数式表示点P的坐标; ②当m为何值时,线段PB最短; (3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.
解:(1)设OA所在直线的函数解析式为kxy, ∵A(2,4), ∴42k, 2k, ∴OA所在直线的函数解析式为2yx (2)①∵顶点M的横坐标为m,且在线段OA上移动, ∴2ym(0≤m≤2). ∴顶点M的坐标为(m,2m). ∴抛物线函数解析式为2()2yxmm.
y B O
A P M
x 2x